

Hydrogeological Study Report

Osaca Hillstreet Subdivision

County Road 65, Osaca, Ontario

D.M. Wills Project Number 22-11056

D.M. Wills Associates Limited Partners in Engineering, Planning and Environmental Services Peterborough

April 2024

Prepared for: Hillstreet Developments Ltd. c/o Larry MacDonell

Submissions Summary

Submission No.	Submission Title	Date of Release	Submissions Summary
1	Draft Hydrogeological Study Report	December 6, 2022	Draft Submission for Client Review
2	Final Hydrogeological Study Report	December 7, 2022	Final Submission to Client
3	Draft Revised Final Hydrogeological Study Report	April 2, 2024	Draft Submission for Client Review

This report has been formatted considering the requirements of the Accessibility for Ontarians with Disabilities Act.

Table of Contents

1.0	In	Itroduction
2.0	Sc	cope of Work 1
3.0	Su	ubsurface Investigation
3.1		Soil Profile Summary
3.2		Bedrock
3.3		Groundwater 4
3	.3.	.1 Groundwater Static Level
3	.3.2	.2 Groundwater Flow Direction and Hydraulic Gradients
4.0	In	a-Situ Infiltration Testing
4.1		Permeability and Percolation Time
5.0	Gı	roundwater Availability
5.1		MECP Water Well Record Survey
5.2		Historic Groundwater Supply Evaluation
5.3		Pumping test
5	.3.	.1 A377795 Well Test
5	.3.2	.2 A377796 Well Test
5	.3.3	.3 A377799 Well Test
5	.3.4	.4 Anticipated Water Taking Needs15
5	.3.	.5 Hydrogeological modelling15
5	.3.0	.6 Groundwater Quality
6.0	Gı	roundwater Impact Assessment 20
6.1		Water Balance Analysis
6.2		Predictive Assessment
7.0	С	onclusions and Recommendations23

Tables

Table 1– Summary of Particle Size Distribution	4
Table 2– Groundwater Level Summary	
Table 3– Permeability and Percolation Time Summary	
Table 4– A377795 Well Pumping Test Details1	1
Table 5– Pumping Test Summary Well A3777951	1
Table 6– A377796 Well Pumping Test Details1	12
Table 7– Pumping Test Summary Well A3777961	13
Table 8– A377799 Well Pumping Test Details1	4
Table 9– Pumping Test Summary Well A3777991	4
Table 10- Maximum drawdowns observed during the pumping tests1	6

Table 11– Distances between wells included in the pumping tests	16
Table 12– Derived aquifer parameters	17
Table 13– Simulated and observed drawdowns	18
Table 14– Water Balance Summary	22
Table 15– Predictive Assessment of Nitrate Concentration	22

Figures

- Figure 1 Subject Property Plan
- Figure 2 Subsurface Investigation Plan
- Figure 3 Subsurface Infiltration Plan
- Figure 4 Proposed Development Domestic Wells and Piezometric Surface
- Figure 5 Simulated Drawdown with Domestic Wells Pumping at 1.8 m³/d
- Figure 6 Simulated Drawdown with Domestic Wells Pumping at 5.4 m³/d

Appendices

- Appendix A Site Plans D.G. Biddle & Associates Limited
- Appendix B Test Pit Logs
- Appendix C Certificates of Analysis Physical Soil Testing
- Appendix D Infiltration Graphs
- Appendix E MECP Well Record Survey
- Appendix F MECP Well ID A377795, A377796 and A377799 Well Records
- Appendix G Pumping Test Hydrographs
- Appendix H Certificates of Analysis Groundwater Water Supply
- Appendix I Certificates of Analysis Nitrates
- Appendix J Water Balance
- Appendix K Mass Balance Equation

1.0 Introduction

D.M. Wills Associates Limited (Wills) was retained by Hillstreet Developments Ltd. c/o Larry MacDonell (Client) to complete a Hydrogeological Study (Study) for the property located at Pt Lot 27 Concession 5, in the village of Osaca, Ontario (Subject Property). Wills understands the Subject Property is approximately 24.6 hectares (ha) and is proposed to be developed as a residential subdivision with 40 individual lots (Proposed Development). The location of the Subject Property is shown on **Figure 1**.

The Study was requested by the Municipality of Port Hope (Pre-Consultation – Planning Review dated May 25, 2022) to confirm sewage servicing capabilities in context of the Proposed Development, and to confirm that adequate water supply is available. Furthermore, infiltration rates of the subsurface soils and shallow groundwater conditions were evaluated as input to the design of proposed stormwater management features and sewage disposal systems on the Subject Property.

Wills' Study was conducted on the basis of:

- the Ministry of Environment Conservation and Parks (MECP) Guidelines D-5-4 Individual On-site Sewage Systems: Water Quality Impact Risk Assessment (Guideline D-5-4) and D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).
- Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited, dated October 15, 2023, included in **Appendix A-1**.
- Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited, dated February 21st, 2024, included in **Appendix A-2**.

The Proposed Development is presented on the Preliminary Draft Plan dated February 21st, 2024, and included in **Appendix A-2**.

2.0 Scope of Work

Wills' approved Scope of Work to complete the Study included the following:

- A review of available Ministry of Environment, Conservation, and Parks (MECP) well records within 500 meters (m) of the Subject Property to provide a preliminary characterization of the local hydrogeological conditions.
- Prior to initiating field investigations, public and private utility services locates were obtained and reviewed by Wills staff. A Site-Specific Health and Safety Plan and Field Work plan were prepared to ensure a safe and efficient fieldwork program.
- Steenburgh Sand and Gravel (Steenburgh) excavated 12 test pits on the Subject Property to a depth of 3.0 metres below ground (mbg) between September 23 and September 26, 2022.
- Five drive-point monitor wells were installed in the base of select test pits to monitor groundwater levels above a depth of 3 mbg.

- Eight single ring infiltrometers were installed on the Subject Property to determine representative infiltration rates for stormwater management and sewage disposal system design between September 26 and September 27, 2022.
- Retained soils samples were reviewed by Wills prior to submitting select samples to PRI Engineering (PRI), a Canadian Certified Independent Laboratory (CCIL) for analysis of Particle Size Distribution and percolation time estimation.
- Static groundwater level measurements were recorded on December 5, 2023 in three monitor wells installed by Cambium in 2022 and identified BH101-22, BH-107-22 and BH110-22. Groundwater was found at depths ranging from 2.83 to 2.99 mbg.
- Six groundwater samples were collected and analyzed by SGS to determine background nitrate concentrations:
 - o from wells MW22-08, BH107-22 and BH110-22 on October 5th, 2022.
 - o from wells BH101-22, BH107-22 and BH110-22 on December 5, 2023.
- Herb Lang Well Drilling Ltd. (HLWD) conducted a 6-hour duration pumping test on three newly installed Ontario Regulation (O. Reg.) 903 Water Supply Wells on the Subject Property on October 31, November 2nd, and November 8th, 2023 respectively.
 - these three wells are referred to individually as "A377795", "A377796" and "A377799". The pumping tests were conducted to determine production yield, maximum pumping rate, well recovery, groundwater quality, the potential for interference with existing neighbouring groundwater taking activities as well as future pumping activities on-site.
- Wills contracted the services of David Ruttan, B.A.Sc., P. Eng., to conduct an evaluation of pumping test data with regards to groundwater availability and potential for interference between pumping activities both on-site and on neighbouring properties through hydrogeological modelling.
- Two groundwater samples were collected from each of the three O. Reg. 903 Water Supply Wells during the pumping tests (at the 1-hour and 6-hour pumping test intervals) and submitted to SGS Canada Inc. (SGS) for analysis of select physical, chemical, and biological parameters for comparison to the Ontario Drinking Water Quality Standards (ODWQS).
- While pumping in one O.Reg. 903 Water Supply Well, real-time data logging technology (Solinst Level Loggers) was employed to record the drawdown and groundwater level fluctuations as well as the response to pumping in the other newly installed O.Reg. 903 Water Supply Wells. The three wells are located approximately 93 m to 150 m away from one another.
- Additionally, groundwater level fluctuations were monitored using a Solinst water level tape in the existing dug well on the neighboring property located 5868 County Road 65, Porpt Hope, ON L1A 3V5. This well is located approximately 208 m, 210 m and 272 m away from wells A377795, A377796 and A377799 respectively.

- Assessment of the Subject Property's capacity to support private on-site sewage disposal systems (Groundwater Impact Assessment) was conducted based on the Preliminary Draft Plan configuration and MECP Guideline D-5-4 Individual On-site Sewage Systems: Water Quality Impact Risk Assessment (Guideline D-5-4).
- Evaluation of Wills' desktop review and field investigations findings, and preparation of this Hydrogeological Study Report.

Boreholes, monitor wells, water supply wells, test pits, and infiltration test locations are shown on **Figure 2**.

3.0 Subsurface Investigation

Test pit and infiltration test locations completed between September 23 and September 27 are shown on **Figure 2**.

Representative soil samples were submitted to PRI for analysis of Particle Size Distribution and percolation time estimation. Laboratory testing results were compared to the Ministry of Municipal Affairs and Housing, Building and Development Branch (MMAH) Supplementary Standard SB-6 – Percolation Time and Soil Descriptions Table 2 & Table 3 values (Ontario Building Code [OBC], 2012) (OBC Table 2 & OBC Table 3). Percolation times are discussed in **Section 4.0**.

Test pit logs detailing the encountered subsurface conditions are included in **Appendix B**. Boreholes advanced for the purpose of installing infiltrometers were completed using an excavator-mounted auger, and were positioned adjacent to existing test pits where possible as a means of confirming the underlying soils. These boreholes were not logged or sampled.

3.1 Soil Profile Summary

The Subject Property is located in the Physiographic Region of the Iroquois Plain (The Physiography of Southern Ontario, Chapman and Putnam, 1984), which is characterized by lacustrine deposits including sand plains and beaches associated the former Lake Iroquois. Ontario Geological Survey (OGS) mapping suggests that surficial geology on the Subject Property consists of alluvial deposits.

The results of the test pit program indicate the overburden is generally aligned with published mapping and includes a surficial layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A generally north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property at TP22-10, TP22-08, and TP22-11. This material was encountered at a depth ranging from approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.

Seven laboratory particle size distribution analyses were completed on the collected soil samples. The analytical results are summarized in **Table 1** on the basis of the Unified Soil Classification System (USCS). Certificates of Analysis for the physical soil analysis are included in **Appendix C**.

Test Pit ID	Sample No.	Sample Depth (mbg)	Soil Unit	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
TP22-01	GS-01	1.4	Sand	3	93	3	1
TP22-02	GS-02	2.9	Sand	3	94	3	0
TP22-03	GS-03	1.0	Sand	0	97	3	0
TP22-05	GS-01	1.7	Sand	2	78	18	2
TP22-08	GS-02	2.0	Silt & Clay	0	4	56	40
TP22-10	GS-02	1.9	Silt & Clay	0	3	62	35
TP22-11	GS-02	2.7	Silt & Clay	0	4	71	25

Table 1– Summary	of Particle Size Dist	ribution
------------------	-----------------------	----------

3.2 Bedrock

Bedrock was not encountered at any of the test pit locations, and a review of nearby MECP well records suggests that bedrock is in excess of 34 mbg in the vicinity of the Subject Property. OGS classifies the underlying bedrock geology to be from the Ottawa and Simcoe group, and may include dolostone, shale, arkose, and sandstone. Nearby MECP well records suggest the underlying bedrock consists of limestone material.

3.3 Groundwater

3.3.1 Groundwater Static Level

Groundwater level monitoring was conducted at the five-drive point monitor well locations, as well as three on-site monitor wells installed by Cambium Inc. and detailed in their November 2022 report titled Geotechnical Investigation – Proposed Residential Development, 5868 County Road 65, Port Hope, ON (Geotechnical Report). Figure 2 shows the locations of the monitor wells included in Wills' Study. Table 2 summarizes the static water levels measured on the Subject Property by Wills. Groundwater elevations for select monitor wells were inferred using the relative elevations provided in the Geotechnical Report and are referenced to a local (assumed) benchmark.

Monitor Well ID	Stick-Up (mag)	Date	Static Water Level (mbg)	Groundwater Elevation (masl)
	0.73	September 27, 2022	2.71	-
MW22-01		October 5, 2022	Damaged	-

Monitor Well ID	Stick-Up (mag)	Date	Static Water Level (mbg)	Groundwater Elevation (masl)
MW22-02	0.56	September 27, 2022	Dry	-
1010022-02	0.56	October 5, 2022	Dry	-
MW22-05	0.50	September 27, 2022	2.53	-
1010022-03	0.50	October 5, 2022	2.58	-
MW22-08	0.48	September 27, 2022	2.59	-
1010022-08	0.48	October 5, 2022	2.63	-
	0.70	September 27, 2022	2.30	-
MW22-11	0.73	October 5, 2022	2.34	-
	0.88	September 27, 2022	-	
BH101-22 (proximal to MW22-01)		October 5, 2022	2.66	197.24
		December 5, 2023	2.83	197.07
		September 27, 2022	-	-
BH107-22 (proximal to MW22-11)	1.06	October 5, 2022	2.54	197.86
		December 5, 2023	2.85	197.55
		September 27, 2022	-	-
BH110-22 (proximal to MW22-05)	0.92	October 5, 2022	2.58	196.12
		December 5, 2023	2.99	195.71

*mbg – metres below ground masl – metres above sea level, measured against an assumed datum (local benchmark)

Another round of groundwater level measurements in the three on-site monitor wells installed by Cambium Inc is scheduled for the spring 2024.

3.3.2 Groundwater Flow Direction and Hydraulic Gradients

Shallow groundwater flow direction was calculated using Wills' field measurements and monitor well elevations provided in the Geotechnical Report. Based on this information, Wills infers the shallow groundwater flows direction to be to the southeast on the Subject Property.

The steepest hydraulic gradient was calculated between BH107-22 and BH110-22 at 0.0043 and 0.0046 on October 5, 2022 and December 5, 2023 respectively.

Shallower hydraulic gradients between BH101-22 to BH110-22 and from BH107-22 to BH101-22 were calculated to be:

- 0.0019 and 0.0016 respectively, on October 5, 2022.
- 0.0024 and 0.0012 respectively, on December 5, 2023.

The inferred groundwater flow direction is shown in **Figure 2**.

4.0 In-Situ Infiltration Testing

In-situ Infiltration tests were conducted at select locations on the Subject Property to determine representative shallow infiltration rates for stormwater management and sewage disposal system design. Infiltration testing locations are shown on **Figure 2**.

The tests were conducted at depths ranging from 0.6 to 2.1 mbg and were completed using 51-millimetre open-end single ring infiltrometers. Water levels within the infiltrometer casings were manually monitored using a Solinst water level tape. The infiltration tests were conducted for a maximum of 96 minutes, with water levels measured at 30-second intervals for the first 5-minutes and increasing intervals as the test progressed. Detailed calculations and supporting infiltration graphs are provided in **Appendix D.**

4.1 Permeability and Percolation Time

Table 3 summarizes the permeability and percolation times of the tested soils on the basis of the in-situ testing, and laboratory results compared to OBC Table 2 & Table 3.

Table 5- Permeability and Percolation Time Summary								
ID	Sample ID	In-situ Testing	Physical Soil Testing Results	Percolation Range (OBC Table 2 and 3)	Laboratory Estimated Percolation (T)	Permeability (Inferred Soil Envelope)		
TP22-01 Proxy for INF-01	GS-01	T= 0.42 min/cm or 1429 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 6 min/cm	Medium		
TP22-02 Proxy for INF-02	GS-02	T= 0.49 min/cm or 1224 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 7 min/cm	Medium		
TP22-03 Proxy for INF-03	GS-01	T=0.35 min/cm or 1714 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 6 min/cm	Medium		
TP22-05 Proxy for INF-05	GS-01	T=0.22 min/cm or 2727 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	T = 12 min/cm	Medium to Low		
INF-06	N/A	T=0.78 min/cm or 769 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low		
INF-07	N/A	T=0.33 min/cm or 1818 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium		
INF-08A	N/A	T=1.11 min/cm or 540 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium		
TP22-08 Proxy for INF-08B	GS-02	T= 0 min/cm or 0 mm/hr	OH envelope	T = > 50 min/cm or >50 mm/hr	T = > 50 min/cm	Unacceptable		
INF-11	N/A	T= 0.81 min/cm or 740 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low		

Table 3– Permeability and Percolation Time Summary

Notes: 1. SM envelope –silty sands, sand-silt mixtures SP envelope – poorly graded sands, gravelly sand, little or no fines OH envelope – Organic clays of medium to high plasticity, organic silts

Wills provides the following considerations as they related for the proposed stormwater management and sewage disposal system designs:

- The encountered soils are anticipated to generally fall within the SP and SM soils envelopes. Sewage disposal system and stormwater management feature design should take into account the silt and clay rich soils identified at TP22-08, TP22-10, and TP22-11 that were encountered between 1.3 to 3.0 mbg. Based on INF-08B, these soils do not have an acceptable permeability on the basis of the OBC.
- A Subsurface Infiltration Plan showing the inferred contact between these two distinct shallow soil units is included as **Figure 3**. Subsurface stratigraphy was inferred from the findings of Wills' test pit program and considers soil properties above a depth of 3.0 mbg.
- Within the sand to silty sand areas identified in red in **Figure 3**, Wills recommends using the mid point of the T-time ranges provided in the OBC for stormwater management and sewage disposal system design on the Subject Property. Although these T-time values (mid range) are slower than that measured in the in-situ tests, Wills considers these conservative for the purpose of design, and should account for any lateral or vertical variation in infiltration rates.
- Within the clayey silt to silt and clay area identified in green in **Figure 3**, Wills recommends that raised tile beds be used for septic systems installed in this area, and minimum setback distances be re-evaluated.

5.0 Groundwater Availability

Wills' preliminary water supply assessment included a review of nearby MECP Well Records and historic hydraulic testing on the neighboring property to the south. Additionally, on-site testing was completed by Wills in three newly installed water supply wells in October and November 2023, to confirm that adequate groundwater supply and quality is available to the Proposed Development.

5.1 MECP Water Well Record Survey

Wills completed a database review and desktop evaluation of MECP Well Records to assist in characterizing the local hydrogeological conditions within 500 m of the Subject Property. The MECP Well Location Plan showing the relative locations of the MECP wells and their respective identifiers is included as **APP- E1** in **Appendix E**. Details for each MECP Well are summarized as **APP-E2** in **Appendix E**.

Nine well records were identified within the 500 m search radius and are summarized below.

- Seven wells were designated as domestic use and two of the wells had an unknown use.
 - One of the unknown uses had incomplete details on the well record, and the other was in relation to a clean-out of sand and gravel from the well bore.

- Five wells were installed in overburden material and four wells were installed in bedrock.
- Well depths ranged from approximately 7.6 to 46 mbg for the wells installed in overburden (25.5 mbg average), and from 34.1 to 44.8 mbg for those installed in bedrock (40.9 mbg average).
- Static water levels ranged from approximately 5.5 to 9.1 mbg for the wells that were installed in overburden (6.9 mbg average), and from 8.5 to 29 mbg for those installed in bedrock (18.3 mbg average).
- The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).

Based on Wills review, a viable aquifer is present on lands adjacent to the Subject Property. Several wells directly north of the Subject Property and directly west of the 500 m buffer (within the community of Osaca), are dug wells that are screened within a shallow sand layer. These wells are less useful for inferring available water supply as they are non-compliant with Ontario Regulation 903 with respect to the depth of construction.

The most useful information can be inferred from wells to the south and southeast of the Subject Property, which all intercept a productive aquifer directly above, or within the bedrock stratum. Overburden wells in this area are generally screened within a coarse sand and gravel layer, and have recommended pumping rates between approximately 15 and 30 L/min. Adjacent bedrock wells are noted as supplying fresh groundwater with recommended pumps rates that range from approximately 19 to 38 L/min. Based on the short-term pumping test results provided on the Well Records, all of these Wells satisfy the minimum yield requirement of 13.7 L/min (four bedroom dwelling) provided in the MECP Guideline D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).

Based on the proximity of these wells to the Subject Property, it is likely that the hydrogeological/aquifer conditions extend north below the Subject Property, provided that the underlying bedrock structure and overburden deposits are similar in nature.

5.2 Historic Groundwater Supply Evaluation

Three of the water wells included in Wills' MECP records search were subject to longterm pumping tests and detailed in the report titled *Groundwater Supply Assessment Report – Hope Concession 5, Part Lot 27 County Road No. 65,* prepared by Ted Rannie M.Sc., P. Geo in September 2018 (2018 Report). This report was prepared to support the development of a 20-lot subdivision on lands directly south of the Subject Property. The wells included in this assessment were MECP Well ID 7314568 (overburden), 7314570 (bedrock), and 7314569 (overburden).

The 2018 Report concluded the following:

• The wells screened in overburden (coarse gravel layers) were confirmed to have high K (hydraulic conductivity) values (2x10⁻² m/s to 8x10⁻¹ m/s), quickly stabilizing

drawdowns, and impressive recovery characteristics (94 – 95% recovery in 75 min and 60 min).

- The well screened in bedrock had a K value 3 orders of magnitude less than the overburden wells (2x10⁻⁵ m/s), however, also showed impressive recovery (88% recovery in 60 min).
- Groundwater testing results indicated relatively good overall chemical quality, which would require commercial water treatment for several aesthetic parameters.
- Off-site impacts to neighboring water users or surface water resources were not expected in view of the large available drawdown in the tested wells.
- Adequate groundwater supply was inferred for the 20-lot development on the basis of the long duration pumping test results at the three well locations.
- The permeable overburden gravel layers were determined to have the best potential for groundwater source on the property considered.

The results of the 2018 Report speak favorably to the prospect of adequate water supply and quality on the Subject Property. To confirm Wills' preliminary findings, on-site testing was completed by Wills in three newly installed water supply wells in October and November 2023, as presented in the following Section.

5.3 Pumping test

Herb Lang Well Drilling Ltd. (HLWD) installed 3 new O.Reg. 903 water supply wells (MECP Well ID A377795, A377796 and A377799) on the Subject Property on October 17, October 12 and October 6, 2023, respectively. The location of these wells is shown on **Figure 2** and the corresponding MECP Well Records are included in **Appendix F**.

A 6-hour pumping test was conducted in each of the three wells on October 31 (A377795), November 2 (A377796) and November 8 (A377799), 2023. The pumping tests were conducted to confirm the performance of the wells over sustained pumping activity, evaluate the cumulative effect of future on-site pumping activities on groundwater availability, evaluate the potential for interference with onsite and neighboring groundwater taking activities, and to enable the collection of groundwater samples for quality analysis.

During each pumping test, drawdown and groundwater level fluctuations were monitored using:

- Solinst Level Loggers and confirmatory manual measurements in the newly installed water supply wells (A377795, A377796 and A377799)
- Manual measurements using a Solinst water level tape in the existing dug well on the neighbor's property located 5868 County Road 65, Porpt Hope, ON L1A 3V5, shown on **Figure 2**. It is noted that measurements in the neighbor's well were completed through a hole in the concrete casing accessible from the surface and located 0.13 m above ground. Due to lack of better access to the well and

interaction with the pumping equipment present in the well, the well depth could not be properly measured.

5.3.1 A377795 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 37.8 L/min (i.e. 10 GPM US) after 7 minutes of pumping, then to 45.4 L/min (i.e. 12 GPM US) after 14 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 4**.

	Oct. 31,2023						
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up	Static Water Level (mbg)			
	Pumping Well						
A377795	11.70	11.19	0.51 mag	3.40			
	Obs	servation Well					
A377796	12.24	11.64	0.60 mag	3.03			
A377799	10.32	9.71	0.61 mag	3.08			
Neighbor's well	unknown	unknown	0.13	4.58			

Table 4– A377795 Well Pumping Test Details

mbtop – metres below top of pipe, mbg – metres below ground, mag – metres above ground

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in **Table 5** below.

Table 5– Pumping Test Summary Well A377795

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Step Test	18.9	7	1.07	4.47	132.3
	37.8	7	1.82	5.22	396.9
Constant Rate	45.4	346	2.33	5.73	16,105.3
Recovery Time			% Recovery		
3.5 minutes				90%	

The following observations are provided with regards to the A377795 well pumping test results:

- The pumping rate applied for the majority of the test (346 minutes) represents more than 3 times the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (15 L/min).
- Water levels monitored at Observation Wells A377796 and A377799 showed limited response to the pumping activity, dropping approximately 0.02 m and 0.03 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum measured drawdown of 0.10 m. These limited fluctuations are attributed to the use of the well by its owners during the test.
- 90% recovery was observed in the pumping well within 4 minutes of stopping the pump.

5.3.2 A377796 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 45.4 L/min (i.e. 12 GPM US) after 14 minutes of pumping then decreased to 37.8 L/min (i.e. 10 GPM US) after 16 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 6**.

	Nov. 2, 2023							
Well ID	Well Depth (mbtop)	Well Depth (mbg)	Stick up	Static Water Level (mbg)				
	Pumping Well							
A377796	12.24	11.64	0.60 mag	3.04				
	Observation Well							
A377795	11.70	11.19	0.51 mag	3.26				
A377799	10.32	9.71	0.61 mag	3.09				
Neighbor's well	unknown	unknown	0.13	4.64				

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in **Table 7**.

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Stop Tost	18.9	14	2.14	5.18	264.6
Step Test	45.4	2	4.36	7.40	355.4
Constant Rate	37.8	344	4.17	7.21	13,358.6
Recovery Time			% Recovery		
6 minutes				90%	

Table 7– Pumping Test Summary Well A377796

The following observations are provided with regards to the A377796 well pumping test results:

- The pumping rate applied for the majority of the test (344 minutes) represents more than 2.5 times the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (15 L/min).
- Water levels monitored at Observation Wells A377795 and A377799 showed limited response to the pumping activity, dropping approximately 0.01 m and 0.02 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum measured drawdown of 0.02 m. These limited fluctuations are attributed to the use of the well by its owners during the test.
- 90% recovery was observed in the pumping well within 6 minutes of stopping the pump.

5.3.3 A377799 Well Test

Following installation of the level loggers, pumping started at an initial rate of 18.9 L/min (i.e. 5 GPM US). The pumping rate was increased to 37.8 L/min (i.e. 10 GPM US) after 4 minutes of pumping, then to 45.4 L/min (i.e. 12 GPM US) after 12 minutes and was maintained at that rate until completion of the 6-hour long test.

Well details, including static water levels measured prior to the initiation of the pumping test, are summarized in **Table 8**.

	Nov. 8, 2023							
Well ID	Well ID Well Depth (mbtop)		Stick up	Static Water Level (mbg)				
Pumping Well								
A377799	10.32	9.71	0.61 mag	3.19				
	Observation Well							
A377795	11.70	11.19	0.51 mag	3.29				
A377796	12.24	11.64	0.60 mag	3.08				
Neighbor's well	unknown	unknown	0.13	5.21				

Table 8– A377799 Well Pumping Test Details

Hydrographs for the Pumping Well and Observation Wells are included in Appendix G.

Pumping test details are summarized in Table 9.

 Table 9- Pumping Test Summary Well A377799

	Pumping Rate (L/min)	Time (minutes)	Max Drawdown (m)	Stabilization Depth (mbg)	Cumulated Volume (L)
Stop Tost	18.9	4	0.88	3.89	75.6
Step Test	37.8	8	1.62	4.81	378
Constant Rate	45.4	348	2.06	5.25	16.177.2
Recovery Time			% Recovery		
3 minutes			90%		

The following observations are provided with regards to the A377799 well pumping test results:

- The pumping rate applied for the majority of the test (348 minutes) represents more than 3 times the peak demand rate considered in MECP Guideline D-5-5 for a residential lot (15 L/min).
- Water levels monitored at Observation Wells A377795 and A377796 showed limited response to the pumping activity, dropping approximately 0.03 m and 0.04 m respectively.
- Water levels monitored at the neighbor's dug well showed limited fluctuations with a maximum amplitude of 0.08 m. The lowest groundwater level was measured before pumping started. These limited fluctuations are attributed to the use of the well by its owners during the test.

• 90% recovery was observed in the pumping well within 3 minutes of stopping the pump.

5.3.4 Anticipated Water Taking Needs

The Proposed Development includes 40 residential lots, as shown on the Post-Development Storm Drainage Plan provided by the Client and included in **Appendix A**.

Based on Guideline D-5-5, the drinking water requirement for a residential lot is 1,8 cubic meter per day (m^3/d) .

Based on the Peterborough Utilities Commission's Water Subdivision and Development Requirements revised in May 2022, Wills considers in this Study a peak hour factor of 3 for the purpose of evaluating water availability. This corresponds to a daily water demand of 5,4 m³/d.

During the 6-hour long pumping tests, volumes ranging from 13,358 to 16,177 L were pumped from the wells, with limited drawdowns observed in the pumping wells. These volumes correspond to 7 to 9 times the daily water requirement for a residential lot. These results suggest that one individual well installed in the same aquifer as the three wells tested is more than capable to meet the daily water taking needs of a residential lot, including during peak hour.

However, in order to evaluate the capacity of the aquifer to meet the water taking needs of the 40 residential lots included in the Proposed Development, and the potential for interference between pumping activities both on-site and on neighbouring properties, Wills contracted the services of David Ruttan, P.Eng.

The following section presents D. Ruttan's evaluation and conclusions with regards to the above.

5.3.5 Hydrogeological modelling

It is noted that D. Ruttan's assessment was conducted based on the Preliminary Draft Plan prepared in October 2023, which included 48 residential lots. However, the revised plan prepared in March 2024 includes only 40 residential lots. Therefore, D. Ruttan's assessment with respect to water availability for the development and potential impact on neighbouring pumping activities is deemed conservative.

In order to determine if sufficient water is available for each of the residential lots, three wells were drilled, and pumping tests were carried out to determine aquifer parameters. The water table is relatively shallow (approximately 3 mbg) and the sufficial material encountered in the newly installed water supply wells was mainly loose sand. There are some scattered clay lenses as evidenced by a 2.13 m thick 'clay and stones' layer, probably a till, in borehole A377799.

During drilling groundwater was reportedly found ranging from 10.06 to 11.58 mbg. Screens were emplaced ranging from 8.84 to 10.06 mbg in well A377799, 10.36 to 11.58 mbg in well A377796, and 9.75 to 11.20 mbg in well A377795. Groundwater rose in the well casings to between 3.30 and 3.40 mbg, indicating a relatively flat piezometric

surface. The static level being approximately 8 m higher than where water was encountered indicates a confined aquifer.

Drawdown data was analyzed to determine the aquifer parameters transmissivity "T", and Stativity "S". Pumping rates for the three tests ranged from 54.5 to 65.4 m³/day.

Maximum drawdowns observed during the pumping tests are summarized in Table 10.

Oct. 31, 2023 PW = A377795	Nov. 2, 2023 PW = A377796	Nov. 8, 2023 PW = A377799
2.33 m	0.007 m	0.034 m
0.025 m	4.17 m	0.040 m
0.034 m	0.018 m	2.06 m
	PW = A377795 2.33 m 0.025 m	PW = A377795PW = A3777962.33 m0.007 m0.025 m4.17 m

Table 10– Maximum drawdowns observed during the pumping tests

PW: Pumping well

These drawdowns are minimal and indicate a limited cone of influence, even at relatively elevated pumping rates.

Distances between the wells are shown in Table 11.

Table 11-Distances between wells included in the pumping tests

Well	Distance from A377795	Distance from A377796	Distance from A377799	
A377795	-	93.2 m	150.3 m	
A377796	93.2 m	-	122 m	
A377799	150.3 m	122 m	-	

Aquifer parameters were derived from curve matching using the Theis method for confined aquifers. The derived parameters are shown in **Table 12**.

Table 12– Derived aquifer parameters

Well	Pumping Rate (m³/d)	Transmissivity (T) (m²/d)	Storativity (S) [1]	Maximum drawdown (m)	Test length (min)	Saturated Thickness (m)	Hydraulic Conductivity (K) (m/d)
		October	31, 2023 Test -	PW = A377795			
A377795	65.41	118.5	3.5E-05	2.33	360	8.62	13.7
A377796		117.3	6.90E-03	0.025	360		13.6
A377799		121.6	2.73E-03	0.034	360		14.1
	November 2, 2023 Test - PW = A377796						
A377796	54.5	64.5	1.20E-04	4.172	360	8.62	7.5
A377799		55.8	3.70E-03	0.018	360		6.8
A377795				0.007	360		
		Novembe	er 8, 2023 Test -	PW = A377799			
A377799	65.4	149.4	1.30E-04	2.058	360	8.62	17.3
A377795		131.0	9.20E-04	0.034	360		15.2
A377796		122.9	1.20E-03	0.040	360		14.3
	Geometric means						
Geometric mean		100.0	6.91E-04				12.2

A relatively simple computer three-dimensional groundwater model was constructed based on the results of subsurface investigations and aquifer testing. Two layers were input spanning the depth from surface to the bottom of the deepest well (i.e. 11.6 m). A 1:10,000 topographic map was used as the basis of the model so that hydraulic boundaries (rivers, swamps) at their respective elevations could be incorporated into the model.

Aquifer parameters were input into the model in layers 1 and 2. Hydraulic conductivity was derived from the geometric mean of transmissivity (i.e.100.0 m²/day) divided by the saturated thickness from the static water level to the bottom of the deepest well (i.e. 8.62 m). Storativity used in the model was the geometric mean of all storativity values derived from the pumping tests (i.e. 6.91×10^{-4}). Specific yield was set at 0.25 which is characteristic of the surficial material encountered. Recharge was estimated at 200 mm/yr.

Initially a steady-state model was set up and calibrated to the static water level of wells A377795, A377796 and A377799 in terms of elevations, approximately 157-158 m asl. This model was then converted to a transient (time-based) model with two stress periods (pumping periods). The first period was to run the model for a sufficient time to obtain groundwater elevations similar to the steady-state model. The second stress period was for 0.25 days, the length of the three pumping tests. Each pumping test was simulated in the model and parameters adjusted until a reasonable match of simulated versus observed drawdown was obtain. These drawdowns are shown in **Table 13**.

After many model runs, the simulated pumping test on A377799 on November 8, 2023 was judged as most representative and conservative of aquifer performance.

Well	Simulated Static Water Level (masl)	Simulated pumping level (masl)	Simulated drawdown (m)	Peaceman Corrected drawdown (m)	Observed Drawdown (m)
A377799 PW	157.47	155.44	2.03	3.94	4.17
A377796 OBS	158.12	158.12	0		0.04
A377795 OBS	157.01	157.01	0		0.034

PW: Pumping well; OBS: Observation Welle

The Peaceman correction translates the simulated drawdown in the model cell to the simulated drawdown in the pumping well. The model predictions of simulated drawdowns are considered excellent compared to the observed drawdowns. The hydraulic conductivity used to obtain these results was 3.0 m/day, slightly lower and more conservative than derived from the pumping tests.

This model was converted back to a steady-state model and 48 wells were inserted in it to evaluate the impact of the Proposed Development. The location of the 48 wells used in the simulation are shown in **Figure 4**. The model was run with a well yield of 1.8 m³/day for each domestic well, which corresponds to the anticipated average daily water taking need for a residential lot. The model was again run with a yield of 5.4 m³/day for each proposed domestic well, which corresponds to the water taking need

at peak hour. The simulated drawdowns are shown on **Figures 5** and **Figure 6** respectively.

The cumulative drawdown of all domestic wells pumping at 1.8 m³/day each is approximately 0.4 m. The saturated thickness of the aquifer in the three newly installed wells tested during the field program ranges from 6.87 to 8.5 m. Assuming each pump is a maximum of 1 m above the screen, the available drawdown varies from 4.65 to 6.28 m. Thus, the maximum simulated drawdown at this pumping rate is 9% of the minimum available drawdown.

The cumulative drawdown of all domestic wells pumping at 5.4 m³/day each is approximately 0.7 m. This is 15% of the minimum available drawdown observed. As pumping at night will be minimal, water levels will likely recover to static levels on a daily basis.

There is minimal effect of pumping at the higher rate on the village of Osaca wells. There is a slightly greater effect on the wells in the subdivision to the south of the site, but even at the higher rate, the effect is minimal. As the higher rate will only apply to a small portion of the day, the drawdowns observed will be closer to those caused by the lower rate.

5.3.6 Groundwater Quality

Two groundwater samples were collected from the pumping well during each pumping test. One sample was collected 1-hour into the pumping test and the second sample was collected at the 6-hour mark, prior to shutting off the pump. Samples were collected in dedicated sample bottles, kept in a cooler with ice and transported to SGS immediately following completion of the field activities. Analytical results were compared to the ODWQS. The Certificates of Analysis provided by SGS are included in **Appendix H**.

The quality of the groundwater samples collected during the pumping tests complies with most ODWQS, except for the following:

<u>A377795 Well</u>

- Turbidity in both the 1-hour and 6-hour samples
- Total Coliform in the 6-hour sample

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Organic Nitrogen and hardness in both the 1-hour and 6-hour samples.

<u>A377796 Well</u>

• Turbidity in both the 1-hour and 6-hour samples

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Hardness and iron in both the 1-hour and 6-hour samples.

<u>A377799 Well</u>

• Total Coliform in both the 1-hour and 6-hour samples

Exceedances of Aesthetic Objectives or Operational Guidelines were measured for the following non-health related parameters:

• Hardness in both the 1-hour and 6-hour samples.

Water treatment systems for the Proposed Development should consider the exceedances noted in this section. Commercial filtration and disinfection methods may be used to effectively remove metals and inactivate any harmful protozoa, bacteria and viruses, and commercial water softening may be used to treat elevated levels of hardness.

It is noted that nitrate concentrations for all tested samples collected from wells A377795, A377796 and A377799 met the ODWQS.

6.0 Groundwater Impact Assessment

A Groundwater Impact Assessment was conducted on the basis of the Guideline D-5-4 to determine the feasibility and potential for impacts to down-gradient water resources arising from the proposed sewage disposal systems. The Groundwater Impact Assessment considered the following:

- Based on the Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited (**Appendix A-2**) the Proposed Development will include 40 residential lots.
 - Wills understands that each lot is proposed to be serviced with a private on-site sewage disposal system.
- At the time of preparing this report, actual dwelling sizes and anticipated sewage flows were not available, however, 1,000 L/day is considered to be an acceptable sewage effluent loading rate.
- Nitrate was used to assess the impact of sewage effluent on the groundwater environment. Guideline D-5-4 requires that the effluent plume at the boundary of the Subject Property cannot exceed the ODWQS limit of 10 mg/L for nitrate to prevent off-site groundwater impacts.
- Wills' inputs to the mass balance equation used a standard nitrate loading of 40 mg/lot/day (Guideline D-5-4) for a conventional sewage disposal system.
- A background nitrate concentration of 2.86 mg/L was used for the Groundwater Impact Assessment. This value corresponds to the average of the concentrations measured in six groundwater samples collected from wells MW22-08, BH101-22, BH107-22 and BH110-22 in 2022 and 2023. Certificates of Analysis for the nitrate samples are included in Appendix I.

- It should be noted that the majority of the Subject Property has been used for agricultural purposes, which may cause elevated levels of nitrate in the shallow soils/topsoil. Therefore, nitrate levels are expected to decrease after development.
- Available post-development dilution/recharge water for the Subject Property was estimated through a water balance analysis. A summary of the water balance calculations, including the Groundwater Impact Assessment, is included in **Appendix J**. The water balance analysis considered the following elements:
 - Historical Climate Normals Oshawa WPCP (Climate ID 6155878).
 - The total monthly water surplus available for dilution was calculated accounting for evapotranspiration using the Thornthwaite method.
 - Infiltration factors for topography, soils, and cover were applied based on the MOEE document, Hydrogeological Technical Information Requirements For Land Development Applications, April 1995.
 - The additional groundwater recharge that will occur from the low impact development (LID) features within the proposed development.
- The mass balance equation used in Wills' Groundwater Impact Assessment is included in **Appendix K**.

6.1 Water Balance Analysis

In order to determine the average annual infiltration volume that will be available for dilution as part of the proposed development, a water balance analysis has been completed in accordance with the Conservation Authority Guidelines for Hydrological Assessments. The site was divided into catchments for existing and proposed conditions using the same impervious assumptions employed for the stormwater management design, completed by D.G. Biddle & Associates Limited. In the proposed condition, to account for actual drainage area contributing to each proposed LID feature, some catchments were further subdivided. The existing and proposed catchments for the water balance analysis are provided in **Appendix J**.

Without accounting for the additional groundwater recharge that occurs as a result of the proposed LID features, the development would significantly reduce the volume of available for dilution. However, as the LID features have been designed to retain stormwater runoff, the added infiltration potential should be calculated.

The average annual infiltration volume provided by each LID feature was calculated by completing a daily water balance analysis using precipitation and temperature data for the Oshawa Water Pollution Control Plan from 1981 to 2006 (26 years). This date range was selected because it contains the most recent data available for the gauge station and did not have a significant quantity of missing data. A summary of the water balance analysis results is shown in **Table 14** and detailed water balance calculations are provided in **Appendix J**.

Catchment Parameters	Existing	Proposed Without LID	Change Without LID	Proposed with LID	Change With LID
Precipitation (mm/year)			872		
Precipitation (m³/year)	215,471	215,471	0.0%	215,471	0.0%
Evapotranspiration (m³/year)	150,056	145,518	-3.0%	145,518	-3.0%
Infiltration (m³/year)	52,561	48,948	-6.9%	57,828	10.0%
Runoff (m³/year)	12,854	21,828	69.8%	12,948	0.7%

Table 14– Water Balance Summary

Notes: 1. No infiltration has been calculated for LID features during months with a negative average temperature.

A review of **Table 14** shows that the average annual infiltration volume for the proposed condition will increase from the existing condition when accounting for the additional infiltration provided by the LID features.

6.2 Predictive Assessment

The results from the Predictive Assessment are outlined below:

Parameter	Value
Number of Lots	40
Volume of Effluent (Qe)	40 lots x 1,000 L/day = 40,000 L/day
Effluent nitrate concentration	40 mg/L
Available dilution water (Natural Infiltration + LID features)	158,432 L/day
Dilution water nitrate concentration	2.86 mg/L
Total Volume	198,432 L/day

Parameter	Value
Total nitrate concentration at property boundary	10.0 mg/L

In view of the results presented in **Table 15**, Wills concludes that the current configuration of the Proposed Development would result in acceptable levels of nitrate at the property boundary.

7.0 Conclusions and Recommendations

The following conclusions and recommendations are provided with respect to Wills' Study.

- Shallow subsurface soils were generally consistent across the Subject Property and included a thin layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property at TP22-10, TP22-08, and TP22-11 at a depth of approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.
- Five drivepoint monitor wells were installed in the base of select test pits to monitor groundwater levels above a depth of 3 mbg. Static water levels were also monitored in 3 monitor wells installed by Cambium Inc. to support their geotechnical investigation.
- Static groundwater levels were generally consistent across the Subject Property and ranged from:
 - o 2.34 mbg to 2.71 mbg on September 27, 2022
 - o 2.34 mbg to 2.66 mbg on October 5, 2022
 - 2.83 mbg to 2.99 mbg on December 5, 2023, in the 3 monitor wells installed by Cambium Inc.
- Groundwater seepage was encountered in all test pits at an approximate depth of 2.9 mbg to 3 mbg, with the exception of TP22-06, TP22-07, and TP22-10, which were found to be dry prior to backfilling.
- Three groundwater samples were submitted for total nitrogen analysis to support the Groundwater Impact Assessment.
- Seven laboratory particle size distribution analyses and laboratory percolation time estimates were completed on representative samples of the shallow subsurface soils.
- Eight in-situ infiltration tests were conducted between September 26 and September 27, 2022. T-Times were calculated to range from 0 min/cm to 0.81 min/cm, with an average of 0.46 min/cm across all eight tests.

- A review of the physical soil characteristics and comparison against OBC Table 2 and Table 3 suggests a percolation time (T-Time) that is generally between 2 to 12 min/cm for the shallow sand to silty sand soils, and > 50 min/cm for the clayey silt to silt material. Laboratory percolation estimates suggest the T-time ranges from 6 min/cm to 12 min/cm for the sand to silty sand material, and > 50 min/cm for the clayey silt to silt material.
 - In view of the in-situ infiltration testing and physical soil testing results, Wills recommends using the middle of the T-time range for the individual soil units/soil envelopes (OBC Table 2 and Table 3) to be conservative. The individual shallow soil types and respective envelopes are shown on **Figure 3**. Within the clayey silt to silt and clay area identified in green in **Figure 3**, Wills recommends that raised tile beds be used for septic systems installed in this area and set-back distances adjusted accordingly.
- Any proposed LID and sewage disposal system design should consider the shallow groundwater depths encountered on the Subject Property, which may impact the respective designs in the areas investigated by Wills.
- Infiltration rates and percolation times may vary across the Subject Property, as topography, moisture content, soil gradation and relative compactness will affect in-situ infiltration rates.
- A Groundwater Impact Assessment was conducted by Wills to determine the suitability of the Subject Property to accommodate private on-site sewage disposal systems.
- The Groundwater Impact Assessment considered 40 residential lots, and anticipated flows to the sewage disposal systems of 1,000 L/day with a nitrate loading of 40 mg/lot/day on the basis of *D-5-4*.
- The Groundwater Impact Assessment concludes that a groundwater nitrate concentration of 10.0 mg/L will be achieved at the property boundary, which meets the ODWS and satisfies the requirements of *D-5-4*.
- The following is provided with respect to Wills' interpretation of the MECP Well Records and historic groundwater investigations on neighboring properties:
 - Viable water supply aquifers have been identified within both coarse grained sand and gravel layers, as well as within the underlying bedrock stratum.
 - The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the nearby overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).
 - Shallow aquifers were generally more high-producing north of the Subject Property, and deeper wells installed in overburden and bedrock south of the Subject Property were generally more high-performing.
 - Detailed hydraulic assessment (2018 Ted Rannie Report) completed for the property directly south of the Subject Property, concluded that the

underlying aquifer could support a 20 lot residential development without causing off-site impacts to neighbouring water users or surface resources.

- Based on Wills' desktop review of surrounding well performances and understanding of the local geological conditions, it is likely that these aquifer conditions may extend beneath the Subject Property and be available to the Proposed Development.
- Based on the results of Will's field testing and David Ruttan's hydrogeological modelling, Wills anticipates that the aquifer tested can be exploited to meet the Proposed Development water taking needs through 48 individual wells spaced at least 25 meters away from one another. In this configuration, Wills anticipates that the cumulated drawdown when all the wells are pumping simultaneously will be limited to maximum 0.4 m outside of peak hour, and 0.7 m at peak hour, as shown on **Figure 5** and **Figure 6**, with further consideration of the following:
 - The anticipated impact on the village of Osaca to the north is minimal, with modelling showing a cumulated drawdown of 0.1 m or less, including at peak hour.
 - The anticipated impact on the subdivision to the south is slightly higher, with modelling showing a cumulated drawdown ranging from 0.7 m to 0.3 m at peak hour.
 - Based on Wills conservative estimation of the aquifer saturated thickness, and the likely configuration of wells construction and equipment exploiting this aquifer, the maximum cumulative drawdowns obtained through modelling represent only 9% and 15% of the minimal available drawdown outside peak hour and during peak hour respectively.
 - Interference between wells both within the Proposed Development and on neighbouring properties is anticipated to be limited.
 - The assessment summarized above was conducted based on the Preliminary Draft Plan prepared in October 2023, which included 48 residential lots. Considering that the revised plan prepared in March 2024 includes only 40 residential lots, the assessment is deemed conservative with respect to water availability for the development and potential impact on neighbouring pumping activities.
- Water treatment systems for the Proposed Development should consider the exceedances noted in **Section 5.3.6**.

We trust that the information contained in and attached to this report meets your needs at this time. The following Statement of Limitations should be read carefully and is an integral part of this report. Do not hesitate to contact the undersigned if you have any questions or concerns.

Respectfully submitted,

Prepared by:

Reviewed by:

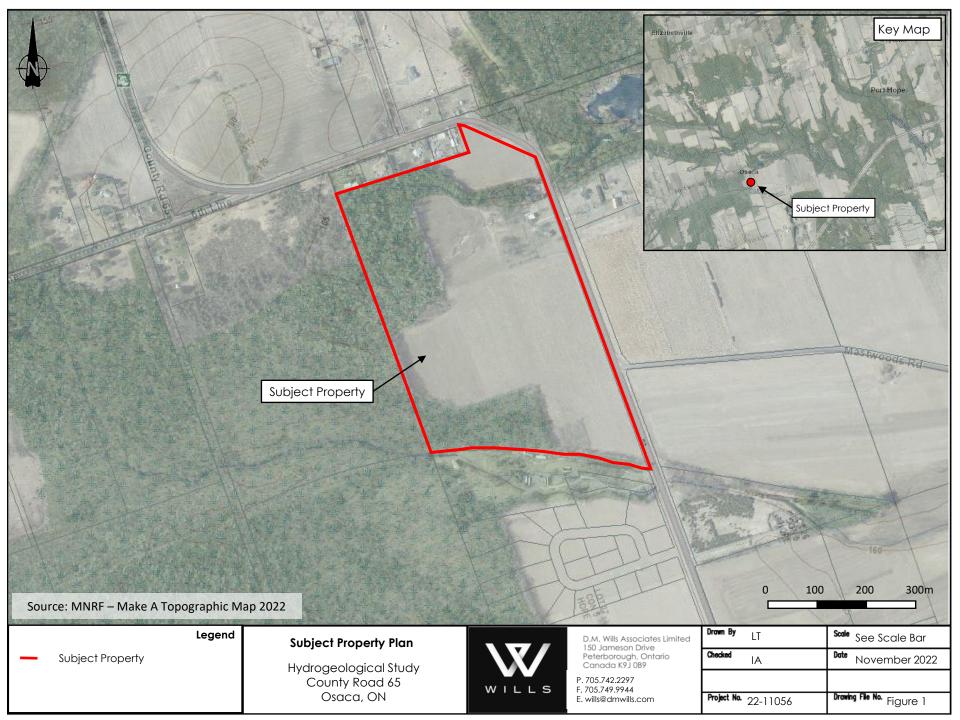
Ralf Bolvin, P. Eng., QPESA Project Engineer

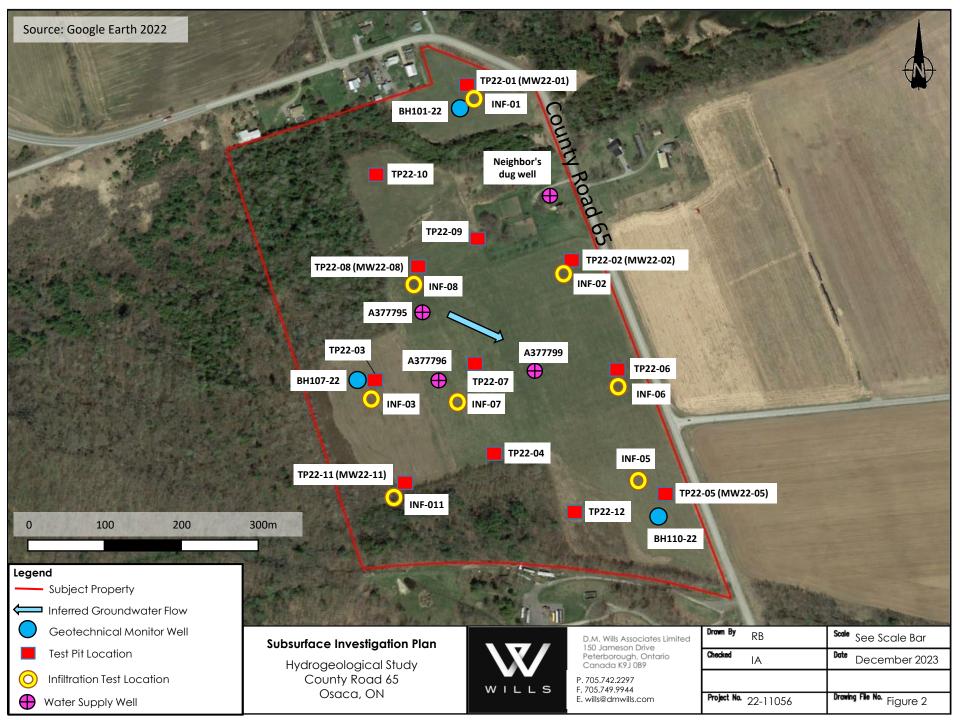
Ian Ames, M.Sc., P.Geo. Environmental Monitoring and Management Lead

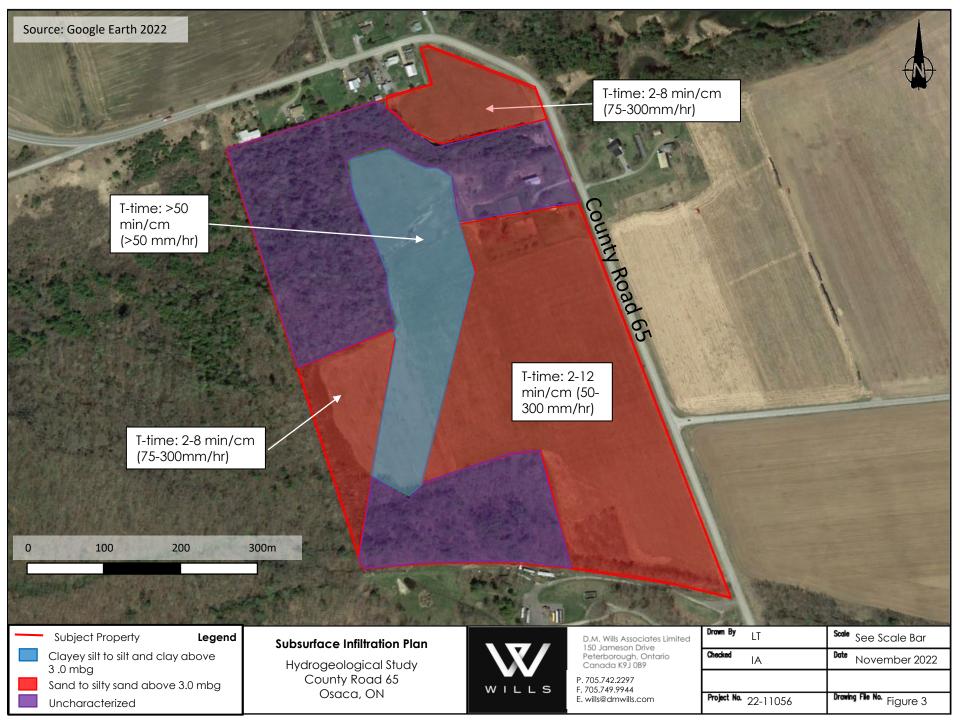
LT/RB/IA/ck

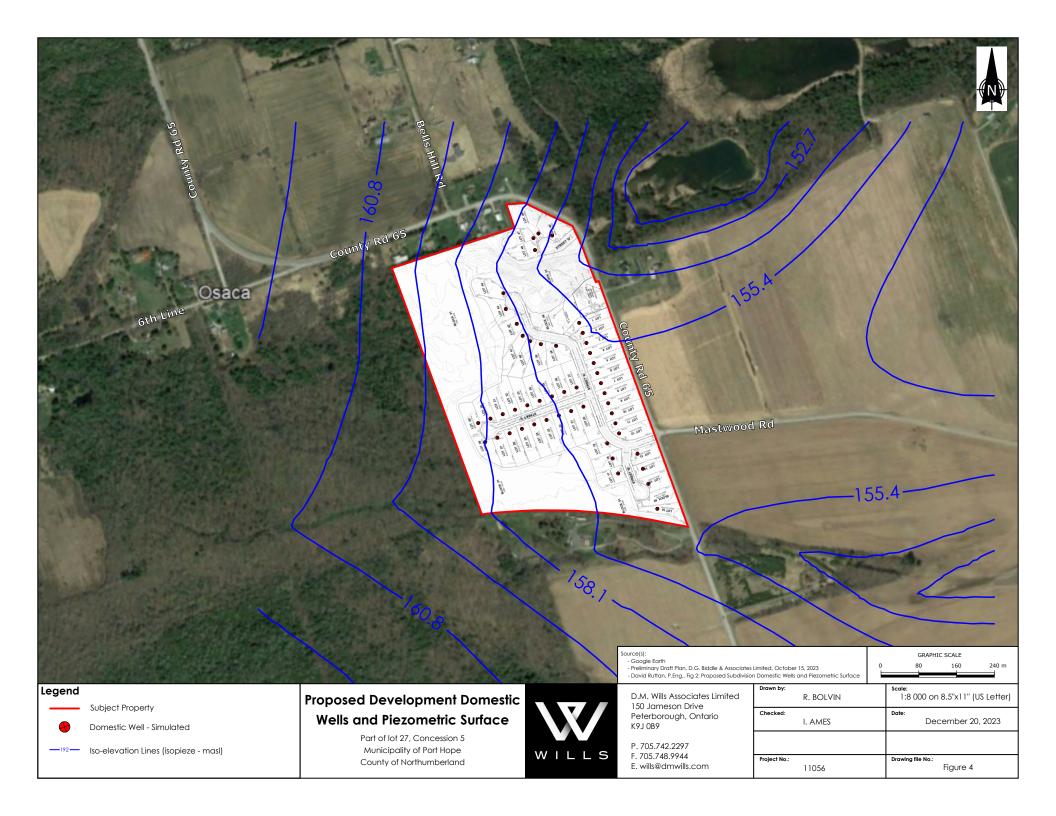
Statement of Limitations

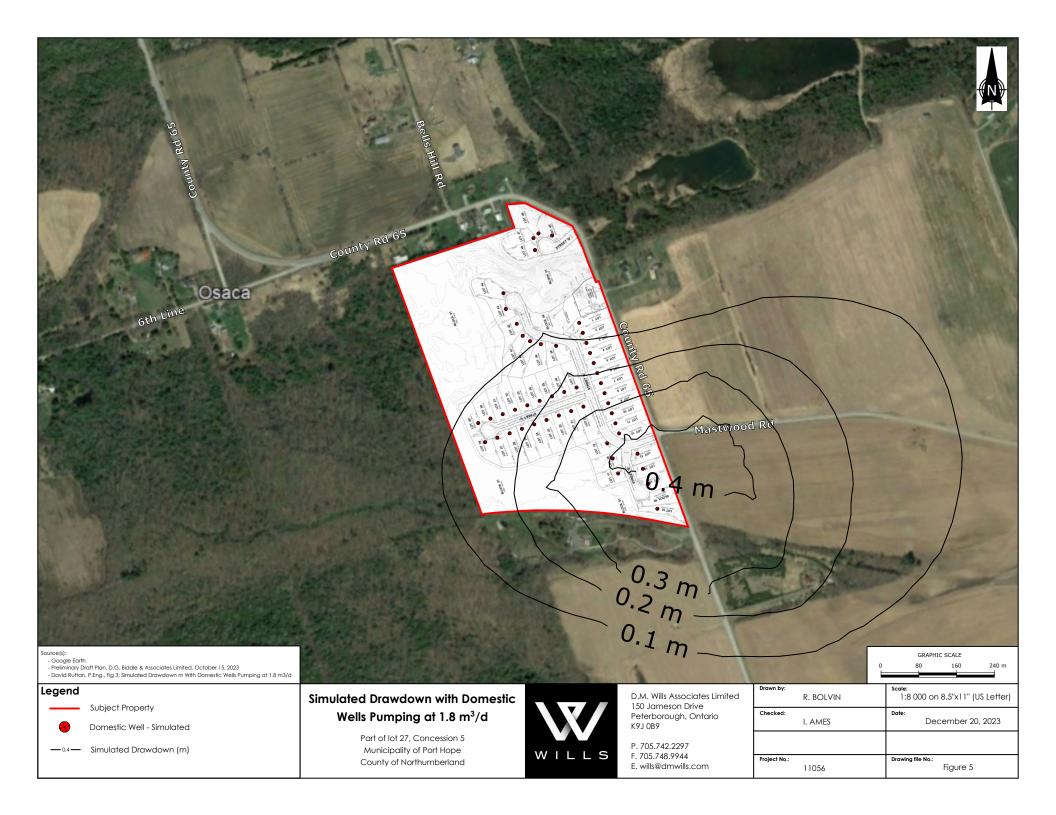
This report is intended solely for Hillstreet Developments Ltd. c/o Larry MacDonell (Client) for the Proposed Development located on Pt Lot 27Concession 5, in the village of Osaca, Ontario, and is prohibited for use by others without D.M. Wills Associates Limited's (Wills) prior written consent. This report is considered Wills' professional work product and shall remain the sole property of Wills. Any unauthorized reuse, redistribution of or reliance on this report shall be at the Client and recipient's sole risk, without liability to Wills. The Client shall defend, indemnify and hold Wills harmless from any liability arising from or related to the Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include supporting drawings and appendices.

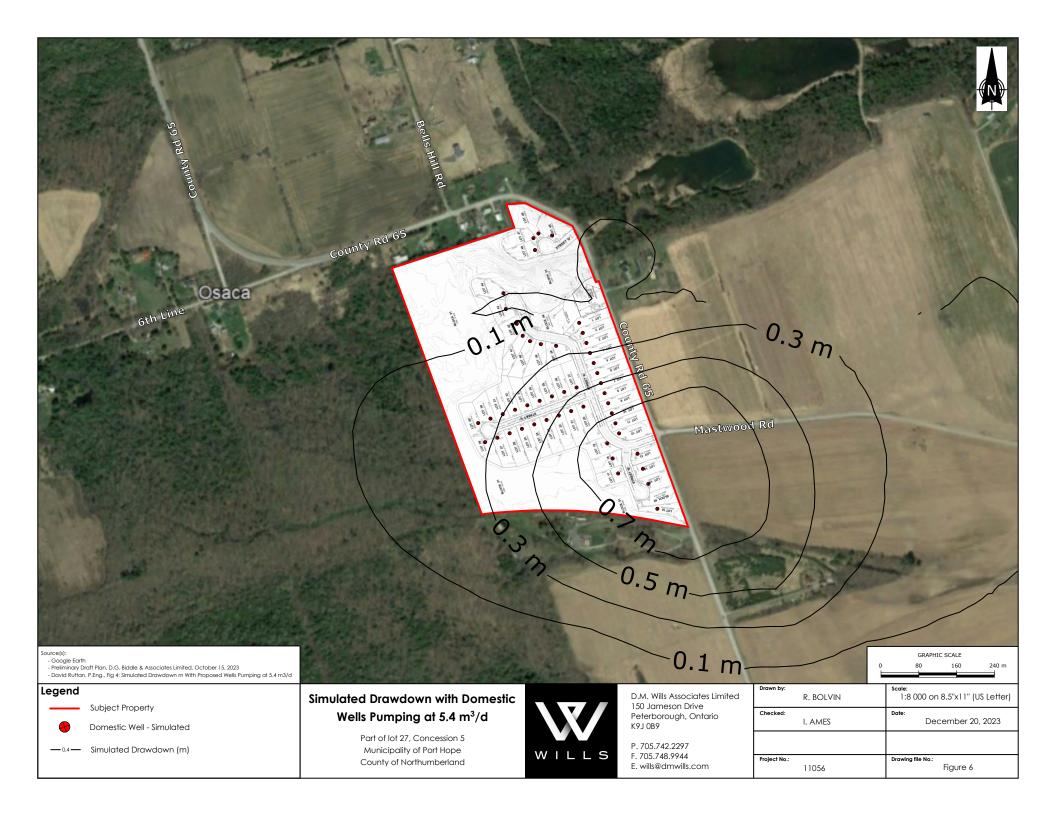

The recommendations made in this report are based on Wills' present understanding of the Project, the current and proposed site use, ground and subsurface conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with the level of care and skill ordinarily exercised by members of geoscience or engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the sole responsibility of such third parties.


The recommendations and comments made in this report are based on Wills' investigations and resulting understanding of the Project, as defined at the time of the assignment. Wills should be retained to review our recommendations when the final or any modified design drawings and specifications are complete. Without this review, Wills shall not be liable for any misunderstanding of our recommendations or their application and adaptation.


Soil, bedrock, and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations. Should any conditions at the Subject Property be encountered which differ from those found at the test locations, Wills must be notified immediately in order to permit a reassessment of our recommendations. If different conditions are identified, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by Wills is completed.


FIGURES



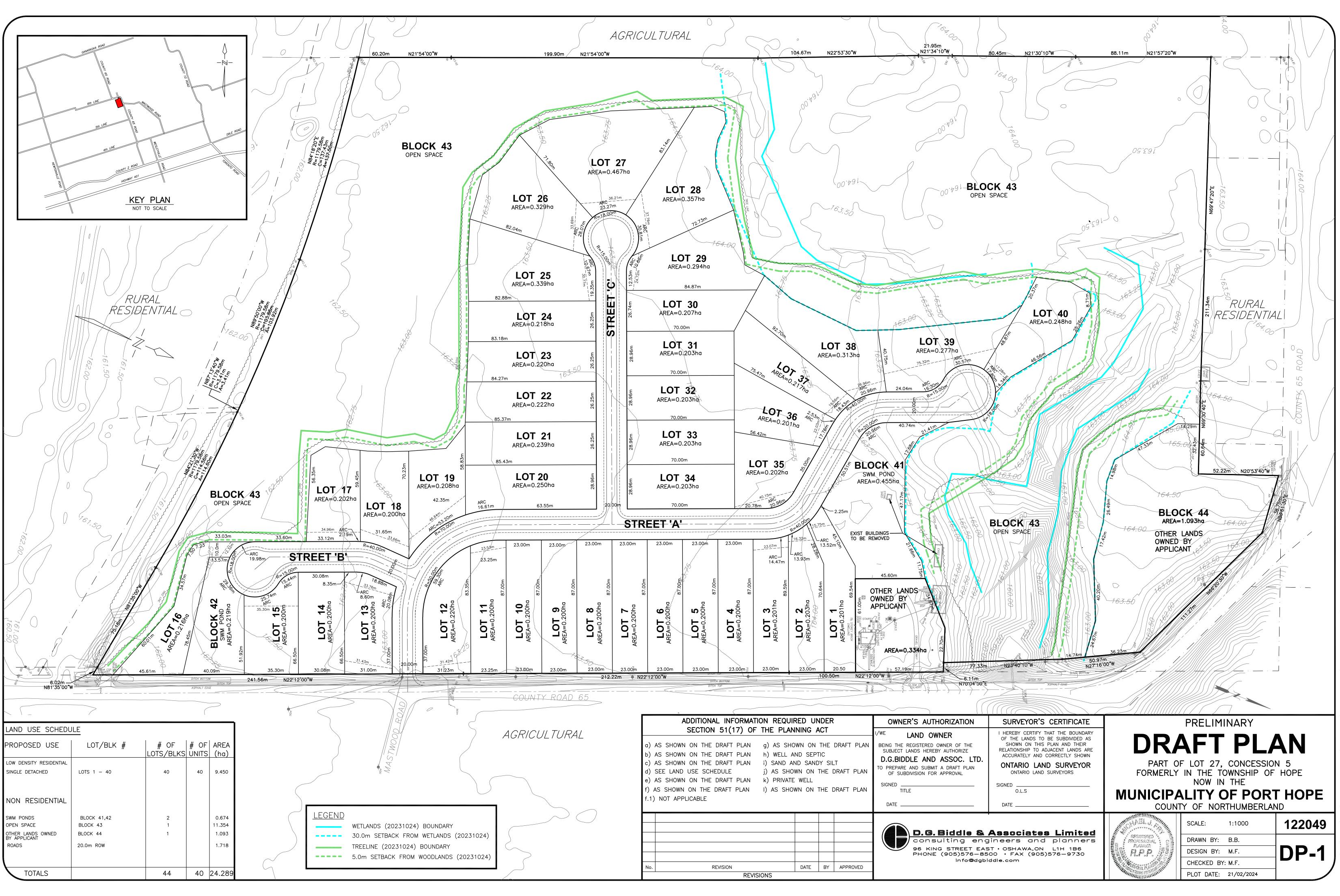


Appendix A

Site Plans - D.G. Biddle & Associates Limited

Appendix A-1

Preliminary Draft Plan – D.G. Biddle & Associates Limited – October 2023



Appendix A-2

Post-Development Storm Drainage Plan – D.G. Biddle & Associates Limited – March 2024

Appendix B

Test Pit Logs

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, moist.		
0.2 - 3.0	Brown to grey sand, trace gravel, trace silt, moist to saturated.		
	Grab Sample Summary		
GS-01 collected at approximately 1.4 mbg.	<u>GS-01 GSA:</u> 3% Gravel 93% Sand 3% Silt 1% clay		
	Groundwater		
Groundwater enco	ountered at 3.0 mbg.		
	Additional Notes		
stratigraphic loggir	 Water pooling at the bottom of test pit upon completion. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-01 installed in test pit prior to backfilling. 		
	Test Pit Photos		
TP22-01 September 26, 2022 17T 705479 mE 4875999 mN			

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.	
0.2 – 3.0	Brown sand, trace gravel, trace silt, moist.	
	Grab Sample Summary	
GS-02 collected at approximately 2.9 mbg.	<u>GS-02 GSA:</u> 3% Gravel 94% Sand 3% Silt 0% Clay	
	Groundwater	
No groundwater er	ncountered.	
	Additional Notes	
 Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-02 installed in test pit prior to backfilling. 		
	Test Pit Photos	
TP22-02 September 23, 2022 17T 705628 mE 4875766 mN		

Depth (mbg)	Soil Description	
0.0 - 0.2	Brown silty sand topsoil, moist.	
0.2 – 3.0	Brown to grey sand, trace gravel, moist to saturated.	
	Grab Sample Summary	
GS-01 collected at approximately 1.0 mbg.	<u>GS-01 GSA:</u> 0% Gravel 97% Sand 3% Silt 0% Clay	
	Groundwater	
Groundwater enco	ountered at 3.0 mbg.	
	Additional Notes	
 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 		
	Test Pit Photos	
Indigraphic logging direction party Fest Pir Photos TP22-03 September 23, 2022 17T 705389 mE 4875605 mN Image: Colspan="2">Image: Colspan="2" Image: Colspan=		

Test Pit Log – TP22-04

	1031111100 = 1122-04
Depth (mbg)	Soil Description
0.0 – 0.2	Brown silty sand topsoil, moist.
0.2 - 0.5	Brown sand, some silt, moist.
0.5 – 3.0	Brown to grey sand, trace gravel, trace silt, moist to saturated.
	Groundwater
Groundwater enco	ountered at 3.0 mbg.
	Additional Notes
 Test pit terminated Test pit backfilled c stratigraphic loggin 	and compacted using excavator following completion of ag and sampling.
	Test Pit Photos
TP22-04 September 23, 2022 17T 705528 mE 4875523 mN	

	Coll Description		
Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.		
0.2 - 2.4 2.4 - 3.0	Brown sand, some silt, trace gravel, trace clay, moist.		
2.4 - 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist to saturated.		
	Grab Sample Summary		
GS-01 collected at approximately 1.7 mbg.	<u>GS-01 GSA:</u> 2% Gravel 78% Sand 18% Silt 2% Clay		
	Groundwater		
Groundwater enco	ountered at 2.9 mbg.		
	Additional Notes		
stratigraphic loggir	 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-05 installed in test pit prior to backfilling. 		
	Test Pit Photos		

Depth (mbg)	Soil Description
0.0 - 0.2	Brown silty sand topsoil, some rootlets, moist.
0.2 - 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist.
	Groundwater
No groundwater er	ncountered.
	Additional Notes
 Test pit terminated Test pit backfilled c stratigraphic loggin 	ind compacted using excavator following completion of
	Test Pit Photos
TP22-06 September 23, 2022 17T 705682 mE 4875632 mN	

Depth (mbg)	Soil Description
0.0 - 0.2	Brown silty sand topsoil, moist.
0.2 - 3.0	Brown to grey sand, some silt, moist to wet.
	Groundwater
Groundwater not e	ncountered.
	Additional Notes
• Test pit terminated	at 3.0 mbg.
 Test pit backfilled a stratigraphic loggin 	nd compacted using excavator following completion of g and sampling.
	Test Pit Photos
TP22-07 September 23, 2022 17T 705514 mE 4875641 mN	

Test Pit Log – TP22-08

Depth (mbg)	Soil Description	
0.0 - 0.2	Brown silty sand topsoil, moist.	
0.2 – 1.3	Brown to grey sand, some silt, trace clay, moist.	
1.3 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit to much wetter than plastic limit.	
	Grab Sample Summary	
GS-02 collected at approximately 2.0 mbg.	<u>GS-02 GSA:</u> 0% Gravel 4% Sand 56% Silt 40% Clay	
	Groundwater	
Groundwater enco	ountered at 3.0 mbg.	
	Additional Notes	
 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-08 installed in test pit prior to backfilling. 		
Test Pit Photos		

Test Pit Log – TP22-09

	1651 Fil LOG - 1722-07
Depth (mbg)	Soil Description
0.0 - 0.2	Brown silty sand topsoil, rootlets, moist.
0.2 - 2.4	Brown sand, trace silt, trace gravel, moist.
2.4 - 3.0	Brown to grey silty sand, some clay, moist to saturated.
	Groundwater
Groundwater enco	ountered at 3.0 mbg.
	Additional Notes
 Test pit terminated at 3.0 mbg Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 	
	Test Pit Photos
TP22-09 September 23, 2022 17T 705509 mE 4875797 mN	

Test Pit Log – TP22-10

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 - 1.7	Brown silty sand, trace clay, moist	
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.	
	Grab Sample Summary	
GS-02	<u>GS-02 GSA:</u>	
collected at	0% Gravel	
approximately	3% Sand	
1.9 mbg.	62% Silt	
	35% Clay	
	Groundwater	
Groundwater not e	encountered.	
	Additional Notes	
	Test Pit Photos	
stratigraphic logging and sampling. Test Pit Photos TP22-10 September 23, 2022 17T 705372 mE 4875876 mN Image: Colspan="2">Image: Colspan="2" To Colspan=		

Test Pit Log – TP22-11

Depth (mbg)	Soil Description
0.0 - 0.2	Brown silty sand topsoil, moist.
0.2 - 1.7	Brown silty sand, trace clay, moist.
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.
	Grab Sample Summary
GS-03	<u>GS-03 GSA:</u>
collected at	0% Gravel
approximately	4% Sand
2.7 mbg.	71% Silt
_	25% Clay
	Groundwater
Groundwater enco	ountered at 3.0 mbg.
	Additional Notes
 Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-11 installed in test pit prior to backfilling. 	

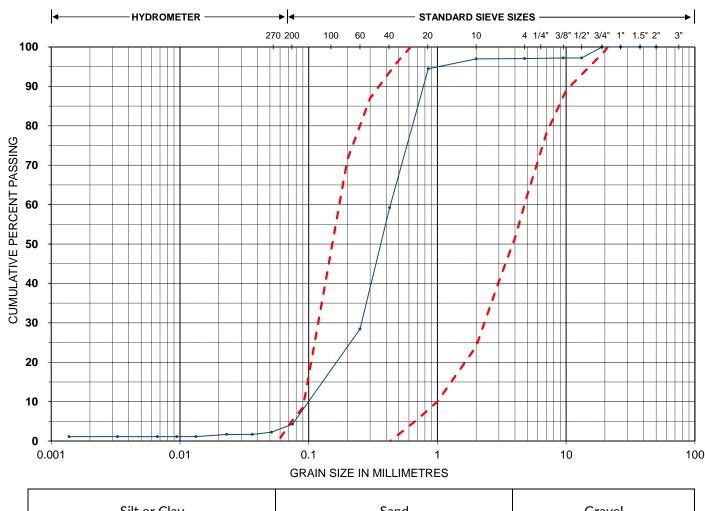
Depth (mbg)	Soil Description
0.0 – 0.1	Brown silty sand topsoil, moist.
0.1 - 0.8	Brown sand, some silt, moist.
0.8 – 2.6	Brown to grey sand, trace silt, trace gravel, moist to wet.
2.6 - 2.8	Grey sand, some gravel, trace silt, saturated.
	Groundwater
Groundwater enco	ountered at 2.6 mbg.
	Additional Notes
 Test pit terminated Test pit backfilled c stratigraphic loggin 	and compacted using excavator following completion of
	Test Pit Photos
TP22-12 September 23, 2022 17T 705636 mE 4875461 mN	

Appendix C

Certificates of Analysis – Physical Soil Testing

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9 **a** (705) 702-3921

☑ info@priengineering.com


www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project No.: 22-154 Project Name: Osaca (11056) Borehole/Test Pit ID.: TP22-01

Sample No./Depth: GS1

Sample Date: 26-Sep-22 LAB ID: 22HYD-224

	Silt or Clay	Sand	Gravel	
--	--------------	------	--------	--

sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	97.2
9.5	97.2
4.750	97.1
2.000	97.0
0.850	94.5
0.425	59.2
0.250	28.4
0.075	4.3

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.051	2.2
0.036	1.7
0.023	1.7
0.013	1.1
0.009	1.1
0.007	1.1
0.003	1.1
0.001	1.1

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 \bowtie info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-02 Sample No./Depth: GS2 LAB ID: 22HYD-225 - HYDROMETER -▶ | ◀ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 80 CUMULATIVE PERCENT PASSING 70 60 1 1 1 50 1 1 1 40 1 1 30 1 20 10 þ 0 0.001 0.01 10 100 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

_____ ___ ___ ___ ___ __ sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	98.8
4.750	97.1
2.000	97.0
0.850	95.9
0.425	86.0
0.250	49.9
0.075	3.2

Estimated T = 7 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.036	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 \bowtie info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project No.: 22-154 Project Name: Osaca (11056) Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-03 Sample No./Depth: GS1 LAB ID: 22HYD-226 - HYDROMETER -▶ | ◄ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 80 CUMULATIVE PERCENT PASSING 70 60 1 1 1 50 1 1 1 40 1 1 30 1 20 10 þ 0 0.001 0.01 10 100 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

_____ ___ ___ ___ ___ __ sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.5
0.850	97.1
0.425	76.9
0.250	26.1
0.075	2.5

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.037	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 ${\boxtimes} ~ info@priengineering.com$

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-05 Sample No./Depth: GS1 22HYD-227 LAB ID: - HYDROMETER -▶ | ◄ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 1 1 80 1 CUMULATIVE PERCENT PASSING 1 70 60 50 / 40 30 1 1 20 10 / 0 0.01 10 100 0.001 0.1 1 **GRAIN SIZE IN MILLIMETRES** Silt or Clay Sand Gravel

Estimated T = 12 min/cm

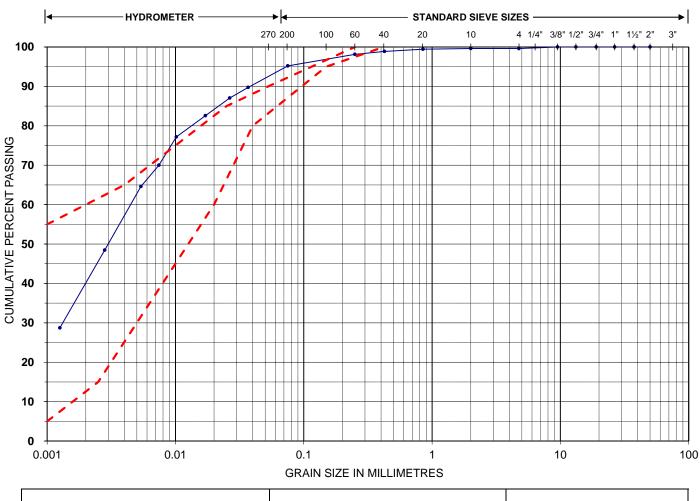
Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	99.0
9.5	99.0
4.750	98.3
2.000	98.3
0.850	97.7
0.425	96.1
0.250	89.7
0.075	30.8

Hydrometer (mm)	% Passing
0.048	15.7
0.035	10.1
0.023	5.6
0.013	4.5
0.009	3.9
0.007	3.4
0.003	2.2
0.001	2.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com


PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) **Project No.:** 22-154

Borehole/Test Pit ID.: TP22-08

Sample No./Depth: GS2

Sample Date: 23-Sep-22 LAB ID: 22HYD-228

Silt or Clay	Sand	Gravel
--------------	------	--------

	OH envelope T > 50 min/cm
--	---------------------------

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.6
0.850	99.4
0.425	98.9
0.250	98.1
0.075	95.2

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.037	89.7
0.026	87.0
0.017	82.6
0.010	77.2
0.007	70.0
0.005	64.6
0.003	48.5
0.001	28.7

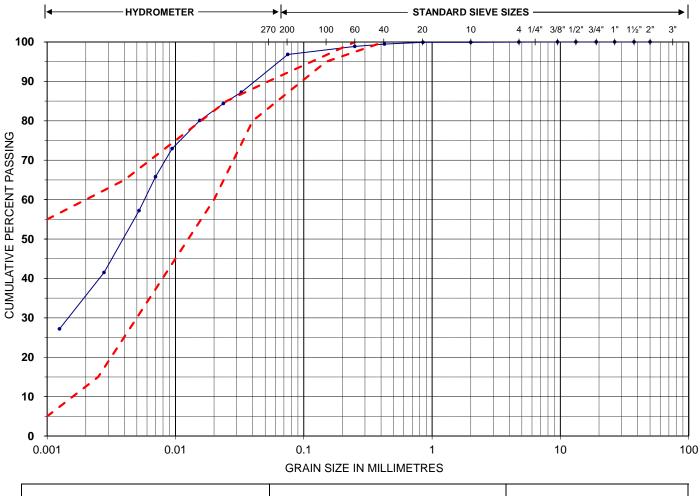
♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9 **a** (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056)


Project No.: 22-154

Sample Date: 23-Sep-22

Borehole/Test Pit ID.: TP22-10

Sample No./Depth: GS2

LAB ID: 22HYD-229

Silt or Clay	Sand	Gravel
--------------	------	--------

—	—	—	-	OH envelope T	>	50 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	100.0
2.000	99.9
0.850	99.9
0.425	99.5
0.250	98.9
0.075	96.8

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.033	87.2
0.024	84.4
0.015	80.1
0.009	72.9
0.007	65.8
0.005	57.2
0.003	41.5
0.001	27.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9 **a** (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

Borehole/Test Pit ID.: TP22-11

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056)

Project No.: 22-154

Sample Date: 23-Sep-22 LAB ID: 22HYD-230

-HYDROMETER -STANDARD SIEVE SIZES --▶ ◄ 270 200 100 60 40 10 4 1/4" 3/8" 1/2" 3/4" 1" 1½" 2" 3" 20 100 90 80 CUMULATIVE PERCENT PASSING 70 1 60 1 50 40 30 1 20 10 0 0.01 10 100 0.001 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.9
2.000	99.9
0.850	99.8
0.425	99.3
0.250	98.5
0.075	95.6

Estimated T > 50 min/cm

87.8
81.7
74.1
60.5
51.4
45.4
30.3
19.7

- OH envelope T > 50 min/cm

Sample No./Depth: GS3

Appendix D

Infiltration Graphs

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-01

PROJECT NO.: Date: Start Time: Test No.

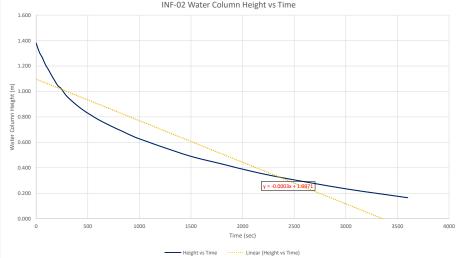
: 11056 : 26-Sep-22 : 12:30 PM . 1

	f Test Pit (m):	1.4	Pipe Stickup (m):	0.34	Total Pipe Length(m):	1.56	
Time*	* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Ra (m/sec)
	0	-	0.600	0.960	-		
	30	30	0.640	0.92	0.040	1.333E-03	1.333E-03
	60	30	0.660	0.90	0.020	6.667E-04	1.000E-03
	90	30	0.695	0.87	0.035	1.167E-03	1.056E-03
	120	30	0.720	0.84	0.025	8.333E-04	1.000E-03
	150	30	0.745	0.82	0.025	8.333E-04	9.667E-04
	180	30	0.765	0.80	0.020	6.667E-04	9.167E-04
	210	30	0.785	0.78	0.020	6.667E-04	8.810E-04
	240	30	0.805	0.76	0.020	6.667E-04	8.542E-04
	270	30	0.825	0.74	0.020	6.667E-04	8.333E-04
	300	30	0.840	0.72	0.015	5.000E-04	8.000E-04
	360	60	0.875	0.69	0.035	5.833E-04	7.639E-04
	420	60	0.910	0.65	0.035	5.833E-04	7.381E-04
	480	60	0.940	0.62	0.030	5.000E-04	7.083E-04
	540	60	0.965	0.60	0.025	4.167E-04	6.759E-04
	600	60	0.995	0.57	0.030	5.000E-04	6.583E-04
	720	120	1.045	0.52	0.050	4.167E-04	6.181E-04
	840	120	1.090	0.47	0.045	3.750E-04	5.833E-04
	960	120	1.140	0.42	0.050	4.167E-04	5.625E-04
	1,080	120	1.180	0.38	0.040	3.333E-04	5.370E-04
	1,200	120	1.215	0.35	0.035	2.917E-04	5.125E-04
	1,500	300	1.300	0.26	0.085	2.833E-04	4.667E-04
	1,800	300	1.365	0.20	0.065	2.167E-04	4.250E-04
2	2,100	300	1.425	0.14	0.060	2.000E-04	3.929E-04
			In-situ Infiltration	Rate Measured in t	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1414	
		(aculated Percolation Time	(I) based on field i			
			INF-01 Water Col				
1.200							
1.000							
1.000							
1.000							
1.000							
1.000							
Water Column Height (m) 009.0							
1.000							
Water Column Height (m) 009.0							
1.000 Matter Column Height (m) 009.0							
0.000 (j)					Time		
1.000 Matter Column Height (m) 009.0				lumn Height vs ⁻	Time		
0.000.0 (j)				lumn Height vs ⁻	Time		
1.000 (m) 1.000 0.800 0.400 0.400 0.200				lumn Height vs ⁻	Time		
1.000 0.800 0.600 0.400 0.200 0.000			INF-01 Water Col	lumn Height vs ⁻	Time 8579	2009	
1.000 0.800 0.600 0.400 0.200	0	500		lumn Height vs ⁻	Time	2000	25

	Test 1 - Observed
Test Duration (seconds)	2,100
Total Drop Distance (mm)	825
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.39
Infiltration Rate (mm/hour) - Test Average	1414
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.42

APPENDIX C

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-02

APPENDIX C

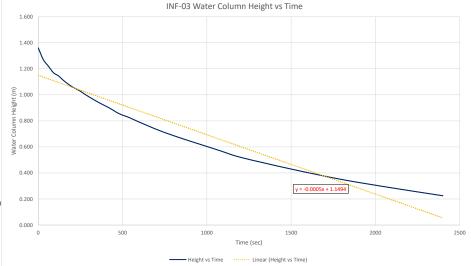
PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 10:40 AM 1

Depth of Test Pit (m):	1	Pipe Stickup (m):	1.245	Total Pipe Length(m):	2.41	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	1.025	1.380	-		
30	30	1.095	1.31	0.070	2.333E-03	2.333E-03
60	30	1.140	1.27	0.045	1.500E-03	1.917E-03
90	30	1.195	1.21	0.055	1.833E-03	1.889E-03
120	30	1.235	1.17	0.040	1.333E-03	1.750E-03
150	30	1.280	1.13	0.045	1.500E-03	1.700E-03
180	30	1.320	1.09	0.040	1.333E-03	1.639E-03
210	30	1.360	1.05	0.040	1.333E-03	1.595E-03
240	30	1.380	1.03	0.020	6.667E-04	1.479E-03
270	30	1.415	0.99	0.035	1.167E-03	1.444E-03
300	30	1.445	0.96	0.030	1.000E-03	1.400E-03
360 420	60 60	1.490 1.530	0.92	0.045	7.500E-04	1.292E-03 1.202E-03
420	60	1.565	0.88	0.040	6.667E-04 5.833E-04	1.202E-03 1.125E-03
540	60	1.595	0.84	0.035	5.833E-04 5.000E-04	1.125E-03 1.056E-03
600	60	1.625	0.78	0.030	5.000E-04	1.000E-03
720	120	1.675	0.73	0.050	4.167E-04	9.028E-04
840	120	1.720	0.69	0.045	3.750E-04	8.274E-04
960	120	1.765	0.64	0.045	3.750E-04	7.708E-04
1,080	120	1.800	0.61	0.035	2.917E-04	7.176E-04
1,200	120	1.835	0.57	0.035	2.917E-04	6.750E-04
1,500	300	1.915	0.49	0.080	2.667E-04	5.933E-04
1,800	300	1.975	0.43	0.060	2.000E-04	5.278E-04
2,100	300	2.035	0.37	0.060	2.000E-04	4.810E-04
2,400	300	2.085	0.32	0.050	1.667E-04	4.417E-04
3,000	600	2.170	0.24	0.085	1.417E-04	3.817E-04
3,000 3,600 Depth at time 0 indicat	600 600	2.170 2.240 v top of measuring pipe at th	0.24 0.17	0.085	1.417E-04	3.817E-04
3,000 3,600 Depth at time 0 indicat	600 600 tes measurement below	2.170 2.240 v top of measuring pipe at th	0.24 0.17	0.085	1.417E-04	3.817E-04 3.375E-04
3,000 3,600 Depth at time 0 indicat No	600 600 tes measurement belov t used for statistical an	2.170 2.240 v top of measuring pipe at th	0.24 0.17	0.085	1.417E-04 1.167E-04	3.817E-04 3.375E-04
3,000 3,600 Depth at time 0 indicat No Maxir	600 600 tes measurement belov ot used for statistical an num Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis	0.24 0.17	0.085 0.070 (m/sec)	1.417E-04 1.167E-04 (mm/sec)	3.817E-04 3.375E-04 (mm/hour)
3,000 3,600 Depth at time 0 indicat No Maxin Minir	600 600 tes measurement belov ot used for statistical an mum Infiltration Rate B mum Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals -	0.24 0.17	0.085 0.070 (m/sec) 2.33E-03	1.417E-04 1.167E-04 (mm/sec) 2.33E+00	3.817E-04 3.375E-04 (mm/hour) 8400
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tes measurement belov ti used for statistical an num Infiltration Rate B num Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals -	0.24 0.17	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01	3.817E-04 3.375E-04 (mm/hour) 8400 420
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tes measurement belov ti used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals -	0.24 0.17	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950 2747
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tes measurement belov ti used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set -	0.24 0.17	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04 3.38E-04	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01 3.38E-01	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tes measurement belov ti used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate B	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltratio	0.24 0.17 The start of the test.	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01 3.38E-01	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950 2747
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tused for statistical an num Infiltration Rate B num Infiltration Rate B cdian Infiltration Rate Be Glan Infiltration Rate Be Cumulative Infiltratio	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltratio	0.24 0.17 The start of the test.	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04 3.38E-04 n the Field (mm/sec):	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01 3.38E-01 0.34 1215	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950 2747
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tused for statistical an num Infiltration Rate B num Infiltration Rate B cdian Infiltration Rate Be Glan Infiltration Rate Be Cumulative Infiltratio	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration	0.24 0.17 The start of the test.	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04 3.38E-04 n the Field (mm/sec):	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01 3.38E-01 0.34 1215	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950 2747
3,000 3,600 Depth at time 0 indicat No Maxin Minir Me	600 600 tused for statistical an num Infiltration Rate B num Infiltration Rate B cdian Infiltration Rate Be Glan Infiltration Rate Be Cumulative Infiltratio	2.170 2.240 v top of measuring pipe at th alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration	0.24 0.17 he start of the test. n Rate Measured in Rate Measured in 1 (T) based on field i	0.085 0.070 (m/sec) 2.33E-03 1.17E-04 5.42E-04 7.63E-04 3.38E-04 h the Field (mm/sec): the Field (mm/hour):	1.417E-04 1.167E-04 (mm/sec) 2.33E+00 1.17E-01 5.42E-01 7.63E-01 3.38E-01 0.34 1215	3.817E-04 3.375E-04 (mm/hour) 8400 420 1950 2747

Г

	Test 1 - Observed
Test Duration (seconds)	3,600
Total Drop Distance (mm)	1215
Total Number of Measured Intervals	27
Infiltration Rate (mm/sec) - Test Average	0.34
Infiltration Rate (mm/hour) - Test Average	1215
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.49


Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-03 APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

NO.: 11056 Date: 27-Sep-22 Fime: 1:44 PM t No. 1

Depth of Test Pit (m):	0.9	Pipe Stickup (m):	1.17	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.910	1.360	-		
30	30	1.000	1.27	0.090	3.000E-03	3.000E-03
60	30	1.050	1.22	0.050	1.667E-03	2.333E-03
90	30	1.100	1.17	0.050	1.667E-03	2.111E-03
120	30	1.125	1.15	0.025	8.333E-04	1.792E-03
150	30	1.160	1.11	0.035	1.167E-03	1.667E-03
180	30	1.190	1.08	0.030	1.000E-03	1.556E-03
210	30	1.215	1.06	0.025	8.333E-04	1.452E-03
240	30	1.235	1.04	0.020	6.667E-04	1.354E-03
270	30	1.260	1.01	0.025	8.333E-04	1.296E-03
300	30	1.285	0.99	0.025	8.333E-04	1.250E-03
360	60	1.330	0.94	0.045	7.500E-04	1.167E-03
420	60	1.370	0.90	0.040	6.667E-04	1.095E-03
480	60	1.415	0.86	0.045	7.500E-04	1.052E-03
540	60	1.445	0.83	0.030	5.000E-04	9.907E-04
600	60	1.480	0.79	0.035	5.833E-04	9.500E-04
720	120	1.545	0.73	0.065	5.417E-04	8.819E-04
840	120	1.600	0.67	0.055	4.583E-04	8.214E-04
960	120	1.650	0.62	0.050	4.167E-04	7.708E-04
1,080	120	1.700	0.57	0.050	4.167E-04	7.315E-04
1,200	120	1.750	0.52	0.050	4.167E-04	7.000E-04
1,500	300	1.840	0.43	0.090	3.000E-04	6.200E-04
1,800	300	1.920	0.35	0.080	2.667E-04	5.611E-04
2,100 2,400	300 300	1.985 2.045	0.29	0.065	2.167E-04 2.000E-04	5.119E-04 4.729E-04
	es measurement below t used for statistical an	/ top of measuring pipe at t	he start of the test.			
110		117515		(m/sec)	(mm/sec)	(mm/hour)
Maxin	num Infiltration Rate Be	etween Sampling Intervals		3.00E-03	3.00E+00	10800
Minin	num Infiltration Rate Be	tween Sampling Intervals		2.00E-04	2.00E-01	720
Me	dian Infiltration Rate Be	etween Sampling Intervals		6.67E-04	6.67E-01	2400
Avera	age Infiltration Rate Be	tween Sampling Intervals		7.91E-04	7.91E-01	2848
	Cumulative Infiltration	n Rate for Entire Data Set		4.73E-04	4.73E-01	1703
		In-situ Infiltratio	on Rate Measured i	n the Field (mm/sec):	0.47	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1703	

	Test 1	- Observed
Test Duration (seconds)		2,400
Total Drop Distance (mm)		1135
Total Number of Measured Intervals		25
Infiltration Rate (mm/sec) - Test Average		0.47
Infiltration Rate (mm/hour) - Test Average		1703
Calculated Percolation Time (T) based on Field Infiltration (min/cm)		0.35

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-05 NO.: 11056 ate: 27-Sep-22 me: 8:02 AM

1

PROJECT NO.: Date: Start Time: Test No.

epth of Test Pit (m):	1.14	Pipe Stickup (m):	1.37	Total Pipe Length(m):	2.38	
			1		г – – т	Cumulative
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Infiltration Ra (m/sec)
0	-	0.900	1.480	-		
30	30	0.950	1.43	0.050	1.667E-03	1.667E-03
60 90	30 30	1.090 1.145	1.29	0.140 0.055	4.667E-03 1.833E-03	3.167E-03 2.722E-03
120	30	1.190	1.19	0.045	1.500E-03	2.417E-03
150	30	1.225	1.16	0.035	1.167E-03	2.167E-03
180	30	1.260	1.12	0.035	1.167E-03	2.000E-03
210	30	1.300	1.08	0.040	1.333E-03	1.905E-03
240	30	1.330	1.05	0.030	1.000E-03	1.792E-03
270	30	1.365	1.02	0.035	1.167E-03	1.722E-03
300	30	1.395	0.99	0.030	1.000E-03	1.650E-03
360	60	1.460	0.92	0.065	1.083E-03	1.556E-03
420 480	60 60	1.515	0.87	0.055	9.167E-04 8.333E-04	1.464E-03
480 540	60	1.565 1.615	0.82	0.050	8.333E-04 8.333E-04	1.385E-03 1.324E-03
600	60	1.660	0.72	0.045	7.500E-04	1.324E-03 1.267E-03
720	120	1.755	0.63	0.045	7.917E-04	1.188E-03
840	120	1.830	0.55	0.075	6.250E-04	1.107E-03
960	120	1.900	0.48	0.070	5.833E-04	1.042E-03
1,080	120	1.965	0.42	0.065	5.417E-04	9.861E-04
1,200	120	2.025	0.36	0.060	5.000E-04	9.375E-04
1,500	300	2.155	0.23	0.130	4.333E-04	8.367E-04
1,620	120	2.195	0.19	0.040	3.333E-04	7.994E-04
Minim		etween Sampling Intervals	-	(m/sec) 4.67E-03 3.33E-04	(mm/sec) 4.67E+00 3.33E-01	(mm/hour) 16800 1200
	ge Infiltration Rate Be	tween Sampling Intervals In Rate for Entire Data Set In-situ Infiltrati	- - on Rate Measured in n Rate Measured in	9.17E-04 1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	9.17E-01 1.09E+00 7.67E-01 0.77 2762 0.22	3300 3922 2762
	ge Infiltration Rate Be	tween Sampling Intervals in Rate for Entire Data Set In-situ Infiltrati In-situ Infiltratio alculated Percolation Tim	- - on Rate Measured in n Rate Measured in	1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.09E+00 7.67E-01 0.77 2762	3922
Averaj	ge Infiltration Rate Be	tween Sampling Intervals in Rate for Entire Data Set In-situ Infiltrati In-situ Infiltratio alculated Percolation Tim	- - on Rate Measured in n Rate Measured in e (T) based on field	1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.09E+00 7.67E-01 0.77 2762	3922
Avera 1.600 1.400 1.200	ge Infiltration Rate Be	tween Sampling Intervals in Rate for Entire Data Set In-situ Infiltrati In-situ Infiltratio alculated Percolation Tim	- - on Rate Measured in n Rate Measured in e (T) based on field	1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.09E+00 7.67E-01 0.77 2762	3922
Avera 1.600 1.400 1.200	ge Infiltration Rate Be	tween Sampling Intervals in Rate for Entire Data Set In-situ Infiltrati In-situ Infiltratio alculated Percolation Tim	- - on Rate Measured in n Rate Measured in e (T) based on field	1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.09E+00 7.67E-01 0.77 2762	3922
Avera	ge Infiltration Rate Be	tween Sampling Intervals in Rate for Entire Data Set In-situ Infiltrati In-situ Infiltratio alculated Percolation Tim	- - on Rate Measured in n Rate Measured in e (T) based on field	1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.09E+00 7.67E-01 0.77 2762	3922

0 200 400 600 800 1000 1200 1400 1600 1800 Time (sec)

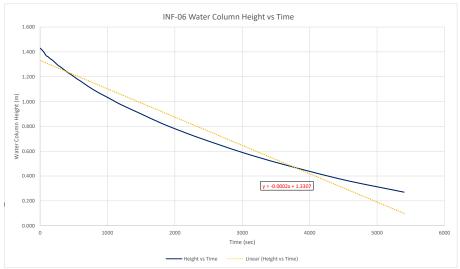
Height vs Time Linear (Height vs Time)

i.

	Test 1 - Observed
Test Duration (seconds)	1,740
Total Drop Distance (mm)	1335
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.77
Infiltration Rate (mm/hour) - Test Average	2762
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.22

0.200

APPENDIX C


2000

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-06

PROJECT NO.: Date: Start Time: Test No.

Depth of Test Pit (m):	1.1	Pipe Stickup (m):	1.165	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.840	1.430	-		
30	30	0.855	1.42	0.015	5.000E-04	5.000E-04
60	30	0.875	1.40	0.020	6.667E-04	5.833E-04
90	30	0.900	1.37	0.025	8.333E-04	6.667E-04
120	30	0.910	1.36	0.010	3.333E-04	5.833E-04
150	30	0.925	1.35	0.015	5.000E-04	5.667E-04
180	30	0.935	1.34	0.010	3.333E-04	5.278E-04
210	30	0.950	1.32	0.015	5.000E-04	5.238E-04
240	30	0.965	1.31	0.015	5.000E-04	5.208E-04
270 300	30 30	0.980	1.29	0.015	5.000E-04 3.333E-04	5.185E-04 5.000E-04
300	30	1.015	1.28	0.010	4.167E-04	4.861E-04
420	60	1.013	1.20	0.025	4.167E-04	4.762E-04
480	60	1.040	1.23	0.020	3.333E-04	4.583E-04
540	60	1.085	1.19	0.025	4.167E-04	4.537E-04
600	60	1.105	1.17	0.020	3.333E-04	4.417E-04
720	120	1.150	1.12	0.045	3.750E-04	4.306E-04
840	120	1.190	1.08	0.040	3.333E-04	4.167E-04
960	120	1.225	1.05	0.035	2.917E-04	4.010E-04
1,080	120	1.260	1.01	0.035	2.917E-04	3.889E-04
1,200	120	1.295	0.98	0.035	2.917E-04	3.792E-04
1,500	300	1.370	0.90	0.075	2.500E-04	3.533E-04
1,800	300	1.445	0.83	0.075	2.500E-04	3.361E-04
2,100	300	1.510	0.76	0.065	2.167E-04	3.190E-04
2,400	300	1.570	0.70	0.060	2.000E-04	3.042E-04
3,000	600	1.680	0.59	0.110	1.833E-04	2.800E-04
3,600	600	1.775	0.50	0.095	1.583E-04	2.597E-04
4,500 5,400	900 900	1.900 2.000	0.37	0.125	1.389E-04 1.111E-04	2.356E-04 2.148E-04
Depth at time 0 indicate		top of measuring pipe at th				
				(m/sec)	(mm/sec)	(mm/hour)
Mavim	um Infiltration Rate Re	tween Sampling Intervals -		8.33E-04	8.33E-01	3000
		tween Sampling Intervals -		1.11E-04	1.11E-01	400
Med	ian Infiltration Rate Re	tween Sampling Intervals -		3.33E-04	3.33E-01	1200
Avera	ge Infiltration Rate Bet	ween Sampling Intervals -		3.57E-04	3.57E-01	1287
	Cumulative Infiltratio	n Rate for Entire Data Set -		2.15E-04	2.15E-01	773
		In-situ Infiltration	n Rate Measured in	n the Field (mm/sec):	0.21	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	773	
Calculated Percolation Time (T) based on field infiltration (min/cm): 0.78						

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	1160
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.21
Infiltration Rate (mm/hour) - Test Average	773
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.78

APPENDIX C

11056 27-Sep-22 9:04 AM 1

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-07 APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

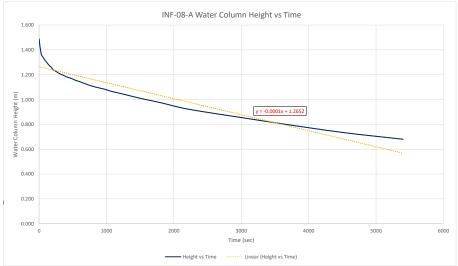
11056 27-Sep-22 4:07 PM 1

epth of Test Pit (m):	0.97	Pipe Stickup (m):	1.41	Total Pipe Length(m):	2.38	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	0.700	1.680	-		
30 60	30 30	0.830	1.55 1.46	0.130 0.095	4.333E-03 3.167E-03	4.333E-03 3.750E-03
90	30	1.010	1.40	0.085	2.833E-03	3.444E-03
120	30	1.065	1.32	0.055	1.833E-03	3.042E-03
150	30	1.110	1.27	0.045	1.500E-03	2.733E-03
180	30	1.145	1.24	0.035	1.167E-03	2.472E-03
210 240	30 30	1.195	1.19	0.050	1.667E-03 1.167E-03	2.357E-03 2.208E-03
270	30	1.260	1.12	0.030	1.000E-03	2.208L-03
300	30	1.290	1.09	0.030	1.000E-03	1.967E-03
360	60	1.360	1.02	0.070	1.167E-03	1.833E-03
420	60	1.400	0.98	0.040	6.667E-04	1.667E-03
480	60	1.445	0.94	0.045	7.500E-04	1.552E-03
540 600	60 60	1.490 1.530	0.89	0.045	7.500E-04 6.667E-04	1.463E-03
720	120	1.600	0.85	0.040	5.833E-04	1.383E-03 1.250E-03
840	120	1.670	0.71	0.070	5.833E-04	1.155E-03
960	120	1.735	0.65	0.065	5.417E-04	1.078E-03
1,080	120	1.775	0.61	0.040	3.333E-04	9.954E-04
1,200	120	1.820	0.56	0.045	3.750E-04	9.333E-04
1,500	300	1.920	0.46	0.100	3.333E-04	8.133E-04
1,800 2,100	300 300	2.000 2.070	0.38	0.080	2.667E-04 2.333E-04	7.222E-04 6.524E-04
2,400	300	2.130	0.25	0.060	2.000E-04	5.958E-04
3,000	600	2.220	0.16	0.090	1.500E-04	5.067E-04
Minim	num Infiltration Rate Be	etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals -		4.33E-03 1.50E-04 7.50E-04	4.33E+00 1.50E-01 7.50E-01	15600 540 2700
Minim	num Infiltration Rate Be dian Infiltration Rate Be					
Minim Mec	num Infiltration Rate Be dian Infiltration Rate Be ge Infiltration Rate Be	etween Sampling Intervals - etween Sampling Intervals -		1.50E-04 7.50E-04	1.50E-01 7.50E-01	540 2700
Minim Mec	num Infiltration Rate Be dian Infiltration Rate Be ge Infiltration Rate Be	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set -	n Rate Measured in	1.50E-04 7.50E-04 1.09E-03	1.50E-01 7.50E-01 1.09E+00 5.07E-01	540 2700 3926
Minim Mec	num Infiltration Rate Be dian Infiltration Rate Be ge Infiltration Rate Be	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltratio		1.50E-04 7.50E-04 1.09E-03 5.07E-04	1.50E-01 7.50E-01 1.09E+00 5.07E-01	540 2700 3926
Minim Mec	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltratio	Rate Measured in t	1.50E-04 7.50E-04 1.09E-03 5.07E-04 h the Field (mm/sec):	1.50E-01 7.50E-01 1.09E+00 5.07E-01	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
1.800	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
1.800 1.600 1.400 1.400 1.400 0.800 0.800	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 n the Field (mm/sec): the Field (mm/hour):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926
Minim Mec Averaj	num Infiltration Rate Bu dian Infiltration Rate Bu ge Infiltration Rate Be Cumulative Infiltratio	etween Sampling Intervals - etween Sampling Intervals - tween Sampling Intervals - on Rate for Entire Data Set - In-situ Infiltration In-situ Infiltration alculated Percolation Time	Rate Measured in 1 (T) based on field i	1.50E-04 7.50E-04 1.09E-03 5.07E-04 In the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	1.50E-01 7.50E-01 1.09E+00 5.07E-01 0.51 1824	540 2700 3926

Time (sec)
Height vs Time
......Linear (Height vs Time)

г

	Test 1 - Observed
Test Duration (seconds)	3,000
Total Drop Distance (mm)	1520
Total Number of Measured Intervals	26
Infiltration Rate (mm/sec) - Test Average	0.51
Infiltration Rate (mm/hour) - Test Average	1824
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.33


Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-A

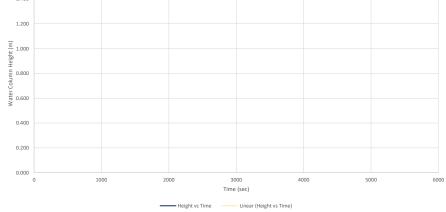
PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 12:08 PM 1

Depth of Test Pit (m):	0.55	Pipe Stickup (m):	0.945	Total Pipe Length(m):	1.56	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.070	1.490	-		
30	30	0.190	1.37	0.120	4.000E-03	4.000E-03
60	30	0.220	1.34	0.030	1.000E-03	2.500E-03
90	30	0.245	1.32	0.025	8.333E-04	1.944E-03
120	30	0.265	1.30	0.020	6.667E-04	1.625E-03
150	30	0.285	1.28	0.020	6.667E-04	1.433E-03
180	30	0.300	1.26	0.015	5.000E-04	1.278E-03
210	30	0.320	1.24	0.020	6.667E-04	1.190E-03
240	30	0.330	1.23	0.010	3.333E-04	1.083E-03
270	30	0.340	1.22	0.010	3.333E-04	1.000E-03
300	30 60	0.350	1.21	0.010	3.333E-04 2.500E-04	9.333E-04 8.194E-04
360 420	60	0.365	1.20	0.015	2.500E-04 2.500E-04	7.381E-04
420	60	0.380	1.18	0.015	2.500E-04 1.667E-04	6.667E-04
480 540	60	0.390	1.17	0.010	2.500E-04	6.204E-04
600	60	0.415	1.15	0.010	1.667E-04	5.750E-04
720	120	0.440	1.12	0.025	2.083E-04	5.139E-04
840	120	0.460	1.10	0.020	1.667E-04	4.643E-04
960	120	0.475	1.09	0.015	1.250E-04	4.219E-04
1,080	120	0.495	1.07	0.020	1.667E-04	3.935E-04
1,200	120	0.510	1.05	0.015	1.250E-04	3.667E-04
1,500	300	0.550	1.01	0.040	1.333E-04	3.200E-04
1,800	300	0.585	0.98	0.035	1.167E-04	2.861E-04
2,100	300	0.625	0.94	0.040	1.333E-04	2.643E-04
2,400	300	0.655	0.91	0.030	1.000E-04	2.438E-04
3,000	600	0.705	0.86	0.050	8.333E-05	2.117E-04
3,600	600	0.755	0.81	0.050	8.333E-05	1.903E-04
4,500	900 900	0.825	0.74	0.070	7.778E-05	1.678E-04
		0.880 / top of measuring pipe at th alvsis		0.055	6.111E-05	1.500E-04
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		4.00E-03	4.00E+00	14400
		etween Sampling Intervals -		6.11E-05	6.11E-02	220
Med	lian Infiltration Rate Be	etween Sampling Intervals -		1.88E-04	1.88E-01	675
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		4.28E-04	4.28E-01	1543
	Cumulative Infiltratio	on Rate for Entire Data Set -		1.50E-04	1.50E-01	540
		In-situ Infiltration	n Rate Measured in	n the Field (mm/sec):	0.15	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	540	

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	810
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.15
Infiltration Rate (mm/hour) - Test Average	540
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	1.11

APPENDIX C


Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-B

PROJECT NO.: Date: Start Time:

11056 27-Sep-22 11:48 AM

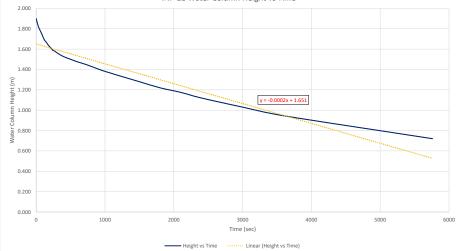
epth of Test Pit (m):	2.08						
		Pipe Stickup (m):	0.925	Total Pipe Length(m):	3.08		
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)	
0	-	1.650	1.430	-			
30	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
60	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
90	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
120	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
150	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
180 210	30 30	1.650 1.650	1.43	0.000	0.000E+00 0.000E+00	0.000E+00 0.000E+00	
240	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
270	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
300	30	1.650	1.43	0.000	0.000E+00	0.000E+00	
360	60	1.650	1.43	0.000	0.000E+00	0.000E+00	
420	60	1.650	1.43	0.000	0.000E+00	0.000E+00	
480	60	1.650	1.43	0.000	0.000E+00	0.000E+00	
540	60	1.650	1.43	0.000	0.000E+00	0.000E+00	
600	60	1.650	1.43	0.000	0.000E+00	0.000E+00	
720	120	1.650	1.43	0.000	0.000E+00	0.000E+00	
840	120	1.650	1.43	0.000	0.000E+00	0.000E+00	
960	120	1.650	1.43	0.000	0.000E+00	0.000E+00	
1,080	120	1.650	1.43	0.000	0.000E+00	0.000E+00	
1,200	120	1.650	1.43	0.000	0.000E+00	0.000E+00	
1,500	300	1.650	1.43	0.000	0.000E+00	0.000E+00	
1,800	300	1.650	1.43	0.000	0.000E+00	0.000E+00	
2,100	300	1.650	1.43	0.000	0.000E+00	0.000E+00	
2,400	300	1.650	1.43	0.000	0.000E+00	0.000E+00	
3,000	600	1.650	1.43	0.000	0.000E+00	0.000E+00	
3,600	600	1.650	1.43	0.000	0.000E+00	0.000E+00	
4,500 5,400	900 900	1.650 1.650	1.43	0.000	0.000E+00 0.000E+00	0.000E+00 0.000E+00	
Not Maximi Minimi Med	used for statistical an um Infiltration Rate Be um Infiltration Rate Be ian Infiltration Rate Be ge Infiltration Rate Be	top of measuring pipe at alysis tween Sampling Intervals tween Sampling Intervals tween Sampling Intervals meen Sampling Intervals n Rate for Entire Data Set	- - -	(m/sec) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	(mm/sec) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	(mm/hour) 0 0 0 0	
In-situ Infiltration Rate Measured in the Field (mm/sec): 0.00 In-situ Infiltration Rate Measured in the Field (mm/hour): 0 Calculated Percolation Time (T) based on field infiltration (min/cm): #DIV/01							
1.600		INF-08-B Water	Column Heigh	<mark>y = 1.43</mark> t vs Time			
1.400							
1.200							

r

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	0
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.00
Infiltration Rate (mm/hour) - Test Average	0
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	#DIV/0!

APPENDIX C

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-11

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 2:53 PM 1

Depth of Test Pit (m):	1.13	Pipe Stickup (m):	1.02	Total Pipe Length(m):	2.30	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
Ö	-	0.400	1.900	-		
30	30	0.475	1.83	0.075	2.500E-03	2.500E-03
60	30	0.520	1.78	0.045	1.500E-03	2.000E-03
90	30	0.565	1.74	0.045	1.500E-03	1.833E-03
120	30	0.610	1.69	0.045	1.500E-03	1.750E-03
150	30	0.635	1.67	0.025	8.333E-04	1.567E-03
180	30	0.665	1.64	0.030	1.000E-03	1.472E-03
210	30	0.685	1.62	0.020	6.667E-04	1.357E-03
240	30	0.710	1.59	0.025	8.333E-04	1.292E-03
270	30	0.720	1.58	0.010	3.333E-04	1.185E-03
300	30	0.735	1.57	0.015	5.000E-04	1.117E-03
360	60	0.760	1.54	0.025	4.167E-04	1.000E-03
420	60	0.780	1.52	0.020	3.333E-04	9.048E-04
480	60	0.795	1.51	0.015	2.500E-04	8.229E-04
540	60	0.810	1.49	0.015	2.500E-04	7.593E-04
600	60	0.825	1.48	0.015	2.500E-04	7.083E-04
720 840	120	0.850	1.45	0.025	2.083E-04	6.250E-04
960	120 120	0.880	1.42	0.030	2.500E-04	5.714E-04
1,080	120	0.910 0.935	1.39 1.37	0.030 0.025	2.500E-04	5.313E-04 4.954E-04
1,200	120	0.955	1.37	0.025	2.083E-04 2.083E-04	4.954E-04 4.667E-04
1,500	300	1.020	1.34	0.025	2.000E-04	4.133E-04
1,800	300	1.020	1.20	0.060	2.000E-04	3.778E-04
2,100	300	1.125	1.18	0.045	1.500E-04	3.452E-04
2,400	300	1.125	1.18	0.045	1.833E-04	3.250E-04
3,000	600	1.270	1.03	0.090	1.500E-04	2.900E-04
3,600	600	1.355	0.95	0.085	1.417E-04	2.653E-04
5,760	2,160	1.555	0.72	0.225	1.042E-04	2.033E-04 2.049E-04
Not Maxim Minim	used for statistical an um Infiltration Rate B um Infiltration Rate B	v top of measuring pipe at ti alysis etween Sampling Intervals - etween Sampling Intervals - etween Sampling Intervals -		(m/sec) 2.50E-03 1.04E-04 2.50E-04	(mm/sec) 2.50E+00 1.04E-01 2.50E-01	(mm/hour) 9000 375 900
Averag		tween Sampling Intervals -		5.53E-04	5.53E-01	1989
	Cumulative Infiltration	on Rate for Entire Data Set -		2.05E-04	2.05E-01	738
		In-situ Infiltratio	n Rate Measured i	n the Field (mm/sec):	0.20	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	738	
	c	alculated Percolation Time	(T) based on field i	nfiltration (min/cm):	0.81	
2.000		INF-11 Water Co	olumn Height v	s Time		
1.800						

	Test 1 - Observed
Test Duration (seconds)	5,760
Total Drop Distance (mm)	1180
Total Number of Measured Intervals	28
Infiltration Rate (mm/sec) - Test Average	0.20
Infiltration Rate (mm/hour) - Test Average	738
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.81

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-01 PROJECT NO.: Date: Start Time: Test No.

: 11056 : 26-Sep-22 : 12:30 PM . 1

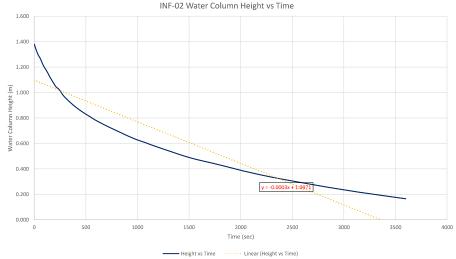
epth of T	ſest Pit (m):	1.4	Pipe Stickup (m):	0.34	Total Pipe Length(m):	1.56	
Time* (Seconds)	Measurement	Depth** (m)	Water Column	Distance dropped	Infilitration Rate per	Cumulative Infiltration Rat
		Interval (sec)		Height (m)	per interval (m1)	Interval (m/sec)	(m/sec)
	0	-	0.600	0.960	-		
	30 60	30 30	0.640	0.92	0.040 0.020	1.333E-03 6.667E-04	1.333E-03 1.000E-03
	90	30	0.695	0.90	0.035	1.167E-03	1.056E-03
	.20	30	0.720	0.84	0.025	8.333E-04	1.000E-03
	.50	30	0.745	0.82	0.025	8.333E-04	9.667E-04
12	.80	30	0.765	0.80	0.020	6.667E-04	9.167E-04
2	:10	30	0.785	0.78	0.020	6.667E-04	8.810E-04
	40	30	0.805	0.76	0.020	6.667E-04	8.542E-04
	:70	30	0.825	0.74	0.020	6.667E-04	8.333E-04
	00	30	0.840	0.72	0.015	5.000E-04	8.000E-04
	60	60	0.875	0.69	0.035	5.833E-04	7.639E-04
	20	60	0.910	0.65	0.035	5.833E-04	7.381E-04
	80	60	0.940	0.62	0.030	5.000E-04	7.083E-04
	40 00	60 60	0.965 0.995	0.60	0.025 0.030	4.167E-04 5.000E-04	6.759E-04 6.583E-04
	20	120	1.045	0.57	0.030	4.167E-04	6.181E-04
	40	120	1.045	0.52	0.045	3.750E-04	5.833E-04
	160	120	1.140	0.47	0.045	4.167E-04	5.625E-04
	080	120	1.140	0.38	0.040	3.333E-04	5.370E-04
	200	120	1.215	0.35	0.035	2.917E-04	5.125E-04
	500	300	1.300	0.26	0.085	2.833E-04	4.667E-04
	800	300	1.365	0.20	0.065	2.167E-04	4.250E-04
	100	300	1.425	0.14	0.060	2.000E-04	3.929E-04
				ition Rate Measured i			
		C		ion Rate Measured in	the Field (mm/hour):	1414	
		c	In-situ Infiltrat	ion Rate Measured in	the Field (mm/hour): infiltration (min/cm):	1414	
1.200			In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour): infiltration (min/cm):	1414	
1.000			In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour): infiltration (min/cm):	1414	
1.000	and the second se		In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour): infiltration (min/cm):	1414	
1.000			In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour): infiltration (min/cm):	1414	
1.000			In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour): infiltration (min/cm):	1414	
0.800			In-situ Infiltrat	ion Rate Measured in me (T) based on field	the Field (mm/hour):	1414	

	Test 1 - Observed
Test Duration (seconds)	2,100
Total Drop Distance (mm)	825
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.39
Infiltration Rate (mm/hour) - Test Average	1414
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.42

Height vs Time Linear (Height vs Time)

APPENDIX C

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-02

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

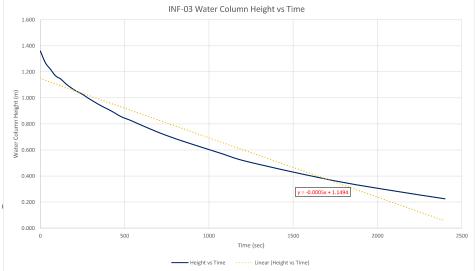
11056 27-Sep-22 10:40 AM 1

Depth of Test Pit (m):	1	Pipe Stickup (m):	1.245	Total Pipe Length(m):	2.41	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	1.025	1.380	-		
30	30	1.095	1.31	0.070	2.333E-03	2.333E-03
60	30	1.140	1.27	0.045	1.500E-03	1.917E-03
90	30	1.195	1.21	0.055	1.833E-03	1.889E-03
120	30	1.235	1.17	0.040	1.333E-03	1.750E-03
150	30	1.280	1.13	0.045	1.500E-03	1.700E-03
180	30	1.320	1.09	0.040	1.333E-03	1.639E-03
210	30	1.360	1.05	0.040	1.333E-03	1.595E-03
240	30	1.380	1.03	0.020	6.667E-04	1.479E-03
270	30	1.415	0.99	0.035	1.167E-03	1.444E-03
300	30	1.445	0.96	0.030	1.000E-03	1.400E-03
360	60	1.490	0.92	0.045	7.500E-04	1.292E-03
420	60	1.530	0.88	0.040	6.667E-04	1.202E-03
480	60	1.565	0.84	0.035	5.833E-04	1.125E-03
540	60	1.595	0.81	0.030	5.000E-04	1.056E-03
600	60	1.625	0.78	0.030	5.000E-04	1.000E-03
720	120	1.675	0.73	0.050	4.167E-04	9.028E-04
840	120	1.720	0.69	0.045	3.750E-04	8.274E-04
960	120	1.765	0.64	0.045	3.750E-04	7.708E-04
1,080	120	1.800	0.61	0.035	2.917E-04	7.176E-04
1,200	120	1.835	0.57	0.035	2.917E-04	6.750E-04
1,500	300	1.915	0.49	0.080	2.667E-04	5.933E-04
1,800	300	1.975	0.43	0.060	2.000E-04	5.278E-04
2,100	300	2.035	0.37	0.060	2.000E-04	4.810E-04
2,400	300	2.085	0.32	0.050	1.667E-04	4.417E-04
3,000	600	2.170	0.24	0.085	1.417E-04	3.817E-04
3,600	600	2.240	0.17	0.070	1.167E-04	3.375E-04
	es measurement below : used for statistical an	/ top of measuring pipe at t alysis	he start of the test.			
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		2.33E-03	2.33E+00	8400
Minim	um Infiltration Rate Be	etween Sampling Intervals -		1.17E-04	1.17E-01	420
		etween Sampling Intervals -		5.42E-04	5.42E-01	1950
Averag	ge Infiltration Rate Be	tween Sampling Intervals -		7.63E-04	7.63E-01	2747
	Cumulative Infiltratio	on Rate for Entire Data Set -		3.38E-04	3.38E-01	1215
		In-situ Infiltratio	n Rate Measured i	n the Field (mm/sec):	0.34	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1215	
	C	alculated Percolation Time	(T) based on field i	infiltration (min/cm):	0.49	
		INF-02 Water Co	olumn Height v	s Time		
1.600			Bitt V			

i.

	Test 1 - Observed
Test Duration (seconds)	3,600
Total Drop Distance (mm)	1215
Total Number of Measured Intervals	27
Infiltration Rate (mm/sec) - Test Average	0.34
Infiltration Rate (mm/hour) - Test Average	1215
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.49

Project: Site Location: Test ID:

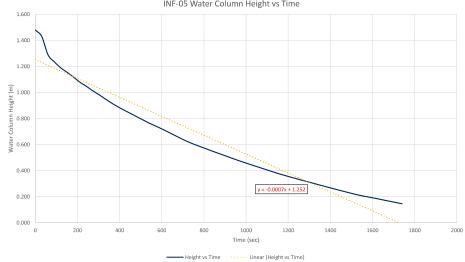

ation: 5868

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-03 APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

NO.: 11056 ate: 27-Sep-22 ime: 1:44 PM No. 1

Depth of Test Pit (m):	0.9	Pipe Stickup (m):	1.17	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.910	1.360	-		
30	30	1.000	1.27	0.090	3.000E-03	3.000E-03
60	30	1.050	1.22	0.050	1.667E-03	2.333E-03
90	30	1.100	1.17	0.050	1.667E-03	2.111E-03
120	30	1.125	1.15	0.025	8.333E-04	1.792E-03
150	30	1.160	1.11	0.035	1.167E-03	1.667E-03
180	30	1.190	1.08	0.030	1.000E-03	1.556E-03
210	30	1.215	1.06	0.025	8.333E-04	1.452E-03
240	30	1.235	1.04	0.020	6.667E-04	1.354E-03
270	30	1.260	1.01	0.025	8.333E-04	1.296E-03
300	30	1.285	0.99	0.025	8.333E-04	1.250E-03
360	60	1.330	0.94	0.045	7.500E-04	1.167E-03
420	60	1.370	0.90	0.040	6.667E-04	1.095E-03
480	60	1.415	0.86	0.045	7.500E-04	1.052E-03
540	60	1.445	0.83	0.030	5.000E-04	9.907E-04
600	60	1.480	0.79	0.035	5.833E-04	9.500E-04
720	120	1.545	0.73	0.065	5.417E-04	8.819E-04
840	120	1.600	0.67	0.055	4.583E-04	8.214E-04
960	120	1.650	0.62	0.050	4.167E-04	7.708E-04
1,080	120	1.700	0.57	0.050	4.167E-04	7.315E-04
1,200	120	1.750	0.52	0.050	4.167E-04	7.000E-04
1,500	300	1.840	0.43	0.090	3.000E-04	6.200E-04
1,800	300	1.920	0.35	0.080	2.667E-04	5.611E-04
2,100	300	1.985	0.29	0.065	2.167E-04	5.119E-04
2,400	300	2.045	0.23	0.060	2.000E-04	4.729E-04
	es measurement belov used for statistical an	v top of measuring pipe at th alysis	ne start of the test.			<i>,</i> ,, ,
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate B	etween Sampling Intervals -		3.00E-03	3.00E+00	10800
		etween Sampling Intervals -		2.00E-04	2.00E-01	720
Med	lian Infiltration Rate B	etween Sampling Intervals -		6.67E-04	6.67E-01	2400
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		7.91E-04	7.91E-01	2848
	Cumulative Infiltration	on Rate for Entire Data Set -		4.73E-04	4.73E-01	1703
		In-situ Infiltratio	n Rate Measured ii	n the Field (mm/sec):	0.47	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1703	



	Test 1 - Obser	rved
Test Duration (seconds)	2,400	
Total Drop Distance (mm)	1135	
Total Number of Measured Intervals	25	
Infiltration Rate (mm/sec) - Test Average	0.47	
Infiltration Rate (mm/hour) - Test Average	1703	
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.35	

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-05 PROJECT NO.: Date: Start Time: Test No.

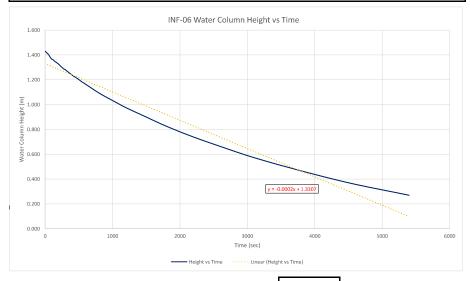
11056 27-Sep-22 8:02 AM 1

	1.14	Pipe Stickup (m):	1.37	Total Pipe Length(m):	2.38	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.900	1.480	-		
30	30	0.950	1.43	0.050	1.667E-03	1.667E-03
60	30	1.090	1.29	0.140	4.667E-03	3.167E-03
90	30	1.145	1.24	0.055	1.833E-03	2.722E-03
120	30	1.190	1.19	0.045	1.500E-03	2.417E-03
150	30	1.225	1.16	0.035	1.167E-03	2.167E-03
180	30 30	1.260	1.12	0.035 0.040	1.167E-03	2.000E-03
210 240	30	1.300 1.330	1.08	0.040	1.333E-03 1.000E-03	1.905E-03 1.792E-03
240	30	1.365	1.03	0.030	1.167E-03	1.792E-03
300	30	1.395	0.99	0.030	1.000E-03	1.650E-03
360	60	1.460	0.92	0.065	1.083E-03	1.556E-03
420	60	1.515	0.87	0.055	9.167E-04	1.464E-03
480	60	1.565	0.82	0.050	8.333E-04	1.385E-03
540	60	1.615	0.77	0.050	8.333E-04	1.324E-03
600	60	1.660	0.72	0.045	7.500E-04	1.267E-03
720	120	1.755	0.63	0.095	7.917E-04	1.188E-03
840	120	1.830	0.55	0.075	6.250E-04	1.107E-03
960	120	1.900	0.48	0.070	5.833E-04	1.042E-03
1,080	120	1.965	0.42	0.065	5.417E-04	9.861E-04
1,200	120	2.025	0.36	0.060	5.000E-04	9.375E-04
1,500	300	2.155	0.23	0.130	4.333E-04	8.367E-04
1,620	120	2.195	0.19	0.040	3.333E-04	7.994E-04
1,740	120	2.235	0.15	0.040	3.333E-04	7.672E-04
Pepth at time 0 indicate		v top of measuring pipe at	•		3.333E-04 (mm/sec)	7.672E-04 (mm/hour)
Depth at time 0 indicate Not	es measurement belov : used for statistical an	v top of measuring pipe at alysis	the start of the test.	(m/sec)	(mm/sec)	(mm/hour)
Depth at time 0 indicate Not Maxim	es measurement belov : used for statistical an num Infiltration Rate B	v top of measuring pipe at	the start of the test.		·	
Depth at time 0 indicate Not Maxim Minim	es measurement belov : used for statistical an num Infiltration Rate B num Infiltration Rate B	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals	the start of the test. - -	(m/sec) 4.67E-03 3.33E-04	(mm/sec) 4.67E+00 3.33E-01	(mm/hour) 16800 1200
Depth at time 0 indicate Not Maxim Minim Mec	es measurement belov : used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals		(m/sec) 4.67E-03 3.33E-04 9.17E-04	(mm/sec) 4.67E+00 3.33E-01 9.17E-01	(mm/hour) 16800 1200 3300
Depth at time 0 indicate Not Maxim Minim Mec	es measurement below used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate Be	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals tween Sampling Intervals	the start of the test. - - -	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00	(mm/hour) 16800 1200 3300 3922
Depth at time 0 indicate Not Maxim Minim Mec	es measurement below used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate Be	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals	the start of the test. - - -	(m/sec) 4.67E-03 3.33E-04 9.17E-04	(mm/sec) 4.67E+00 3.33E-01 9.17E-01	(mm/hour) 16800 1200 3300
Depth at time 0 indicate Not Maxim Minim Mec	es measurement below used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate Be	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals tween Sampling Intervals on Rate for Entire Data Set	- the start of the test. - - -	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00 7.67E-01	(mm/hour) 16800 1200 3300 3922
Depth at time 0 indicate Not Maxim Minim Mec	es measurement below used for statistical an num Infiltration Rate B num Infiltration Rate B dian Infiltration Rate B ge Infiltration Rate Be	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals tween Sampling Intervals on Rate for Entire Data Set In-situ Infiltrati	the start of the test on Rate Measured i	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03 7.67E-04	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00 7.67E-01 0.77	(mm/hour) 16800 1200 3300 3922
Depth at time 0 indicate Not Maxim Minim Mec	es measurement belov es used for statistical an sum Infiltration Rate B uum Infiltration Rate B ge Infiltration Rate Be Cumulative Infiltratio	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals tween Sampling Intervals on Rate for Entire Data Set In-situ Infiltrati	the start of the test	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour):	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00 7.67E-01 0.77 2762	(mm/hour) 16800 1200 3300 3922
Depth at time 0 indicate Not Maxim Minim Mec	es measurement belov es used for statistical an sum Infiltration Rate B uum Infiltration Rate B ge Infiltration Rate Be Cumulative Infiltratio	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals son Rate for Entire Data Set In-situ Infiltratio In-situ Infiltratio Calculated Percolation Tim	the start of the test	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00 7.67E-01 0.77 2762	(mm/hour) 16800 1200 3300 3922
Depth at time 0 indicate Not Maxim Minim Mec	es measurement belov es used for statistical an sum Infiltration Rate B uum Infiltration Rate B ge Infiltration Rate Be Cumulative Infiltratio	v top of measuring pipe at alysis etween Sampling Intervals etween Sampling Intervals etween Sampling Intervals son Rate for Entire Data Set In-situ Infiltratio In-situ Infiltratio Calculated Percolation Tim	the start of the test on Rate Measured in n Rate Measured in e (T) based on field	(m/sec) 4.67E-03 3.33E-04 9.17E-04 1.09E-03 7.67E-04 n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm):	(mm/sec) 4.67E+00 3.33E-01 9.17E-01 1.09E+00 7.67E-01 0.77 2762	(mm/hour) 16800 1200 3300 3922

	Test 1 - Observed
Test Duration (seconds)	1,740
Total Drop Distance (mm)	1335
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.77
Infiltration Rate (mm/hour) - Test Average	2762
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.22

APPENDIX C

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-06

PROJECT NO.: Date: Start Time: Test No.

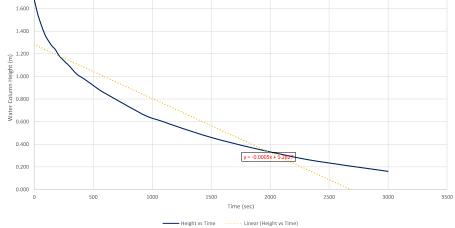
11056 27-Sep-22 9:04 AM 1

APPENDIX C

Depth of Test Pit (m):	of Test Pit (m): 1.1 Pipe Stickup (m): 1.165 Total Pi Length(r								
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)			
0	-	0.840	1.430	-					
30	30	0.855	1.42	0.015	5.000E-04	5.000E-04			
60	30	0.875	1.40	0.020	6.667E-04	5.833E-04			
90	30	0.900	1.37	0.025	8.333E-04	6.667E-04			
120	30	0.910	1.36	0.010	3.333E-04	5.833E-04			
150	30	0.925	1.35	0.015	5.000E-04	5.667E-04			
180	30	0.935	1.34	0.010	3.333E-04	5.278E-04			
210	30	0.950	1.32	0.015	5.000E-04	5.238E-04			
240	30	0.965	1.31	0.015	5.000E-04	5.208E-04			
270	30	0.980	1.29	0.015	5.000E-04	5.185E-04			
300	30	0.990	1.28	0.010	3.333E-04	5.000E-04			
360	60	1.015	1.26	0.025	4.167E-04	4.861E-04			
420	60	1.040	1.23	0.025	4.167E-04	4.762E-04			
480	60	1.060	1.21	0.020	3.333E-04	4.583E-04			
540	60	1.085	1.19	0.025	4.167E-04	4.537E-04			
600	60	1.105	1.17	0.020	3.333E-04	4.417E-04			
720	120	1.150	1.12	0.045	3.750E-04	4.306E-04			
840	120	1.190	1.08	0.040	3.333E-04	4.167E-04			
960	120	1.225	1.05	0.035	2.917E-04	4.010E-04			
1,080	120	1.260	1.01	0.035	2.917E-04	3.889E-04			
1,200	120	1.295	0.98	0.035	2.917E-04	3.792E-04			
1,500	300	1.370	0.90	0.075	2.500E-04	3.533E-04			
1,800	300	1.445	0.83	0.075	2.500E-04	3.361E-04			
2,100	300	1.510	0.76	0.065	2.167E-04	3.190E-04			
2,400	300	1.570	0.70	0.060	2.000E-04	3.042E-04			
3,000	600	1.680	0.59	0.110	1.833E-04	2.800E-04			
3,600	600	1.775	0.50	0.095	1.583E-04	2.597E-04			
4,500	900	1.900	0.37	0.125	1.389E-04	2.356E-04			
5,400	900	2.000	0.27	0.100	1.111E-04	2.148E-04			
** Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis									
				(m/sec)	(mm/sec)	(mm/hour)			
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		8.33E-04	8.33E-01	3000			
		etween Sampling Intervals -		1.11E-04	1.11E-01	400			
Med	lian Infiltration Rate Be	etween Sampling Intervals -		3.33E-04	3.33E-01	1200			
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		3.57E-04	3.57E-01	1287			
	2.15E-01	773							
	Cumulative Inflitratio	n Rate for Entire Data Set -		2.15E-04	2.15E-01	//3			
In-situ Infiltration Rate Measured in the Field (mm/sec): 0.21									
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	773				
	c	alculated Percolation Time	(T) based on field i	nfiltration (min/cm):	0.78				

	·	Test 1 - Observed
Test Duration (seconds)		5,400
Total Drop Distance (mm)		1160
Total Number of Measured Intervals		29
Infiltration Rate (mm/sec) - Test Average		0.21
Infiltration Rate (mm/hour) - Test Average		773
Calculated Percolation Time (T) based on Field Infiltration (min/cm)		0.78

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-07

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

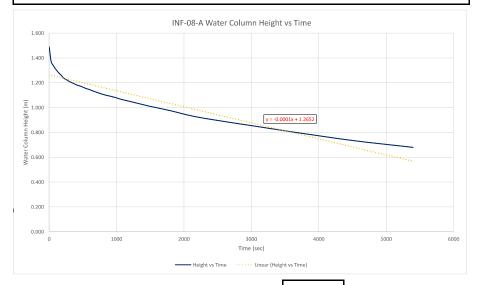
11056 27-Sep-22 4:07 PM 1

epth of Test Pit (m):	0.97	Pipe Stickup (m):	1.41	Total Pipe Length(m):	2.38	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rat (m/sec)
0	-	0.700	1.680	-		
30	30	0.830	1.55	0.130	4.333E-03	4.333E-03
60	30	0.925	1.46	0.095	3.167E-03	3.750E-03
90	30	1.010	1.37	0.085	2.833E-03	3.444E-03
120	30	1.065	1.32	0.055	1.833E-03	3.042E-03
150	30	1.110	1.27	0.045	1.500E-03	2.733E-03
180 210	30 30	1.145 1.195	1.24	0.035	1.167E-03 1.667E-03	2.472E-03 2.357E-03
240	30	1.195	1.19	0.035	1.167E-03	2.357E-03 2.208E-03
240	30	1.250	1.13	0.033	1.000E-03	2.074E-03
300	30	1.290	1.09	0.030	1.000E-03	1.967E-03
360	60	1.360	1.03	0.030	1.167E-03	1.833E-03
420	60	1.400	0.98	0.040	6.667E-04	1.667E-03
480	60	1.445	0.98	0.045	7.500E-04	1.552E-03
540	60	1.490	0.89	0.045	7.500E-04	1.463E-03
600	60	1.530	0.85	0.040	6.667E-04	1.383E-03
720	120	1.600	0.78	0.040	5.833E-04	1.250E-03
840	120	1.670	0.71	0.070	5.833E-04	1.155E-03
960	120	1.735	0.65	0.065	5.417E-04	1.078E-03
1,080	120	1.775	0.61	0.040	3.333E-04	9.954E-04
1,200	120	1.820	0.56	0.045	3.750E-04	9.333E-04
1,500	300	1.920	0.46			
1,800	300	2.000	0.38	0.080	2.667E-04	8.133E-04 7.222E-04
2,100	300	2.070	0.31	0.070	2.333E-04	6.524E-04
2,400	300	2.130	0.25	0.060	2.000E-04	5.958E-04
3,000	600	2.220	0.16	0.090	1.500E-04	5.067E-04
Not	used for statistical an	alysis		(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate B	etween Sampling Intervals	-	4.33E-03	4.33E+00	15600
		etween Sampling Intervals		1.50E-04	1.50E-01	540
Med	lian Infiltration Rate B	etween Sampling Intervals	-	7.50E-04	7.50E-01	2700
Averag	ge Infiltration Rate Be	tween Sampling Intervals	-	1.09E-03	1.09E+00	3926
	Cumulative Infiltratio	on Rate for Entire Data Set	_	5.07E-04	5.07E-01	1824
	compare minimum			5.072.04	51072 01	1024
		In-situ Infiltrati	on Rate Measured in	n the Field (mm/sec):	0.51	
		In-situ Infiltratior	n Rate Measured in 1	the Field (mm/hour):	1824	
	c	alculated Percolation Time	e (T) based on field i	nfiltration (min/cm):	0.33	
			olumn Height v	Time		
1.800		ini -o7 water c	South regitt V			
1.600						
1.400						

	Test 1 - Observed
ouration (seconds)	3,000

Test Duration (seconds)	3,000
Total Drop Distance (mm)	1520
Total Number of Measured Intervals	26
Infiltration Rate (mm/sec) - Test Average	0.51
Infiltration Rate (mm/hour) - Test Average	1824
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.33

Project: Site Location: Test ID:


Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-A

APPENDIX C

11056 27-Sep-22 12:08 PM 1

PROJECT NO.: Date: Start Time: Test No.

Depth of Test Pit (m):	0.55	Pipe Stickup (m):	0.945	Total Pipe Length(m):	1.56	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	0.070	1.490	-		
30	30	0.190	1.37	0.120	4.000E-03	4.000E-03
60	30	0.220	1.34	0.030	1.000E-03	2.500E-03
90	30	0.245	1.32	0.025	8.333E-04	1.944E-03
120	30	0.265	1.30	0.020	6.667E-04	1.625E-03
150	30	0.285	1.28	0.020	6.667E-04	1.433E-03
180	30	0.300	1.26	0.015	5.000E-04	1.278E-03
210	30	0.320	1.24	0.020	6.667E-04	1.190E-03
240	30	0.330	1.23	0.010	3.333E-04	1.083E-03
270	30	0.340	1.22	0.010	3.333E-04	1.000E-03
300	30	0.350	1.21	0.010	3.333E-04	9.333E-04
360	60	0.365	1.20	0.015	2.500E-04	8.194E-04
420	60	0.380	1.18	0.015	2.500E-04	7.381E-04
480	60	0.390	1.17	0.010	1.667E-04	6.667E-04
540	60	0.405	1.16	0.015	2.500E-04	6.204E-04
600	60	0.415	1.15	0.010	1.667E-04	5.750E-04
720	120	0.440	1.12	0.025	2.083E-04	5.139E-04
840	120	0.460	1.10	0.020	1.667E-04	4.643E-04
960	120	0.475	1.09	0.015	1.250E-04	4.219E-04
1,080	120	0.495	1.07	0.020	1.667E-04	3.935E-04
1,200	120	0.510	1.05	0.015	1.250E-04	3.667E-04
1,500	300	0.550	1.01	0.040	1.333E-04	3.200E-04
1,800	300	0.585	0.98	0.035	1.167E-04	2.861E-04
2,100	300	0.625	0.94	0.040	1.333E-04	2.643E-04
2,400	300	0.655	0.91	0.030	1.000E-04	2.438E-04
3,000	600	0.705	0.86	0.050	8.333E-05	2.117E-04
3,600	600 900	0.755	0.81	0.050	8.333E-05 7.778E-05	1.903E-04
4,500 5,400	900	0.825	0.74 0.68	0.070	6.111E-05	1.678E-04 1.500E-04
Depth at time 0 indicate		top of measuring pipe at t		0.033	0.1112 03	1.5002.04
		,		(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	tween Sampling Intervals -		4.00E-03	4.00E+00	14400
		tween Sampling Intervals -		6.11E-05	6.11E-02	220
Med	lian Infiltration Rate Be	tween Sampling Intervals -		1.88E-04	1.88E-01	675
Avera	ge Infiltration Rate Be	ween Sampling Intervals -		4.28E-04	4.28E-01	1543
	Cumulative Infiltratio	n Rate for Entire Data Set -		1.50E-04	1.50E-01	540
	Cumulative initiatio					540
				n the Field (mm/sec): the Field (mm/hour):		
		alculated Percolation Time				

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	810
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.15
Infiltration Rate (mm/hour) - Test Average	540
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	1.11

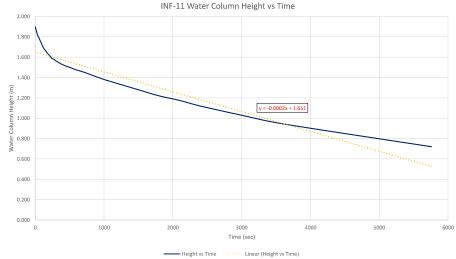
	5868 County ro INF-08-B	t subdivision ad 65, Osaca, ON			PROJECT NO.: Date: Start Time: Test No.	11056 27-Sep-22 11:48 AM 1
	<u>г</u>			-		
epth of Test Pit (m):	2.08	Pipe Stickup (m):	0.925	Total Pipe Length(m):	3.08	
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
0	-	1.650	1.430	-		
30	30	1.650	1.43	0.000	0.000E+00	0.000E+00
60	30	1.650	1.43	0.000	0.000E+00	0.000E+00
90	30	1.650	1.43	0.000	0.000E+00	0.000E+00
120	30 30	1.650	1.43	0.000	0.000E+00 0.000E+00	0.000E+00 0.000E+00
150 180	30	1.650	1.43	0.000	0.000E+00	0.000E+00
210	30	1.650	1.43	0.000	0.000E+00	0.000E+00
240	30	1.650	1.43	0.000	0.000E+00	0.000E+00
270 300	30 30	1.650 1.650	1.43	0.000	0.000E+00 0.000E+00	0.000E+00 0.000E+00
360	60	1.650	1.43	0.000	0.000E+00	0.000E+00
420	60	1.650	1.43	0.000	0.000E+00	0.000E+00
420	60	1.650	1.43	0.000	0.000E+00	0.000E+00
540	60	1.650	1.43	0.000	0.000E+00	0.000E+00
600	60	1.650	1.43	0.000	0.000E+00	0.000E+00
720	120	1.650	1.43	0.000	0.000E+00	0.000E+00
840	120	1.650	1.43	0.000	0.000E+00	0.000E+00
960	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,080	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,200	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1,500	300	1.650	1.43	0.000	0.000E+00	0.000E+00
1,800	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2,100	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2,400	300	1.650	1.43	0.000	0.000E+00	0.000E+00
3,000	600	1.650	1.43	0.000	0.000E+00	0.000E+00
3,600	600	1.650	1.43	0.000	0.000E+00	0.000E+00
4,500	900	1.650	1.43	0.000	0.000E+00	0.000E+00
5,400	900	1.650	1.43	0.000	0.000E+00	0.000E+00
Med	dian Infiltration Rate Be	tween Sampling Intervals - tween Sampling Intervals -	-	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0 0
Avera	ge Infiltration Rate Bet	ween Sampling Intervals	-	0.00E+00	0.00E+00	0
	Cumulative Infiltratio	n Rate for Entire Data Set -	-		0.00E+00	-
				0.00E+00		0
	ci		on Rate Measured in n Rate Measured in	n the Field (mm/sec): the Field (mm/hour):	0.00 0 #DIV/0!	0
1.600	c.	In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	0
	c.	In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	0
1.400		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	
1.400		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	
1.600 1.400 1.200 1.000	C:	In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	-
1.400		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	
1.400		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	
1.400 1.200 1.000 0.800		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	-
1.400 1.200 1.000 0.800 0.600		In-situ Infiltratior	on Rate Measured i n Rate Measured in e (T) based on field	n the Field (mm/sec): the Field (mm/hour): infiltration (min/cm): y=1.43	0.00 0	-

Height vs Time Linear (Height vs Time)

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	0
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.00
Infiltration Rate (mm/hour) - Test Average	0
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	#DIV/0!

APPENDIX C

Project: Site Location: Test ID:

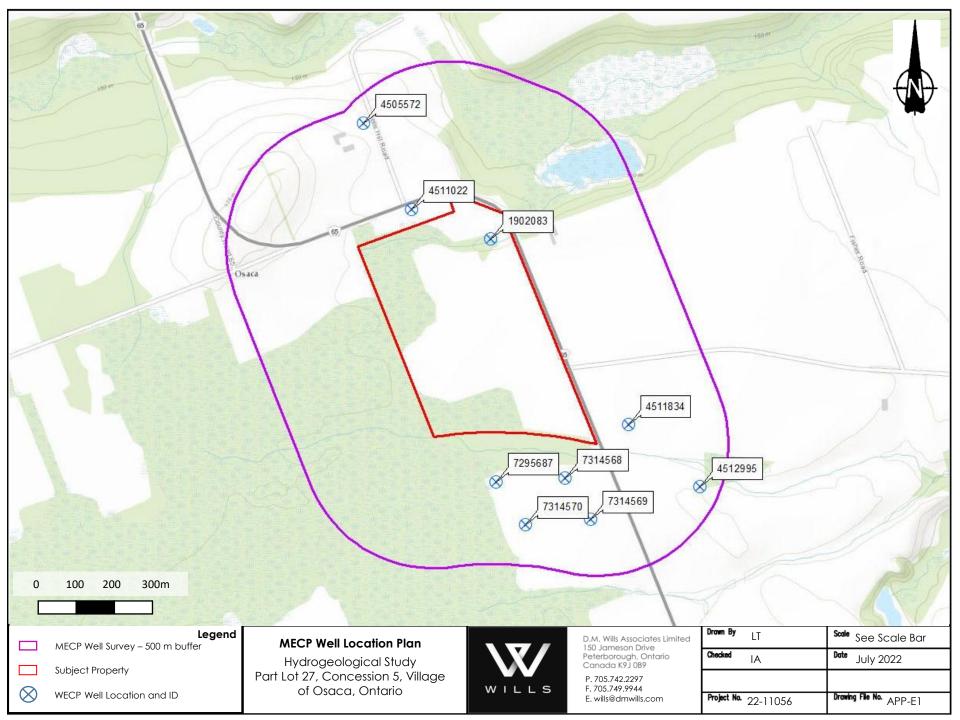

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-11

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 2:53 PM 1

Time* (sconds) Messurement Depth** (m) Water Colum Distance dropped per interval (m.) Currulative Infilitation Rate 0 Currulative Infilitation Rate 0 - 0.400 1.900 - - - - 0 - 0.400 1.900 - - - - 0 - 0.405 1.500 0.015 2.000 0.015 1.500 0.015 1.500 0.015 1.500 0.015 1.500 0.015 1.500 0.015 1.500 0.015 1.500 0.015 1.500 0.01 1.570 0.015 1.500 0.01 1.577 0.015 5.000 0.1707 1.59 0.025 8.335 0.177 0.151 0.010 3.335 0.177 1.577 0.015 5.000 0.1177 0.015 5.000 0.1177 0.015 5.000 0.1177 0.015 2.500 0.20 1.335 0.010 0.200 1.321 0.025 1.332 0.020 1.320 0.200 </th <th>Depth of Test Pit (m):</th> <th>1.13</th> <th>Pipe Stickup (m):</th> <th>1.02</th> <th>Total Pipe Length(m):</th> <th>2.30</th> <th></th>	Depth of Test Pit (m):	1.13	Pipe Stickup (m):	1.02	Total Pipe Length(m):	2.30	
30 30 0.475 1.83 0.075 2.500E-03 2.000E-03 90 30 0.520 1.78 0.045 1.500E-03 1.833E-03 120 30 0.610 1.69 0.045 1.500E-03 1.833E-03 150 30 0.645 1.67 0.005 8.33E-04 1.57E-03 120 30 0.645 1.64 0.000 6.667E-04 1.37E-03 210 30 0.665 1.62 0.020 6.667E-04 1.37E-03 240 30 0.710 1.59 0.025 8.33E-04 1.29E-03 300 33 0.732 1.57 0.015 5.000E-04 1.17E-03 300 33 0.733 1.57 0.015 5.000E-04 1.29E-03 420 60 0.700 1.52 0.020 3.33E-04 0.008E-04 420 60 0.795 1.51 0.015 5.000E-04 7.939E-04 400 1.00	Time* (Seconds)		Depth** (m)				Infiltration Rate
60 30 0.520 1.78 0.045 1.500E-03 2.200E-03 90 30 0.565 174 0.045 1.500E-03 1.781E-03 150 30 0.635 1.67 0.025 8.3381E-03 1.751E-03 180 30 0.665 1.64 0.030 1.000E-03 1.472E-03 210 30 0.720 1.59 0.022 8.338E-04 1.137E-03 240 30 0.720 1.58 0.010 3.338E-04 1.137E-03 300 0.735 1.57 0.015 5.000E-04 1.117E-03 300 0.720 1.54 0.025 4.167E-04 1.000E-03 420 60 0.760 1.54 0.025 4.44 3.03E-04 1.137E-03 420 60 0.795 1.51 0.015 2.500E-04 7.533E-04 500 60 0.825 1.48 0.015 2.500E-04 7.533E-04 700 1.20 <td< td=""><td>0</td><td>-</td><td>0.400</td><td>1.900</td><td>-</td><td></td><td></td></td<>	0	-	0.400	1.900	-		
90 30 0.565 1.74 0.045 1.500-03 1.833-03 120 30 0.610 169 0.045 1.500-03 1.7376-03 180 30 0.665 1.64 0.030 1.000-03 1.4726-03 180 30 0.665 1.64 0.030 1.000-03 1.4726-03 210 30 0.710 1.59 0.025 6.3336-04 1.1284-03 270 30 0.720 1.58 0.010 3.3382-04 1.1284-03 300 30 0.735 1.57 0.015 5.000-04 1.1376-03 420 60 0.780 1.52 0.022 4.1672-04 1.000-03 440 60 0.780 1.52 0.025 4.070 8.228-04 540 60 0.825 1.48 0.015 2.500-04 7.938-04 720 120 0.890 1.42 0.030 2.500-04 5.312-04 1.000 1.000	30	30	0.475	1.83	0.075	2.500E-03	2.500E-03
120 30 0.610 1.69 0.045 1.500E-03 1.750E-03 180 30 0.635 1.67 0.025 8.338E04 1.567E-03 210 30 0.665 1.64 0.030 1.000E-03 1.472E-03 210 30 0.665 1.62 0.020 6.667E-04 1.357E-03 240 30 0.720 1.58 0.010 3.338E-04 1.137E-03 300 0.735 1.51 0.015 5.000E-04 1.117E-03 300 60 0.760 1.54 0.025 4.167E-04 1.100E-03 420 60 0.780 1.52 0.020 3.33E-04 1.048E-04 430 60 0.780 1.54 0.015 2.500E-04 7.93F-04 540 60 0.825 1.48 0.015 2.500E-04 7.93F-04 440 1.20 0.860 1.47 0.030 2.500E-04 5.73F-04 1.080 1.20 <td< td=""><td>60</td><td>30</td><td>0.520</td><td>1.78</td><td>0.045</td><td>1.500E-03</td><td>2.000E-03</td></td<>	60	30	0.520	1.78	0.045	1.500E-03	2.000E-03
150 30 0.635 1.67 0.025 8.332.04 1.567.63 180 30 0.665 1.64 0.030 1.000C-03 1.472E-03 240 30 0.710 1.59 0.025 8.332E-04 1.357E-03 240 30 0.710 1.58 0.010 3.332E-04 1.135E-03 270 30 0.720 1.58 0.010 3.332E-04 1.135E-03 300 30 0.735 1.57 0.015 5.000E-04 1.117E-03 480 60 0.790 1.52 0.022 4.167E-04 1.000E-03 480 60 0.795 1.51 0.015 2.500E-04 7.238E-04 540 60 0.810 1.44 0.015 2.500E-04 7.238E-04 720 120 0.890 1.42 0.030 2.500E-04 5.237E-04 1.080 120 0.935 1.37 0.025 2.088E-04 6.67E-04 1.200 <	90	30	0.565	1.74	0.045	1.500E-03	1.833E-03
180 30 0.665 1.64 0.030 1.000E03 1.472E-03 240 30 0.710 1.59 0.025 8.333E-04 1.222E-03 270 30 0.720 1.58 0.010 3.33E-04 1.122E-03 300 30 0.725 1.57 0.015 5.000E-04 1.117E-03 340 60 0.760 1.52 0.022 3.33E-04 9.048E-04 480 60 0.795 1.51 0.015 2.500E-04 8.229E-04 540 60 0.825 1.48 0.015 2.500E-04 8.229E-04 540 60 0.825 1.48 0.015 2.500E-04 5.23E-04 720 120 0.880 1.42 0.030 2.500E-04 5.33E-04 960 120 0.935 1.37 0.025 2.088E-04 4.95E-04 1,000 1.020 1.28 0.060 2.000E-04 5.33E-04 4.95E-04 1,020							
210 30 0.685 1.62 0.020 6.667E-04 1.337E-03 270 30 0.710 1.59 0.025 8.338E-04 1.222E-03 300 30 0.720 1.58 0.010 3.338E-04 1.135E-03 300 30 0.735 1.57 0.015 5.000E-04 1.137E-03 420 60 0.760 1.52 0.025 4.167E-04 1.000E-03 440 60 0.795 1.51 0.015 2.500E-04 7.938E-04 540 60 0.825 1.48 0.015 2.500E-04 7.938E-04 660 1.42 0.030 2.500E-04 7.938E-04 6.250E-04 720 120 0.850 1.45 0.025 2.088E-04 6.250E-04 1,080 120 0.935 1.37 0.030 2.500E-04 5.31E-04 1,080 120 0.935 1.37 0.025 2.088E-04 4.35E-04 1,080 300							
240 30 0.710 159 0.025 8.335-04 1.292E-03 270 30 0.723 1.57 0.010 3.338-04 1.1285-03 300 30 0.723 1.57 0.015 5.000E-04 1.117E-03 300 60 0.760 1.54 0.025 4.167E-04 1.000E-03 420 60 0.760 1.52 0.020 3.33E-04 9.008E-04 440 60 0.795 1.51 0.015 2.500E-04 8.229E-04 540 60 0.810 1.49 0.015 2.500E-04 7.938E-04 600 60 0.825 1.48 0.015 2.500E-04 5.714E-04 700 120 0.880 1.42 0.030 2.500E-04 5.313E-04 1,080 120 0.935 1.37 0.025 2.088E-04 4.4667E-04 1,000 300 1.020 1.34 0.025 2.088E-04 4.33E-04 1,080							
270 30 0.720 1.58 0.015 5.000E-04 1.135E-03 360 60 0.760 1.54 0.025 4.167E-04 1.000E-03 420 60 0.780 1.52 0.025 4.167E-04 1.000E-04 4480 60 0.780 1.52 0.025 3.33E-04 9.048E-04 540 60 0.780 1.52 0.025 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.593E-04 600 120 0.850 1.45 0.025 2.088E-04 6.530E-04 960 1120 0.935 1.37 0.025 2.088E-04 4.595E-04 1,500 300 1.020 1.28 0.060 2.000E-04 4.33E-04 1,500 300 1.125 1.18 0.045 1.506E-04 3.452E-04 2,100							
300 30 0.735 1.57 0.015 5.000E-04 1.117E-03 360 60 0.760 1.54 0.020 3.33E-04 9.048E-04 480 60 0.780 1.52 0.020 3.33E-04 9.048E-04 480 60 0.780 1.52 0.020 3.33E-04 9.048E-04 600 60 0.810 1.49 0.015 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.7938E-04 720 120 0.850 1.42 0.030 2.500E-04 5.714E-04 960 120 0.910 1.39 0.030 2.500E-04 5.313E-04 1,280 300 1.020 1.28 0.060 2.000E-04 4.457E-04 1,800 300 1.122 0.065 1.438E-04 3.45E-04 2,100 300 1.180 1.12 0.055 1.438E-04 3.250E-04 2,000E-04 3.45E-04				1.59			
360 60 0.760 1.54 0.025 4.167E-04 1.000E-03 420 60 0.780 1.52 0.020 3.33E-04 9.048E-04 540 60 0.795 1.51 0.015 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.993E-04 720 120 0.850 1.45 0.025 2.038E-04 6250E-04 840 120 0.880 1.42 0.030 2.500E-04 5.714E-04 966 120 0.910 1.39 0.025 2.083E-04 4.594E-04 1,080 120 0.935 1.37 0.025 2.083E-04 4.594E-04 1,200 1300 1.020 1.28 0.060 2.000E-04 4.137E-04 1,800 300 1.020 1.28 0.060 2.000E-04 4.332E-04 2,400 300 1.125 1.18 0.045 1.500E-04 2.900E-04 3,600 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
420 60 0.780 1.52 0.020 3.338:04 9.048E-04 480 60 0.795 1.51 0.015 2.500E-04 8.229E-04 540 60 0.810 1.49 0.015 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.083E-04 720 1.20 0.850 1.45 0.0025 2.083E-04 6.520E-04 840 1.20 0.880 1.42 0.030 2.500E-04 5.313E-04 960 1.20 0.935 1.37 0.025 2.083E-04 4.657E-04 1,080 120 0.935 1.37 0.025 2.083E-04 4.657E-04 1,500 300 1.020 1.28 0.060 2.000E-04 3.378E-04 1,800 300 1.121 1.080 2.000E-04 3.378E-04 2,400 300 1.180 1.12 0.055 1.838E-04 3.250E-04 2,400 30							
480 60 0.795 1.51 0.015 2.500E-04 8.229E-04 540 60 0.810 1.49 0.015 2.500E-04 7.593E-04 720 120 0.850 1.48 0.015 2.500E-04 5.759E-04 840 120 0.850 1.45 0.025 2.038E-04 6.520E-04 960 120 0.910 1.39 0.030 2.500E-04 5.734E-04 1,080 120 0.935 1.37 0.025 2.038E-04 4.954E-04 1,500 300 1.020 1.28 0.060 2.000E-04 3.737E-04 1,500 300 1.020 1.28 0.060 2.000E-04 3.737E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 3,600 600 1.270 1.03 0.090 1.632E-04 2.000E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04							
540 60 0.810 1.49 0.015 2.500E-04 7.593E-04 600 60 0.825 1.48 0.015 2.500E-04 7.7083E-04 720 120 0.880 1.45 0.025 2.083E-04 6.250E-04 840 120 0.880 1.42 0.030 2.500E-04 5.313E-04 1,080 120 0.935 1.37 0.025 2.083E-04 4.954E-04 1,080 120 0.960 1.34 0.025 2.088E-04 4.667E-04 1,080 300 1.020 1.28 0.060 2.000E-04 4.338E-04 1,800 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 3,000 600 1.355 0.95 0.085 1.417E-04 2.058E-04 3,000 600 1.580 0.72 0.225 1.042E-04 2.049E-04 <							
600 60 0.825 1.48 0.015 2.500E-04 7.083E-04 720 120 0.850 1.45 0.025 2.008E-04 6.250E-04 960 120 0.880 1.42 0.030 2.500E-04 5.318E-04 1,080 120 0.935 1.37 0.025 2.083E-04 4.954E-04 1,200 120 0.960 1.34 0.025 2.083E-04 4.667E-04 1,500 300 1.020 1.28 0.060 2.000E-04 3.778E-04 2,100 300 1.020 1.28 0.060 2.000E-04 3.452E-04 2,100 300 1.125 1.18 0.045 1.500E-04 2.350E-04 3,600 600 1.270 1.03 0.090 1.500E-04 2.900E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04 5,760 2.160 1.580 0.72 0.225 1.042E-04 2.049E-04							
720 120 0.850 1.45 0.025 2.083E-04 6.250E-04 840 120 0.880 1.42 0.030 2.500E-04 5.714E-04 960 120 0.910 1.39 0.030 2.500E-04 5.714E-04 1,080 120 0.935 1.37 0.025 2.083E-04 4.954E-04 1,200 120 0.960 1.34 0.025 2.083E-04 4.667E-04 1,500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 1,800 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.520E-04 3,000 600 1.355 0.95 0.085 1.437E-04 2.653E-04 3,000 600 1.350 0.72 0.225 1.042E-04 2.90E-04 2,060 1.580 0.72 0.225 1.042E-04 2.049E-04 Poepth at time 0							
840 120 0.880 1.42 0.030 2.500E-04 5.714E-04 960 120 0.930 1.39 0.030 2.500E-04 5.313E-04 1,200 120 0.995 1.34 0.025 2.083E-04 4.957E-04 1,500 300 1.020 1.28 0.066 2.000E-04 4.133E-04 1,500 300 1.020 1.28 0.066 2.000E-04 4.133E-04 2,100 300 1.080 1.22 0.660 2.000E-04 3.475E-04 2,400 300 1.125 1.18 0.045 1.500E-04 3.475E-04 2,400 300 1.120 0.055 1.833E-04 3.250E-04 3,600 600 1.270 1.03 0.095 1.60E-04 2.409E-04 * 0.900 1.500E-04 2.409E-04 2.049E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (msce) (mm/sec) 9000							
960 120 0.910 1.39 0.030 2.500E-04 5.313E-04 1.080 120 0.935 1.37 0.025 2.083E-04 4.954E-04 1.500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 1.500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 1.800 300 1.020 1.28 0.060 2.000E-04 4.133E-04 2.100 300 1.125 1.18 0.045 1.500E-04 3.45E-04 2.400 300 1.127 1.03 0.090 1.500E-04 3.45E-04 3.600 600 1.270 10.3 0.090 1.500E-04 2.653E-04 5.760 2.160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1,080 120 0.935 1.37 0.025 2.083E-04 4.954E-04 1,200 120 0.960 1.34 0.025 2.083E-04 4.667E-04 1,500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 1,800 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,400 300 1.120 0.055 1.838E-04 3.250E-04 3,600 600 1.270 1.03 0.095 1.417E-04 2.653E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (mm/sec) (mm/hour) * Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+04 9000 Minimum Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
1.200 120 0.960 1.34 0.025 2.083E-04 4.667E-04 1.500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 2.100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2.400 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2.400 300 1.180 1.12 0.055 1.838E-04 3.250E-04 3.600 600 1.375 0.995 0.085 1.417E-04 2.653E-04 5.760 2.160 1.580 0.72 0.225 1.042E-04 2.049E-04 ***********************************							
1,500 300 1.020 1.28 0.060 2.000E-04 4.133E-04 1,800 300 1.080 1.22 0.060 2.000E-04 3.778E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.378E-04 2,400 300 1.127 1.03 0.095 1.833E-04 3.250E-04 3,000 600 1.270 1.03 0.090 1.500E-04 2.800E-04 3,000 600 1.355 0.95 0.085 1.47E-04 2.63E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 ***********************************							
1,800 300 1.080 1.22 0.060 2.000E-04 3.778E-04 2,100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,400 300 1.120 0.055 1.83E-04 3.250E-04 3,000 600 1.270 1.03 0.090 1.500E-04 2.350E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (msec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 Calculated Percolation Time (T) based on field infiltration (min/cm):							
2,100 300 1.125 1.18 0.045 1.500E-04 3.452E-04 2,400 300 1.180 1.12 0.055 1.833E-04 3.250E-04 3,000 600 1.270 1.03 0.090 1.500E-04 2.900E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 ' Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate of Entire Data Set - 2.05E-04 2.05E-01 738 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E 1738 In-situ Infiltration Rate Measured in the Field							
2,400 300 1.180 1.12 0.055 1.833E-04 3.250E-04 3,000 600 1.270 1.03 0.090 1.500E-04 2.900E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.503E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 INF-11 Water Column Height vs Time							
3,000 600 1.270 1.03 0.090 1.500E-04 2.900E-04 3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 2.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81							
3,600 600 1.355 0.95 0.085 1.417E-04 2.653E-04 5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entric Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 INF-11 Water Column Height vs Time							
5,760 2,160 1.580 0.72 0.225 1.042E-04 2.049E-04 * Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.81 INF-11 Water Column Height vs Time							
^b Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/hour) Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81							
Maximum Infiltration Rate Between Sampling Intervals - 2.50E-03 2.50E+00 9000 Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time				he start of the test.			
Minimum Infiltration Rate Between Sampling Intervals - 1.04E-04 1.04E-01 375 Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time					(m/sec)	(mm/sec)	(mm/hour)
Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time	Maxim	um Infiltration Rate B	etween Sampling Intervals -		2.50E-03	2.50E+00	9000
Median Infiltration Rate Between Sampling Intervals - 2.50E-04 2.50E-01 900 Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time	Minim	um Infiltration Rate B	etween Sampling Intervals -		1.04E-04	1.04E-01	375
Average Infiltration Rate Between Sampling Intervals - 5.53E-04 5.53E-01 1989 Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time 0.81							
Cumulative Infiltration Rate for Entire Data Set - 2.05E-04 2.05E-01 738 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81							
In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20 In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81	,	-					
In-situ Infiltration Rate Measured in the Field (mm/hour): 738 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time		Cumulative initiatio	in Rate for Entire Data Set -		2.032-04	2.035-01	/38
Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81 INF-11 Water Column Height vs Time			In-situ Infiltratio	n Rate Measured i	n the Field (mm/sec):	0.20	
INF-11 Water Column Height vs Time			In-situ Infiltration	Rate Measured in	the Field (mm/hour):	738	
		c	alculated Percolation Time	(T) based on field i	nfiltration (min/cm):	0.81	
			INF-11 Water C	olumn Height v	s Time		
	2.000						



	Test 1 - Observed
Test Duration (seconds)	5,760
Total Drop Distance (mm)	1180
Total Number of Measured Intervals	28
Infiltration Rate (mm/sec) - Test Average	0.20
Infiltration Rate (mm/hour) - Test Average	738
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.81

Appendix E

MECP Well Record Survey

APPENDIX E-2 - MECP WELL SUMMARY Well Record Summary - Bedrock Project No.: 11056

Lot No.	UTM	M.O.E.	Well	Wate	r Found	Static	: Level	REC Pun	np Rate	Well	Depth	Depth to Bedrock		Comments
LOI NO.	UIM	Well No.	Use	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres	Comments
Con. 05														
Lot 27	705556 4875265	7295687	Unknown	-	-	-	-	-	-	-	-	-	-	No information available
Lot 26	Unknown	4512995	Domestic	44	13.4	57	17.4	4.16	18.9	156	47.5	144	43.9	Fresh water observed from 44-156 ft. in limestone bedrock.
Lot 27	705637 4875147	7314570	Domestic	32	9.8	27.9	8.5	8.33	37.8	157	47.9	147	44.8	Fresh water observed at 32 ft. in limestone bedrock.
Con. 6														
Lot 27	Unknown	4505572	Domestic	130	39.6	95	29.0	0.83	3.8	135	41.1	112	34.1	Fresh water observed at 130 ft. in limestone bedrock.

Number of Wells = 4

	Water Found		Static Level		REC Pump Rate		Well Depth		Depth to Bedrock	
	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres
AVERAGE	68.7	20.9	60.0	18.3	4.4	20.2	149.3	45.5	134.3	40.9
MAXIMUM	130.0	39.6	95.0	29.0	8.3	37.8	157.0	47.9	147.0	44.8
MINIMUM	32.0	9.8	27.9	8.5	0.8	3.8	135.0	41.1	112.0	34.1

APPENDIX E-2 - MECP WELL SUMMARY Well Record Summary - Overburden Project No.: 11056

Lot No.	UTM	M.O.E.	Well	Wate	r Found	Static	: Level	REC Pun	np Rate	Well	Depth	Depth	to Bedrock	Commonte
LOT NO.	UTM	Well No.	Use	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres	Comments
Con. 5														
Lot 26	Unknown	4511834	Domestic	58	17.7	30	9.1	3.33	15.1	58	17.7	-	-	Fresh water observed at 58 ft. in brown sand
Lot 27	705815 4875162	7314569	Domestic	32	9.8	21.6	6.6	5.83	26.5	151	46.0	-	-	Fresh water observed at 32 ft. in coarse gravel
Lot 27	705746 4875275	7314568	Domestic	40	12.2	21	6.4	6.66	30.2	101	30.8	-	-	Fresh water observed at 40 ft. in coarse gravel
Lot 27	705527 4875703	1902083	Domestic	17	5.2	18	5.5	1.67	7.6	25	7.6	-	-	Fresh water observed at 17 ft. in clay material
Lot 27	-	4511022	-	-	-	-	-	10	45.4	13	4.0	-	-	No information - well record in relation to well cleanout of sand and gravel

Number of Wells = 5

	Wate	Water Found		Static Level)	Well	Depth	Depth to Bedrock	
	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres
AVERAGE	36.8	11.2	22.7	6.9	5.5	25.0	69.6	21.2	-	-
MAXIMUM	58.0	17.7	30.0	9.1	10.0	45.4	151.0	46.0	-	-
MINIMUM	17.0	5.2	18.0	5.5	1.7	7.6	13.0	4.0	-	-

Appendix F

MECP Well ID A377795, A377796 and A377799 Well Records

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

								Well Tag N	lumber *
								A 377795	
Type *									
Constructio	n		bandonm	ent					
Measurement	record	led in:	*						
Metric		🖌 In	nperial						
1. Well Owr	er's lı	nforn	nation						
Last Name and	d First N	lame,	or Organ	nization is r	mandatory. *				
Last Name						First Na	ame		
Organization Hillstreet Dev	elopme	ents L	_td			Email A	Address		
Current Addre	ess								
Unit Number	-	treet N <mark>24</mark>	Number *		Name * pank Rd			City/Town/Village Pickering	
Country Canada					Province Ontario			Postal Code L1W 2N5	Telephone Number
2. Well Loca	ation								
Address of W	ell Loca	ation							
Unit Number	Street	t Num		Street Nan Concessio				Township Hope	
Lot 27				Concessio <mark>5</mark>	n			rict/Municipality /IBERLAND	
City/Town <mark>Osaca</mark>			ł				Province Ontario		Postal Code
UTM Coordina	tes Zo	ne *	Easting *	N	orthing *		·	Municipal Plan an	d Sublot Number
NAD 83	1	7	705444	4	1875700	Test	JTM in Map		
Other		I		I					

3. Overburden and Bedrock Material *										
Well Depth *	36	(ft)								
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To					

			(ft)	(ft)
Brown	Sand	Loose	0	28
Brown	Medium Sand	Loose	28	36

4. Annular Sp	ace *		
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed
(ft)	(ft)		(cubic feet)
0	20	Bentonite Chips - 175 lbs	2.45
0	20	Bentonite Slurry - 24 gal	3.21

5. Method of Construction *	
Cable Tool Rotary (Conventional) Rotary (Reverse) Boring	Air percussion Diamond
Jetting Driving Digging Rotary (Air) Augering	Direct Push
Other (specify)	
6. Well Use *	
Public Industrial Cooling & Air Conditioning	
✓ Domestic Commercial Not Used	
Livestock Municipal Monitoring	
Irrigation Test Hole Dewatering	
Other (specify)	
7. Status of Well *	
✓ Water Supply □ Replacement Well □ Test Hole	
Recharge Well Dewatering Well Observation and	I/or Monitoring Hole
Alteration (Construction)	or Water Quality
Abandoned, other (specify)	
Other (specify)	
8. Construction Record - Casing * (use negative number(s) to indicate depth above	ve ground surface)
Inside Open Hole or Material (Galvanized, Fibreglass, Wall	

Inside Diameter	Open Hole or Material (Galvanized, Fibreglass, Concrete, Plastic, Steel)	Wall Thickness	Depth From	Depth To
(in)			(ft)	(ft)
6.25	Steel	0.188	-2	32
5.25	Steel	0.188	29	32

9. Construction Record - Screen Material Outside Slot (Plastic, Galvanized, Steel) Depth From Depth To Diameter Number (ft) (in) (ft) 5.5 Stainless Steel 14 32 36

10. Water Det	ails													
Water found at	Depth 38	8	(ft)	Gas	Kind of v	vater [Fres	h 🖌 L	Intested	Ot	her			
			•											
11. Hole Diam	neter													
De	epth Froi	m			Depth	і То				l	Diamete	r		
	(ft)				(ft))					(in)			
	0	0 20 8.75												
	20 36 6.58													
			ľ					-						
12. Results of	f Well Y	′ield Te	esting											
Pumping Dis	scontinue	ed												
Explain														
If flowing give ra	ate													
Flowing					(0	GPM)								
Draw down											r	1	1	1
Time (min)	Static Level	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Level (ft)	10	11.2	13.4	15.6	16.1	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4	16.4
Recovery														
Time (mir	ו)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev (ft)	el	14.1	12.2	10.5	10	10	10	10	10	10	10	10	10	10
After test of wel	l yield, w	/ater wa	s	I	I	I		II	I	I	I			
✓ Clear and sa	and free	🗌 Oth	ner (spec	cify)										
Pump intake se	t at Pur	nping ra	te	Duratior	l of pump	oing		Final wa	ater leve	end of	pumping) Dis	infected	? *
33	(ft) 10		(GPM)	1	hrs +	00	min	16.1			(ft)	\checkmark	Yes 🗌	No
Recommended	pump de	epth	Recom	mended	oump rat	e Wel	l produo	ction						
33		(ft)	10		(GPN	/I) 10			(GPM)					
13. Map of W	ell Loca	ation *												
Map 1. Please Cl	ick the m	ap area t	elow to i	mport an i	mage file	to use a	s the ma	ıp.	🗌 Mak	te map a	area bigo	ger		

14. Informati	on							
Well owner's ir ✓ Yes 🗌 N	nformation package o	delivered	Date Package Delivered () 2023/10/03	/yyy/mr		Date Work Con 2023/10/17	npleted (yyyy/mm/dd) *	
K-packer and	uides @ 6' & 16" leader pipe above se with pressure	e screen			i			
15. Well Con	tractor and Well	Technician	Information					
	e of Well Contractor ell Drilling Ltd.	r *			Well Co 7 <mark>560</mark>	ntractor's Licen	se Number *	
Business Address								
Unit Number	Street Number 4852	Street Nam Highway 7						
City/Town/Village * Province Postal Code * Omemee ON K0L 2W0								
Business Teler 705-799-7088		usiness Emai Iwelldrilling@		ł				
Last Name of V Foster	Well Technician *		First Name of Well Technic	cian *		Well Technic 3920	ian's License Number *	
16. Declarati	on *							
✓ I hereby co and accura		person who co	onstructed the well and I her	eby co	nfirm th	at the information	on on the form is correct	
Last Name Foster		First Na <mark>Nick</mark>	ame		Email A n <mark>lwelld</mark> i	ddress rilling@gmail.c	com	
Signature				C	Date Su	ıbmitted (yyyy/m	nm/dd)	
Nick Fo	ster		y signed by Nick Foster 023.10.25 06:32:28 -04'00'			2023	/10/25	
17. Ministry	Use Only							
Audit Number SDBJ 9K63								

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

							Well Tag Nu	umber *
							A 377796	
Type *								
Constructio	n 🗌	Abandonn	nent					
Measurement	recordeo	l in: *						
Metric	✓	Imperial						
1. Well Own	er's Inf	ormation						
Last Name and	First Na	me, or Orga	nization is n	nandatory. *				
Last Name					First Na	ame		
Organization Hillstreet Deve	elopmen	ts Ltd			Email A	Address		
Current Addre	SS							
Unit Number	Stre 524	et Number '		Name * ank Rd			City/Town/Village Pickering	
Country Canada				Province Ontario			Postal Code L1W 2N5	Telephone Number
2. Well Loca	tion							
Address of We	ell Locati	on						
Unit Number	Street N 5688	umber *	Street Nam Concessio				Township <mark>Hope</mark>	
Lot 27			Concessior 5	١			rict/Municipality /IBERLAND	
City/Town Osaca						Province Ontario		Postal Code
UTM Coordinat	es Zone	e * Easting	* _. No	orthing *		·	Municipal Plan and	Sublot Number
NAD 83	17	705464	4 4	875609	Test	JTM in Map		
Other							4	

3. Overburden a	3. Overburden and Bedrock Material *							
Well Depth *	38	(ft)						
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To			

			(ft)	(ft)
Brown	Sand	Loose	0	31
Brown	Medium Sand	Loose	31	38

4. Annular Space *							
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed				
(ft)	(ft)		(cubic feet)				
0	20	Bentonite Chips - 150lbs	2.1				
0	20	Bentonite Slurry - 48 gals	6.42				

5. Method of Constr	ruction *							
Cable Tool	Rotary (Conventional)	Rotary (Reverse)	Boring Air per	cussion 🗌 Dia	amond			
Jetting D	Jetting Driving Digging Rotary (Air) Augering Direct Push							
Other (specify)								
6. Well Use *								
Public	Industrial	Cooling & Air Co	onditioning					
✓ Domestic	Commercial	Not Used						
Livestock	Municipal	Monitoring						
Irrigation	Test Hole	Dewatering						
Other (specify)								
7. Status of Well *								
✓ Water Supply	Replaceme	ent Well	Test Hole					
Recharge Well	Dewatering	Well	Observation and/or Mon	itoring Hole				
Alteration (Construc	ction)	I, Insufficient Supply	Abandoned, Poor Water	Quality				
Abandoned, other (s	specify)							
Other (specify)								
8. Construction Rec	cord - Casing * (use	e negative number(s) to	indicate depth above grour	nd surface)				
Inside	Open Hole or Materia	al (Galvanized, Fibregla	ass, Wall	Depth From	Depth To			

Diameter	Concrete, Plastic, Steel)	Thickness	Depth From	Depth To
(in)			(ft)	(ft)
6.25	Steel	0.188	-2	34
5.25	Steel	0.188	31	34

9. Construction Record - Screen Material Outside Slot (Plastic, Galvanized, Steel) Depth From Depth To Diameter Number (ft) (in) (ft) 5.5 Stainless Steel 14 34 38

10. Water Det	10. Water Details														
Water found at	Depth 38	3	(ft)	Gas	Kind of	wate	r 🗌	Fres	h 🖌 L	Intested	Ot	her			
11. Hole Diam	neter														
De	epth Froi	m			Dept	h To						Diamete	r		
	(ft)				(ft	t)						(in)			
	0				20	0						8.75			
	20				38	8						6.58			
									-						
12. Results of	f Well Y	′ield Te	esting												
Pumping Dis	scontinue	ed													
Explain															
If flowing give ra	ate														
Flowing					(0	GPM)								
Draw down						-			_						-
Time (min)	Static Level	1	2	3	4		5	10	15	20	25	30	40	50	60
Water Level (ft)	10	17	20.5	5 20.9	21.7	22	2.2	23.2	23.4	23.4	23.4	23.5	23.5	5 23.6	23.6
Recovery															
Time (mir	1)	1	2	3	4	5		10	15	20	25	30	40	50	60
Water Lev (ft)	el	18.6	15.5	13.7	12.4	11.	5	10	10	10	10	10	10	10	10
After test of wel	l yield, w	ater wa	S	1 1	I				I			Į			1
✓ Clear and sa	and free	🗌 Otł	ner (spe	cify)											
Pump intake se	t at Pur	nping ra	ite	Duratio	n of pum	ping			Final wa	ater leve	l end of	pumping) C	isinfecte	1? *
35	(ft) 10		(GPM)	1	hrs +	00)	min	23.6			(ft)	V	Yes [No
Recommended	pump de	epth	Recom	mended	pump ra	te 🛛	Well	produc	ction						
35		(ft)	10		(GPI	M) '	10			(GPM)					
13. Map of Wo	ell Loca	ation *													
Map 1. Please Cl	ick the m	ap area l	pelow to i	mport an	image file	to us	se as	the ma	p.	🗌 Mał	ke map a	area bigg	ger		

ed Date Package Delivered (y 2023/10/03			mpleted (yyyy/mm/dd) *		
n					
ician Information					
	Well C 7560	ontractor's Licen	ise Number *		
	•				
nit Number Street Number Street Name * 4852 Highway 7					
	Province ON		Postal Code * K0L 2W0		
	1				
First Name of Well Technic Nick	cian *	Well Technic 3920	cian's License Number *		
		·			
vho constructed the well and I her	eby confirm t	hat the informati	ion on the form is correct		
			com		
	Date S	ubmitted (yyyy/r	nm/dd)		
Nick FosterDigitally signed by Nick Foster Date: 2023.10.25 06:23:49 -04'00'2023/10/25					
	2023/10/03 in ician Information it Name * way 7 Email Address Iling@gmail.com First Name of Well Technic Nick who constructed the well and I her First Name Ick Digitally signed by Nick Foster	2023/10/03 Well C ician Information Well C ician Information VVell C Vyell C 7560 Way 7 Province ON Province Ing@gmail.com ON First Name of Well Technician * Nick who constructed the well and I hereby confirm the string to the stri	2023/10/03 2023/10/12 in ician Information ician Information Well Contractor's Licer 7560 it Name * Province ON Email Address Province ON Email Address Well Technician * Nick Well Technic 3920 who constructed the well and I hereby confirm that the informat first Name Mick Email Address hlvelldrilling@gmail. Digitally signed by Nick Foster Date Submitted (yyyy/r 2023)		

General Instructions and Explanations for completing a Well Record

A completed electronic Well Record Form must be delivered to the well purchaser and the owner of the land on which the well is situated within 14 days after the date on which the well's structural stage is complete. The electronic Well Record must also be forwarded within 30 days after the date on which the well's structural stage is complete to the ministry through email to the following email address: <u>WellRecordSubmission@ontario.ca</u>

False and Misleading Information

Subsection 98(2) of the Ontario Water Resources Act, R.S.O. 1990 c. O. 40, states that:

"No person shall orally, in writing or electronically, give or submit false or misleading information in any statement, document or data, to any provincial officer, the Minister, the Ministry or the Agency, any employee in or agent of the Ministry or the Agency, or any person involved in carrying out a program of the Ministry or the Agency in respect of any matter related to this Act or the regulations."

Further, subsection 98(3) of the Act states that:

"No person shall include false or misleading information in any document or data required to be created, stored or submitted under this Act."

Measurements

All measurements must be recorded in the specified unit, metric or imperial by checking off the applicable box on the top of the form. You must use the checked unit consistently throughout the well record. Measurements must be reported to 1/10th of a metre if the unit is a metre. All measurements of depth must be referenced to ground surface.

Well Owner's Information

A "well owner" means the owner of land upon which a well is situated and includes a tenant or lessee of the land and a well purchaser. If the "well owner" is an individual, record the owner's last name and first name or if the "well owner" is a business, government or other organization, record the name in the "organization" area.

Well Location

Street Number/Name and City/town/Village must be provided, if available.

Geographic Township, Concession and Lot must be reported if the well is located in an area where such information exists.

UTM Coordinates must be recorded each time a Well Record is completed. Click the button [Test UTM in Map] to use the UTM Coordinates to plot the location to Google map. This allows verification of the UTM Coordinates. This will also automatically populate the County/District.

Municipal Plan and Sublet Number may be provided, if available.

Overburden and Bedrock Materials

For each formation encountered during construction, choose words from the lists that best describe the formation on the basis of general colour, most common material, other materials, and general description of the formation.

General Colours are White, Yellow, Grey, Brown, Blue, Red, Green and Black.

Examples of Materials are: Fill, Silt, Top Soil, Coarse Sand, Slate, Muck, Gravel, Limestone, Dolomite, Quartzite, Peat, Stones, Fine Sand, Shale, Granite, Clay, Boulders, Medium Sand, Sandstone, and Greenstone. Some definitions are as follows:

- Clay: Composed of very fine particles. Forms dense hard lumps or clods when dry and a very elastic putty-like mass when wet. It can be rolled between fingers to form a long, flexible ribbon.
- Silt: Grain size, midway between sand and clay. It may form clods which, when broken, feel soft and floury. When moist, it will form a cast that can be handled freely without breaking. Rolled between thumb and finger, it will not "ribbon" but will give a broken appearance.

- Sand: Grains are loose and granular and may be seen and felt readily. Squeezed in the hand when dry, it falls apart when the pressure is released. Squeezed when moist, it will form a cast that will crumble when touched. Should be listed as fine sand, medium sand or coarse sand.
- Gravel: Rock fragments greater than 0.3 cm in diameter.

Examples of General Descriptions are Loose, Cemented, Previously Dug or Bored, Porous, Layered, Previously Drilled, Dense, Soft, Wood Fragments, Packed, Hard.

Abandonment

To report abandonment of a well, check off the applicable box in Type on the top of the form. Details of abandonment must be recorded in the Abandonment and Sealing Section. Additional comments may be entered in the comments box under the Information section.

Annular Space

Record all material placed in the annular space around the single casing or around the permanent outer casing. If the well is a telescoped well [i.e., a well with an outer casing and inner casing(s)] or if the well is a multi-level nested test hole, report the depth from, depth to, material and volume placed for the annular space between two different sized casings or between the inner casing(s) and the side of the well in the "Comments" area of this electronic well record form.

Method of Construction

If the equipment used to construct the well is not on the list, check "Other (specify)" and record the type of equipment, check each equipment that applies.

Well Use

If the well's use is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple uses, check each use that applies.

Status of Well

If the well's status is not provided on the list, check "Other (specify)" and record the use of the well. If the well has multiple statuses, check each use that applies.

Construction Record – Casing and Open Hole

Use negative values to report the top of casing above ground surface. For example, if the top of the casing is 0.4 metres above the ground surface and the bottom of the casing 6.0 metres below the ground surface, record the casing "Depth From" as -0.4.

If the top of casing is located below the ground surface (e.g., if a test hole is constructed and the top of casing is located below the ground surface in a flush mounted well vault), report the top of the casing from below ground surface. For example, if the top of the casing is 0.1 metres below the ground surface and the bottom of the casing is 6 metres below the ground surface, record the casing "Depth From" as 0.1.

Note: If a drive shoe is used, the shoe is considered casing and it must be reported if the shoe has a different inside diameter thickness.

If a portion of the well was created an open hole, record the location of the open hole on a separate row, including the diameter and the depth (top and bottom of open hole) from the ground surface.

Construction Record – Well Screen

A "well screen" means perforated pipe or tubing, unsealed concrete tiles or other material installed in a well to filter out particulate matter and form the water intake zone. Therefore, the length of a well screen includes any slotted or perforated area and unsealed area of pipe or tiles.

Water Details

- if groundwater was located, record the depth from the ground surface to the location of the groundwater resource, and
- record if the groundwater quality is "Untested," "Fresh" (i.e., not salty), or "Other (specify)." If "Other (specify)" is recorded, use the "Other (specify)" dropdown list toselect the type of groundwater (e.g., salty, blackish water, yellowish water, mineralized, etc.).

Check off "Gas" if natural gas was encountered during well construction.

Note: Natural gas encounters need to be immediately reported to the ministry at 1-800-268-6060, well purchaser and the owner of the land.

Results of Well Yield Testing

Check off "Pumping Discontinued" if pumping was discontinued before 1 hour of continuous pumping. Explain the reason why pumping was discontinued or in some cases not performed (e.g., the well went dry, impossible to install pump in small diameter well, static water level from test hole or dewatering well was obtained and is reported instead of completing a yield test etc.).

Note: Equipment breakdown is not an acceptable reason for checking off "Pumping Discontinued" on the well record form. If groundwater in the well is flowing out of the well, provide the rate of flow, and check off "Flowing Well" (i.e., static water level above the ground surface).

In the "Results of Well Yield Testing" section of the well record form, record:

- the depth to the intake of the pump,
- the rate of pumping and duration of pumping period during the yield test,
- the final water level when pumping stops,
- water level measurements made during pumping (drawdown) and recovery. All water level measurements must be referenced from below the ground surface for each time interval specified in the drawdown and recovery boxes.

If the water level measurements remain the same over a period of time, continue to measure and report the same water level measurement for the remaining pumping or recovery time intervals.

If pumping continuously for at least 1 hour, but the design of the well does not allow for water level measurements (e.g., driven point well), the person constructing the well is not required to report drawdown or recovery water level measurements.

Map of Well Location

In the "Map of Well Location" section of the well record form, click the map area to attach a map of the well location. The map must show sufficient information to locate the well, including:

- a mark on the map showing the well,
- a scale on the map, and
- where available, the name of the structure, street or surface water body nearest to the well.

Note: More than one map can be added to the well record form by clicking on "Add Map (+)" to add an additional map.

Information

Record any additional information (e.g., observations, tests, additional licensed well technicians who worked on the well, additional annular space details for a telescoped well or a multi-level nested test hole, reasons for not providing a well owner information package) in the comments area.

Declaration

Check the declaration statement to confirm that the person constructing the well agrees with the following statement: "I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate".

Validate

Click the validate button. If there is no missing information, you will be asked to enter the well tag again to make sure the well tag is entered correctly (only enter the numeric portion of the tag number). The audit number will then be changed from "**incomplete**" to an assigned audit number. The signature field will then be available. Click on "signature" to enter the well technician's electronic signature. For instructions on how to create an electronic signature, please visit the Adobe Digital IDs website using the following link: <u>https://helpx.adobe.com/acrobat/using/digital-ids.html</u>

Notice of Collection of Personal Information

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's well record database and made publicly available. Questions about this collection should be directed to the Water Well Customer Service Representative at the Wells Help Desk, 125 Resources Road, Toronto Ontario M9P 3V6, at 1-888-396-9355 or wellshelpdesk@ontario.ca.

Fields marked with an asterisk (*) are mandatory.

							Well Tag Nu	umber *
							A 377799	
Type *								
Construction	n [Abandonr	nent					
Measurement	recorde	d in: *						
Metric] Metric 📝 Imperial							
1. Well Own	er's Inf	formation						
Last Name and	First Na	ime, or Orga	nization is r	mandatory. *				
Last Name					First Na	ame		
Organization Hillstreet Developments Ltd					Email A	Address		
Current Addre	SS							
Unit Number	Stre 524	eet Number <mark>4</mark>		Name * oank Rd			City/Town/Village Pickering	
Country Canada				Province Ontario			Postal Code L1W 2N5	Telephone Number
2. Well Loca	tion							
Address of We	ell Locat	ion						
Unit Number	Street N 5868	Number *	Street Nan County R				Township Hope	
Lot 27			Concessio 5	n			rict/Municipality /IBERLAND	
City/Town Osaca						Province Ontario		Postal Code
UTM Coordinat	es Zon	e * Easting	* <u>N</u>	orthing *		·	Municipal Plan and	I Sublot Number
NAD 83	17	70558	2 4	875640	Test	JTM in Map		
Other							•	

3. Overburden and Bedrock Material *							
Well Depth *	33	(ft)					
General Colour	Most Common Material	Other Materials	General Description	Depth From	Depth To		

				(ft)	(ft)
Brown	Sand		Loose	0	18
Grey	Clay	Stones	Soft	18	25
Brown	Medium Sand		Loose	25	33

4. Annular Space *							
Depth From	Depth To	Type of Sealant Used (Material and Type)	Volume Placed				
(ft)	(ft)		(cubic feet)				
0	20	Bentonite Chips	7.0				
0	20	Bentonite Slurry	3.21				

5. Method of Constr	5. Method of Construction *								
Cable Tool	🖌 Cable Tool 🔄 Rotary (Conventional) 🔄 Rotary (Reverse) 🔄 Boring 🔄 Air percussion 🗌 Diamond								
Jetting D	Jetting Driving Digging Rotary (Air) Augering Direct Push								
Other (specify)									
6. Well Use *									
Public	Industrial	Cooling & Air Cor	nditioning						
✓ Domestic	Commercial	Not Used							
Livestock	Municipal	Monitoring							
Irrigation	─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─								
Other (specify)									
7. Status of Well *									
Vater Supply	Replaceme	ent Well	Test Hole						
Recharge Well	Dewatering	g Well	Observation and/or Mon	itoring Hole					
Alteration (Construct	tion) 🗌 Abandoned	d, Insufficient Supply	Abandoned, Poor Water	Quality					
Abandoned, other (s	specify)								
Other (specify)									
8. Construction Rec	ord - Casing * (use	e negative number(s) to i	indicate depth above grour	id surface)					
Inside Diameter	•	al (Galvanized, Fibreglas , Plastic, Steel)	ss, Wall Thickness	Depth From	Depth To				
(in)			THICKIESS	(ft)	(ft)				

Steel

Steel

6.25

5.25

29

29

-2

26

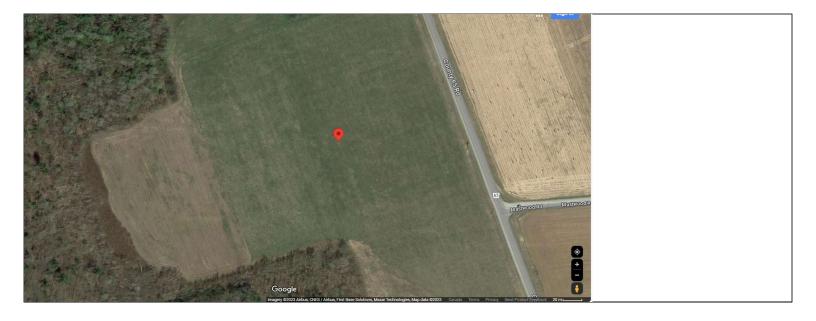
0.188

0.188

9. Construction Record - Screen											
Outside Diameter (in)	Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)							
5.5	Stainless Steel	14	29	33							

10. Water Details		

Water found at Depth 33	(ft) 🗌 Gas	Kind of water D Fresh	✓ Untested Oth	er

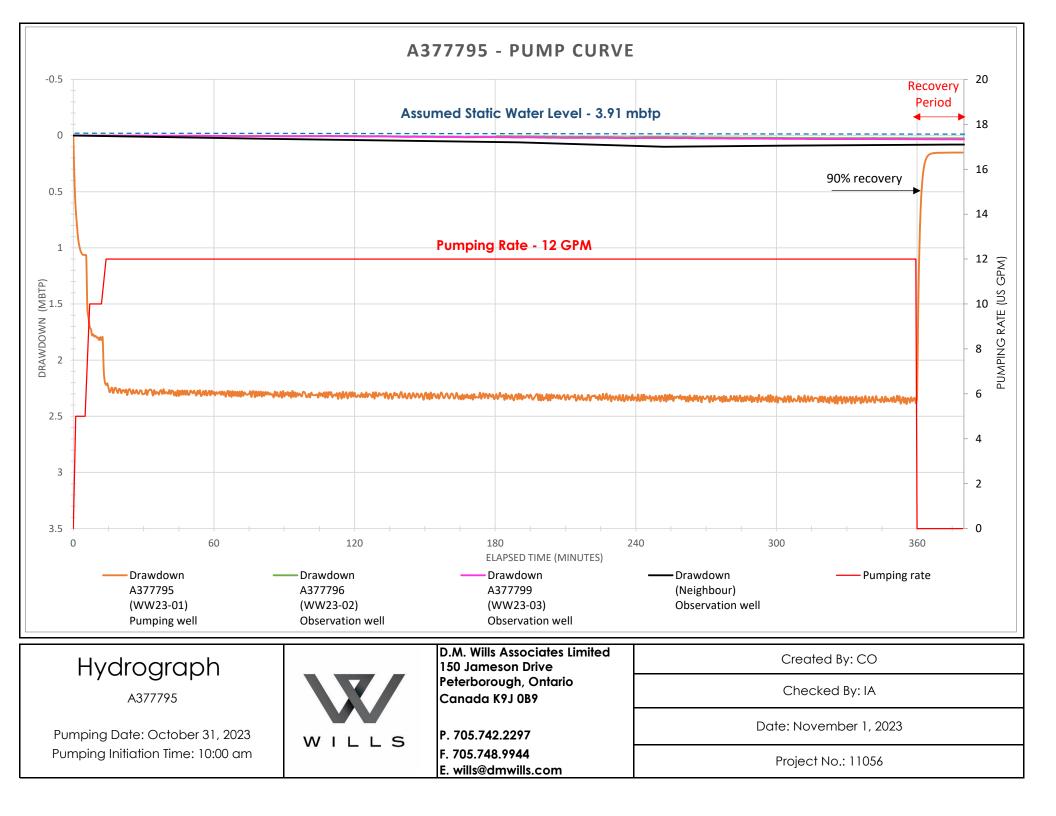

11. Hole Diameter											
Depth From	Depth To	Diameter									
(ft)	(ft)	(in)									
0	20	8.75									
20	33	6.58									

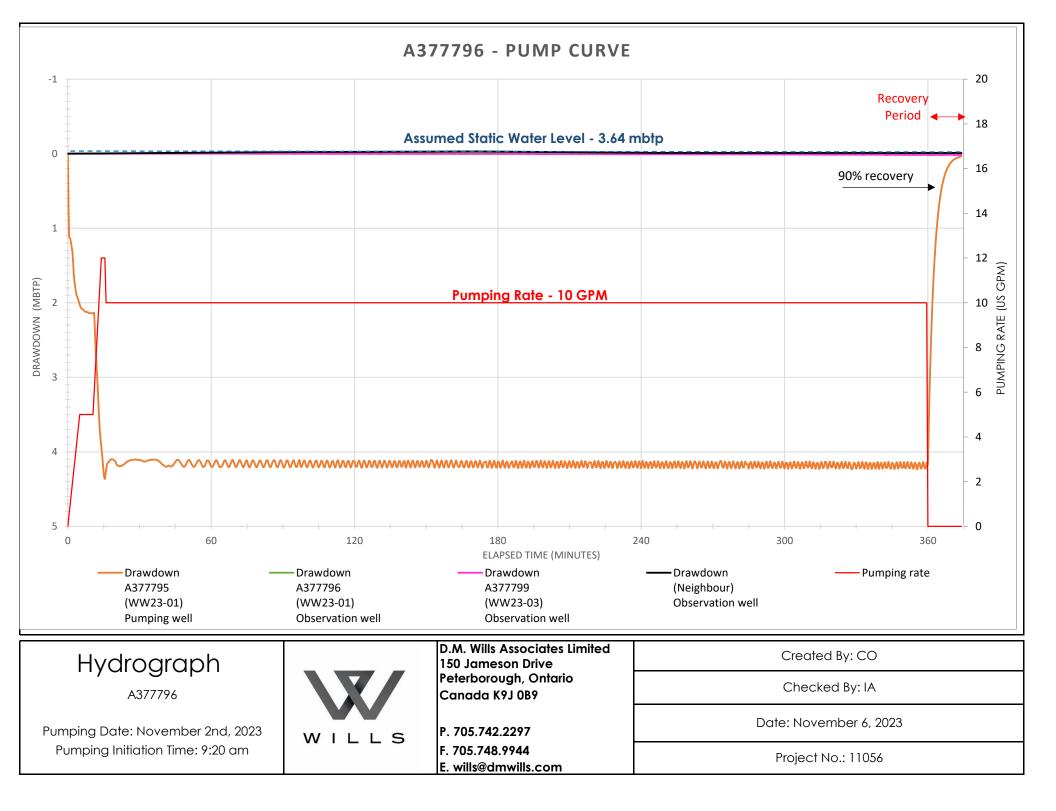
12. Results of Well Yield Testing															
Pumping Discontinued															
Explain															
If flowing give rate															
Flowing	Flowing (GPM)														
Draw down															
Time (min)	Statio Leve	1 1	2	3	4	4 5		10	15	20	25	30	40	50	60
Water Level (ft)	9.5	13.5	5 14.3	14.8	15.1	1	15.2 15.7		15.7	15.7	15.7	15.7	15.7	15.7	15.7
Recovery															
Time (min)		1	2	3	4	5		10	15	20	25	30	40	50	60
Water Level (ft)		11.6	10.5	9.7	9.5	9.5	5	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
After test of wel	l yield, '	water wa	S	II	I				I	1	1			I	
Clear and sand free Other (specify)															
Pump intake se	t at Pu	imping ra	ite	Duration of pumping					Final water level end of pumping Disinfected? *				? *		
31	(ft) 10		(GPM)	1	hrs +	+ 00		min	15.3	(ft) 🚺 Yes 🛄 N] No			
Recommended pump depth Recomm				mended pump rate Well produc				ction				•			
31 (ft) 10			10	(GPM) 10				(GPM)							
13. Map of Well Location *															

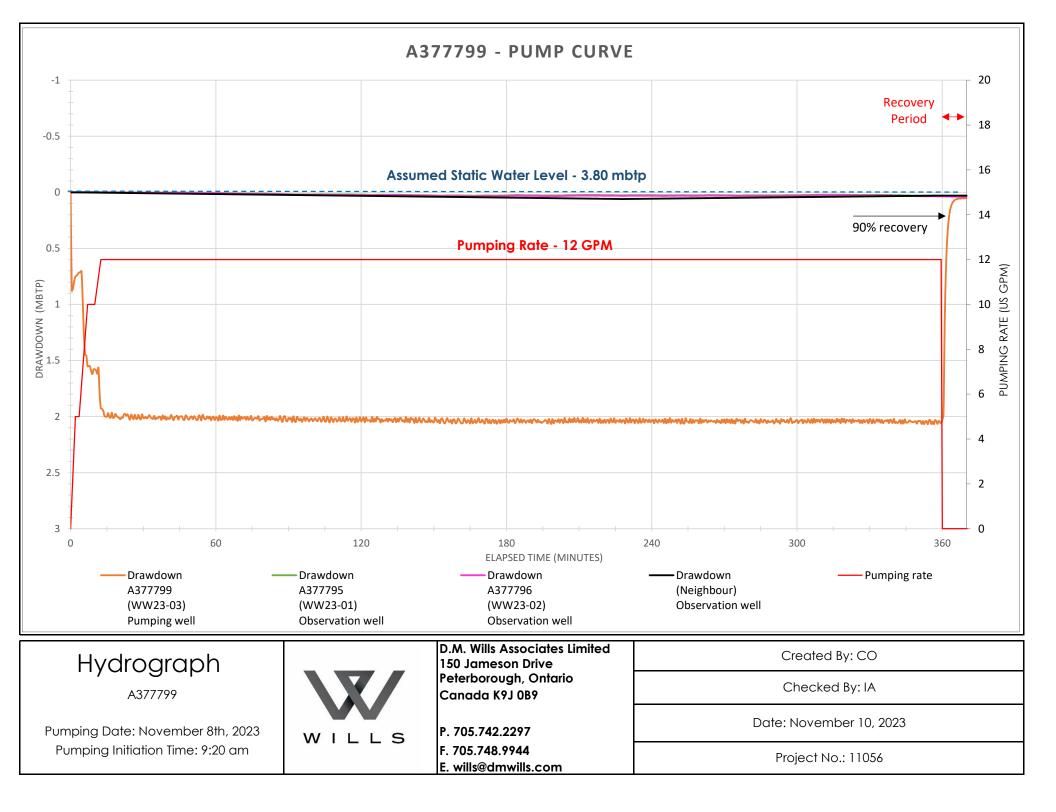
Map 1. Please Click the map area below to import an image file to use as the map.

o. 🗌 Mał

Make map area bigger




14. Information	on							
Well owner's in ✓ Yes No	formation packa	ge delive	ered	Date Package Delivered (y 2023/10/03	yyy/r		Date Work Com 2023/10/06	npleted (yyyy/mm/dd) *
K-packer and	ides @ 6' & 16 leader pipe ab se with pressure	ove scre	een					
15. Well Cont	tractor and We	ell Tech	nnician	Information				
Business Name Herb Lang We	e of Well Contracell Drilling Ltd.	tor *				Well Cor 7560	ntractor's Licens	se Number *
Business Add	ress					•		
Unit Number	Street Number 4852		eet Name ghway 7					
City/Town/Villag	ge *				Prov ON	/ince		Postal Code * K0L 2W0
Business Telep 705-799-7088				Address gmail.com				
Last Name of V Foster	Vell Technician *	·		First Name of Well Technic Nick	ian *		Well Technici 3920	an's License Number *
16. Declaration	on *							
✓ I hereby cor and accurat		e persor	n who co	nstructed the well and I here	eby c	onfirm tha	at the information	on on the form is correct
Last Name Foster			First Na Nick	ame		Email Ad hlwelldri	ldress illing@gmail.c	om
Signature						Date Sub	omitted (yyyy/m	ım/dd)
Nick Fo	ster	J		v signed by Nick Foster 023.10.23 21:57:46 -04'00'			2023/	10/23
17. Ministry l	Jse Only							
Audit Number								
3H6V X9ZB								


Appendix G

Pumping Test Hydrographs

Appendix H

Certificates of Analysis – Groundwater – Water Supply

CA19813-OCT23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA19813-OCT23
Project	11056	Received	10/31/2023
Order Number		Approved	11/07/2023
Samples	Ground Water (2)	Report Number	CA19813-OCT23 R1
		Date Reported	11/07/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 037594

Phenol Spk low due to sample matrix

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			;	Sample Number	7	8
				Sample Name	11056 Well	11056 Well
				-	A377795_1 hr	A377795_6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking	g Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
.2 = ODWS_MAC / WATER / Table 1,2 and 3 - Dri	rinking Water - Reg O.169_03			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%Т				94.3	93.4
Alkalinity	mg/L as CaCO3	2	500		221	213
Bicarbonate	mg/L as CaCO3	2			221	213
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		< 3	3
Conductivity	uS/cm	2			480	479
Total Suspended Solids	mg/L	2			< 2	< 2
Turbidity	NTU	0.10	5	1	1.9	3.1
Organic Nitrogen	mg/L	0.05	0.15		0.76	0.50
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			0.77	0.51
Ammonia+Ammonium (N)	as N mg/L	0.04			< 0.04	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			c	Sample Number	7	8
MATRIX: WATER				•		
				Sample Name	11056 Well A377795_1 hr	11056 Well A377795 6 hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water -	- Reg O 169, 03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	-			Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
Netals and Inorganics						
Fluoride	mg/L	0.06		1.5	< 0.06	< 0.06
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	5.16	6.21
Sulphate	mg/L	2	500		11	13
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		244	239
Aluminum (total)	mg/L	0.001	0.1		0.007	0.003
Arsenic (total)	mg/L	0.0002		0.01	< 0.0002	< 0.0002
Boron (total)	mg/L	0.002		5	0.010	0.012
Barium (total)	mg/L	0.00008		1	0.00821	0.00903
Beryllium (total)		0.000007			< 0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)					0.000135	0.000073
Calcium (total)	mg/L	0.01			90.8	88.8
Cadmium (total)		0.000003		0.005	< 0.000003	< 0.000003
Copper (total)	mg/L	0.0002	1	0.000	0.0021	0.0019
Chromium (total)	mg/L	0.0002	1	0.05	0.00029	0.00027
Iron (total)	mg/L	0.000	0.3	0.00	0.124	0.032
. ,			0.3			0.469
Potassium (total)	mg/L	0.009			0.442	
Magnesium (total)	mg/L	0.001			4.06	4.16

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

				Sample Number	7	0
MATRIX: WATER			:	•		8
				Sample Name	11056 Well A377795_1 hr	11056 Well A377795 6 hr
	han Dan 0 400 00			Sample Matrix	Ground Water	Ground Water
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wai L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinkin	-			Sample Date	31/10/2023	31/10/2023
Parameter	Ig Water - Reg 0.169_03	RL	L1	L2	Result	Result
Metals and Inorganics (continued)	Childs				Nooun	1 (Boun
Manganese (total)		0.00001	0.05		0.00666	0.00284
			0.05			
Molybdenum (total)	mg/L	0.00004			0.00036	0.00059
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	2.63	2.56
Phosphorus (total)	mg/L	0.003			< 0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	< 0.00009	< 0.00009
Silicon (total)	mg/L	0.02			3.69	3.66
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.155	0.155
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00011	0.00021
Titanium (total)	mg/L	0.00007			0.00026	0.00010
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00004	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000264	0.000281
Vanadium (total)	mg/L	0.00001			0.00023	0.00020
Zinc (total)	mg/L	0.002	5		0.003	0.002
Cation sum	meq/L	-9999			5.00	4.90
Anion Sum	meq/L	-9999			5.00	4.88
Anion-Cation Balance	% difference	-9999			0.06	0.24
Ion Ratio	none	-9999			1.00	1.00

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

				Sample Number	7	8
MATRIX: WATER			·	•	, 11056 Well	0 11056 Well
				Sample Name	A377795_1 hr	A377795 6 hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	- Reg O 169 03			Sample Matrix	Ground Water	Ground Water
L1 = ODWS_AO_OG / WATER / Table 4 - Diriking Water L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking V				Sample Date	31/10/2023	31/10/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Total Dissolved Solids (calculated)	mg/L	-9999			257	252
Conductivity (calculated)	uS/cm	-9999			500	489
Langeliers Index 4° C	@ 4° C	-9999			0.14	0.09
Saturation pH 4°C	pHs @ 4°C	-9999			7.65	7.67
Microbiology						
Total Coliform	cfu/100mL	0		0	0	1
E. Coli	cfu/100mL	0		0	0	0
Heterotrophic Plate Count (HPC)	cfu/1mL	0			740	117
Other (ORP)						
рН	No unit	0.05	8.5		7.79	7.76
Chloride	mg/L	1	250		9	9
Mercury (total)	mg/L	0.00001			< 0.00001	< 0.00001
Phenols						
4AAP-Phenolics	mg/L	0.002			< 0.002	< 0.002

EXCEEDANCE SUMMARY

Parameter	Method	Units	Result	ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg O.169_03 L1	ODWS_MAC / WATER / Tabl 1,2 and 3 - Drinking Water - Reg 0.169_03 L2
56 Well A377795_1 hr					
Organic Nitrogen		mg/L	0.76	0.15	
Turbidity	SM 2130	NTU	1.9		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	244	100	

11056 Well A377795_6 hr

Organic Nitrogen		mg/L	0.50	0.15	
Total Coliform	OMOE	cfu/100mL	1		0
	MICROMFDC-E3407A				
Turbidity	SM 2130	NTU	3.1		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	239	100	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0113-NOV23	mg/L as CaCO3	2	< 2	1	20	96	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Ammonia+Ammonium (N)	SKA0040-NOV23	mg/L	0.04	<0.04	ND	10	100	90	110	93	75	125	

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LC		S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovei (۹	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5006-NOV23	mg/L	1	<1	11	20	104	80	120	106	75	125
Sulphate	DIO5006-NOV23	mg/L	2	<2	ND	20	102	80	120	105	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD AC (%)	Spike	Recove	ry Limits 6)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bromide	DIO0147-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	99	75	125
Nitrite (as N)	DIO0147-NOV23	mg/L	0.03	<0.03	19	20	100	90	110	103	75	125
Nitrate (as N)	DIO0147-NOV23	mg/L	0.06	<0.06	0	20	99	90	110	84	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch Reference	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	f.
Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125
Total Organic Carbon	SKA0038-NOV23	mg/L	1	<1	1	20	97	90	110	95	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	-	olicate	LC	S/Spike Blank		Ma	atrix Spike / Rei	F.	
	Reference			Blank	RPD	AC	Spike	Recover (۹	-	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Carbonate	EWL0113-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0113-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0113-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0037-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0113-NOV23	uS/cm	2	< 2	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0035-NOV23	mg/L	0.06	<0.06	ND	10	97	90	110	98	75	125
Fluoride	EWL0090-NOV23	mg/L	0.06	<0.06	0	10	96	90	110	96	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ret	:
	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0005-NOV23	mg/L	0.00001	< 0.00001	13	20	101	80	120	100	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	y Limits 6)	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0028-NOV23	mg/L	0.00005	<0.00005	ND	20	102	90	110	73	70	130
Aluminum (total)	EMS0028-NOV23	mg/L	0.001	<0.001	9	20	100	90	110	90	70	130
Arsenic (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	6	20	97	90	110	100	70	130
Barium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	2	20	97	90	110	96	70	130
Beryllium (total)	EMS0028-NOV23	mg/L	0.000007	<0.000007	ND	20	98	90	110	97	70	130
Boron (total)	EMS0028-NOV23	mg/L	0.002	<0.002	5	20	107	90	110	95	70	130
Bismuth (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	ND	20	91	90	110	97	70	130
Calcium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	2	20	102	90	110	100	70	130
Cadmium (total)	EMS0028-NOV23	mg/L	0.000003	<0.000003	2	20	100	90	110	106	70	130
Cobalt (total)	EMS0028-NOV23	mg/L	0.000004	<0.000004	7	20	101	90	110	99	70	130
Chromium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	15	20	101	90	110	85	70	130
Copper (total)	EMS0028-NOV23	mg/L	0.0002	<0.0002	3	20	98	90	110	81	70	130
Iron (total)	EMS0028-NOV23	mg/L	0.007	<0.007	4	20	97	90	110	100	70	130
Potassium (total)	EMS0028-NOV23	mg/L	0.009	<0.009	4	20	101	90	110	99	70	130
Magnesium (total)	EMS0028-NOV23	mg/L	0.001	<0.001	5	20	99	90	110	98	70	130
Manganese (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	3	20	98	90	110	97	70	130
Molybdenum (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	1	20	106	90	110	107	70	130
Sodium (total)	EMS0028-NOV23	mg/L	0.01	<0.01	4	20	97	90	110	95	70	130
Nickel (total)	EMS0028-NOV23	mg/L	0.0001	<0.0001	1	20	100	90	110	98	70	130
Lead (total)	EMS0028-NOV23	mg/L	0.00009	<0.00009	ND	20	99	90	110	76	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery	Recover (%	•
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0028-NOV23	mg/L	0.003	<0.003	3	20	100	90	110	NV	70	130
Antimony (total)	EMS0028-NOV23	mg/L	0.0009	<0.0009	ND	20	109	90	110	106	70	130
Selenium (total)	EMS0028-NOV23	mg/L	0.00004	<0.00004	ND	20	98	90	110	99	70	130
Silicon (total)	EMS0028-NOV23	mg/L	0.02	<0.02	4	20	105	90	110	NV	70	130
Tin (total)	EMS0028-NOV23	mg/L	0.00006	<0.00006	3	20	106	90	110	NV	70	130
Strontium (total)	EMS0028-NOV23	mg/L	0.00008	<0.00008	4	20	101	90	110	100	70	130
Titanium (total)	EMS0028-NOV23	mg/L	0.00007	<0.00005	9	20	108	90	110	NV	70	130
Thallium (total)	EMS0028-NOV23	mg/L	0.000005	<0.000005	7	20	96	90	110	99	70	130
Uranium (total)	EMS0028-NOV23	mg/L	0.000002	<0.000002	1	20	99	90	110	102	70	130
Vanadium (total)	EMS0028-NOV23	mg/L	0.00001	<0.00001	8	20	97	90	110	96	70	130
Zinc (total)	EMS0028-NOV23	mg/L	0.002	<0.002	3	20	103	90	110	123	70	130

Microbiology

Method: OMOE MICROMFDC-E3407A | Internal ref.: ME-CA-IENVIMIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref	:
	Reference			Blank	RPD AC (%)	Spike	Recove (%	ry Limits 6)	Spike Recovery	Recove	ry Limits 6)	
						Recovery (%)	Low	High	(%)	Low	High	
E. Coli	BAC9011-NOV23	cfu/100mL	-	ACCEPTED								
Heterotrophic Plate Count (HPC)	BAC9011-NOV23	cfu/1mL	-	ACCEPTED	D ACCEPTE							
Total Coliform	BAC9011-NOV23	cfu/100mL	-	ACCEPTED	D ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0113-NOV23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ret	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0023-NOV23	mg/L	0.002	<0.002	ND	10	100	80	120	60	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0030-NOV23	mg/L	0.02	<0.02	ND	20	94	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0120-NOV23	mg/L	2	< 2	5	10	95	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0045-NOV23	mg/L	0.05	<0.05	5	10	101	90	110	89	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0027-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

SGS		Industri	
	Contraction of the second s	SGS	

Request for Laboratory Services and CHAIN OF CUSTODY

	- London; 657 Consortium Court, London, ON, NGE 258 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	um Court, Lo	ndon, ON, N	IGE 2S8 Phon	a: 519-672-4	00 Toll Free	: 877-848-	8060 Fax:	519-672-(361					and the		-	Page of
Date Descrit Log All Time Tot (mondy Saul Present: Yes No Time Tot (mondy Saul Present: Yes No REPORT MINICIA DIVIN (mondy Saul Present: Yes No ORALE SOLVIN (mondy Saul Present: Yes No FEQ2 SARPEL (Mondy Mill) No Solvin FEQ3 SARPEL (Mondy Mill) No Solvin Respect All (Mondy Mill) (Mondy Mill) Solvin Solvin Respect All (Mondy Mill) (Mondy Mill) Solvin Solvin Respect All (Mondy Mill) (Mondy Mill) Solvin Solvin Respect All (Mondy Mill) (Mondy Mill) (Mondy Mill) Solvin Re		Ğ	reived By (e	tionatura).	Labo	atory Infe	rmation	Section	- Lab us	e only									
TION INVOICE INFORMATION OUT INformation) INVOICE INFORMATION OUT INTO THE Phone. INVOICE INFORMATIONS IN TREGULATIONS IN TREATS INTERVIEND IN TREATS IN TREATS INTERVIEND IN TREATS IN TREATS IN TREATS IN TREATS IN TREATS IN TREATS INTERVIEND IN TREATS INTERVIEND IN TREATS INTERVIEND IN TREATS INTERVIENT INTERVIENT INTERVIENT INTERVIENT INTERVIENT INTERVIENT INTERV	and (hr:n		stody Seal I	Present: Ye ptact: Ye	2 2 2 2		Cooling A Temperal	gent Prese ure Upon F	nt: Yes Receipt (°C	2 M		.ec:				4	AB LIMS #	CQ	19813-
W. M. MULL5 Company. Free	REPORT INFORMATION	OVNI	ICE INFOR	MATION															0642
Rate Solution Company. 1 State Solution Company. 1 State Solution Contact. 1 Contact. Contact. Contact. 1 Contact. Address. Rt 1 Phone. Email: Occound 5 (2d) Wuil [5. Com Solution 1 Phone. Email: Occound 5 (2d) Wuil [5. Com Solution 1 Phone. Email: Occound 5 (2d) Wuil [5. Com Solution 1 Phone. Enserted Solution Solution Solution 1 Phone. Enserted Solution Solution Solution 1 Phone. Enserted Other Phone. Phone. 1 Phone. Enserted Solution Solution Solution 1 Phone. Enserted Phone. Phone. Phone. 1 Phone. Phone. Phone. Phone. Phone. 1 Phone. Phone. Phone. Phone. Phone. 1 Phone. Phone. Phone. Phone. 1 Phone. Phone. Phone. Phone. 1 Phone. <td>88</td> <td>K (same as Repo</td> <td>ort Informat</td> <td>ion)</td> <td></td> <td>Quotation</td> <td>#:</td> <td></td> <td></td> <td>And a state of the</td> <td></td> <td>-31</td> <td></td> <td>P.O.</td> <td>#:</td> <td>110</td> <td>20</td> <td></td> <td></td>	88	K (same as Repo	ort Informat	ion)		Quotation	#:			And a state of the		-31		P.O.	#:	110	20		
*. ISO JAIMESON DRUK Contact. 7:05 - BL& - IGA1 Address. 7:05 - BL& - IGA1 Phone. 7:05 - BL& - IGA1 Other Regulations: 8:01 Totature: Phone. 8:01 Totature: Phone. 8:01 Totature: Phone. 9:01 Totature: Phone. 9:01 Totature: Phone. 9:01 Totature: Phone. 9:01 Totature: Phone. 10:01 Totature: Phone. 10:05 EWEII A 377795 Lohn Phone. 10:05 EWEII A 377755 Phone. Phone. 10:05 EWEII A 37775 Phone. 10:05 EWEII A 37775 Phone. 10:05 EWEIII A 37775 P		Company:				Project #:	1	56				-21		Site	-ocation/l	ö			
ETERE Surveyert I. ON Address: Ru Phone: Phone: <td< td=""><td>SO JAMESON</td><td>Contact:</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>TUR</td><td>INAROU</td><td>ND TIME</td><td>E (TAT) R</td><td>EQUIRED</td><td></td><td></td><td></td><td></td></td<>	SO JAMESON	Contact:					-				TUR	INAROU	ND TIME	E (TAT) R	EQUIRED				
705-865-1691 Phone: Phone: Phone: Phone: Regulations: Email: OCCOUN 15 @ C(MWH) 5. Com Sever By Law: PL Regulations: Email: OCCOUN 15 @ C(MWH) 5. Com Sever By Law: PL Regulations: Indicom Correstions Sever By Law: PL Regulations: Indicom Correstions Sever By Law: PL Restrict and Com Correstions Pryoo MMRR MMRR PL Restrict and Com Correstions Pryoo MMRR MMRR Seminary PL Rescond of site conditions Seminary Proco MMRR MMRR Seminary PL Rescond of site conditions SamPle Dentifications	TERBOROUGH .	Address:		Suff.		Þ	Regular TA	T (5-7da)	s)					TAT's ai Samples	e quoted ir	business fter 6pm o	days (exclu r on weeke	ide statutor nds: TAT b	y holidays & weekends) egins next business day
Phone: Phone: II: Cholivin@d/nwillb: Corv Email: OCCOUNTS @d/nuill5. Corv Sewer By-Law: Real: OCCOUNTS @d/nuill5. Corv Email: OCCOUNTS @d/nuill5. Corv Sewer By-Law: Rabe 1 ReasPark Sail Texture: Brag 347568 (3 bay min TAT) Sewer By-Law: Rabe 3 Indicem Corres Provo MMRR Rabe 3 Indicem Corres Provo MMRR Rabe 3 Indicem MediumFine Provo Sewer By-Law: Rabe 3 Indicem MediumFine Provo Provo Sewer By-Law: Rabe 3 Indicem MediumFine Provo Provo Semin TAT) Rabe 3 Indicem MediumFine Provo Provo Semin TAT) Rab 1 Sample IDENTIFICATION Sample EDENTIFICATION Sample EDENTIFICATION Sample EDENTIFICATION RECORD OF SITE CONDITION (RSC) YES NO NO NO RECORD OF SITE CONDITION (RSC) YES NO NO RECORD OF SITE DENTIFICATION BATE Sample EDENTIFICATION Sample EDENTIFICATION Record MULT 1 10056 Wull 1 13373795 G/N N 110056 Wull 1 10056 MULT 1 1337733 G/N	Phone: 705 - 868 - 1691						r (Addition	al Charg	es May /	(ypply):]1 Day	2 Da	lys 3	Days	4 Days			
Email: OCCOUN 15 (2010) Sever By-Law: 19 Other Regulations: Sever By-Law: 19 Other Regulations: Sever By-Law: 10 PW000 MMER 11 COM 175 (2010) 12 Other Regulations: 13 Other Regulations: 14 Date 15 Model 16 MSA 17 Batte 17 Anticipality:	1	Phone:	-	1.1			ONFIRM	KUSH FE	ASIBILIT	HIIM A	SGS KE	DRINKIN	IG (POTA	BLE) WAT	ER SAMPI	ES FOR F	IUMAN CC	NSUMPTIC	ON MUST BE SUBMITT
Time Time Sever By-Law: 19 Other Regulations: Sever By-Law: 10 Other Regulations: Sever By-Law: 11 PW000 MMER 11 CCME Other: 11 MSA Storm 12 CCME Other: 13 MSA No 13 V3 No 13 No No 13 No No 13 No No 14 No No 15 GW No 13 No No 14 No 15 GW 16 No 13 No 13 No 14 No 15 No 15 No	Email: 7 Dolvin @ dwwill5. com	Email: OCCOUN	15 @C	(MW) 15	COM.	Specify Du	e Date:							WITH SGS	DRINKING	WATER	CHAIN OF	CUSTODY	
406/19 Other Regulations: Sewer By-Law: dum/fine Reg 347/558 (3 bay min TAT) Stanitary arse CCME OMER dum/fine CCME Other: Minicipality: Municipality: Minicipality: Municipality: Miss Miss Miss Municipality: Miss Municipality: Miss Municipality: Miss Miss	REGL	ULATIONS								ANA	LYSIS	S REC	UES.	LED					
ture: Reg 347558 (3 bay min TAT) arse arse PW000 MMER diumFine Cone Other: Municipality: Senitary m3 Municipality: Municipality: Senitary m3 Municipality: Senitary Municipality: Senitary Mun		Other Regulatio	ns:	Sewe	er By-Law:	4		SV			4C	VOC	Pest	ot	her (pleas	e specify)	SPL	P TCLP	
arse Environ MMER Municipality: diumFine Code Other: Municipality	Res/Park	Rea 347/558 (3	Dav min TA		Sanitary														
MIN CONVISION Not Reportable "See note ON (RSC) TYES INO BATE SAMPLED SAMPLED BOTTLES MATRIX SAMPLED SAMPLED BOTTLES MATRIX C-L hr Oct 31/23 11:00 PM 13 G/W N C-L hr Oct 31/23 11:00 PM 13 G/W	Agri/Other Agri/Other	PWao CCME MISA	Other:	A State	Storm icipality:	(iios-	IViC	incidiadia									test L		
DATE TIME # OF MATRIX EDATE SAMPLED BOTTLES MATRIX EDATE SAMPLED BOTTLES MATRIX EDATE Detailed A Contraction 13 GW A CONTRACTI	Soil Volume <a>Soin3 >350m3 RECORD OF SITE CONDITION (RSC)		oortable *See	e note		soins) '6H (Vino (f6	nZ,V,U,		· –			other					0	COMMENTS
DATE DATE TIME # OF MATRIX SAMPLED SAMPLED BOTTLES MATRIX CL INC Oct 31/23 1:00 AM 13 GW A A C 21/23 1:00 PM 13 GW A A C 21/23 1:00 PM 13 GW A A C 21/23 1:00 PM 13 GW A A A C 21/23 1:00 PM 13 GW A A A A A A A A A A A A A A A A A A	•					org	ins-S	.IT.9A.	-				oecity				Exter	2	
11056 Well A37775-1hc 0cr 31/25 11:00PM 13 GW N 11056 Well A377795-6hc 0cr 31/23 1:00PM 13 GW N 11056 Well A377795-6hc 0cr 31/23 1:00PM 13 GW N 11056 Well A377795-6hc 0cr 31/23 1:00PM 13 GW N	SAMPLE IDENTIFICATION		the second s	# OF BOTTLES	MATRIX	Metals & In	Full Metals Plus B(HW WH)B suld slate m 901	Cr,Co,Cu,Pb,Mo,Ni,Se			No BTEX	X3T8 Ioni Ils				Specify pkg:			
-6hr Ocr 21/23 4:00PM 13 GW N -6hr Ocr 21/23 4:00PM 13 GW N -6hr Ocr 21/23 4:00PM 13 GW N -6hr Ocr 21/23 4:00PM 13 GW N	2977966	1099	M400.	13	GW	Z						3-4 3-4		1			\times	*	
ATC Signature:	11056Well A377795-	1.	Wdoo:	13	GW	Z	1993										X		
ATC Signature:																			
ATC Signature:	4																_		
ATC Signature:	5													1. Sec. 1.			_		
ALL Signature:	9																		
ALL Signature:	4														10				
ALC Signature:	2						2.000 9.00 1												
ALC Signature:	G				18														
ALC Signature:	10			10															
TLC Signature:	11																		
ALC Signature:	12													5					
HAG 0511C Signature: UMin	Observations/Comments/Special Instructions		APA		0.0	<													
O.D.C. ALT.P.			1	Signature:	() Ann	2	13			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1000	Date:	-	121	SK.	(mr	(v/bb/n	No Par	Pink Copy - Client
		「「「「「「」」	1	·	N	-	100		10 Mar 1	1			4	- 0	20			2000	

CA14079-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14079-NOV23
Project	11056	Received	11/02/2023
Order Number		Approved	11/09/2023
Samples	Ground Water (2)	Report Number	CA14079-NOV23 R1
		Date Reported	11/09/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 6 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 011390

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-7
Exceedance Summary	8
QC Summary	9-19
Legend	20
Annexes	21

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			٤	Sample Number	7	8
				Sample Name	11056WellA3777	
				O annula Matthe	96_1hr	96_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking W	-			Sample Matrix Sample Date		Ground Water 02/11/2023
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drink Parameter	nking Water - Reg O.169_03	RL	L1	L2	Result	Result
General Chemistry	Unite	RL.	L 1	L£	Result	Result
UV Transmittance	%Т			ī	92.4	91.8
Alkalinity	mg/L as CaCO3	2	500		225	224
Bicarbonate	mg/L as CaCO3	2			225	224
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		5	4
Conductivity	uS/cm	2			454	461
Total Suspended Solids	mg/L	2			3	3
Turbidity	NTU	0.10	5	1	6.9	2.4
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			< 0.05	< 0.05
Ammonia+Ammonium (N)	as N mg/L	0.04			0.05	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			:	Sample Number	7	8
				Sample Name	11056WellA3777	11056WellA3777
					96_1hr	96_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Wat	ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking	ng Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Fluoride	mg/L	0.06		1.5	< 0.06	< 0.06
Bromide	mg/L	0.3			< 0.3	< 0.3
Nitrite (as N)	as N mg/L	0.03		1	< 0.03	< 0.03
Nitrate (as N)	as N mg/L	0.06		10	0.09	0.12
Sulphate	mg/L	2	500		23	21
Sulphide	mg/L	0.02			< 0.02	< 0.02
Hardness	mg/L as CaCO3	0.05	100		260	256
Aluminum (total)	mg/L	0.001	0.1		0.012	0.003
Arsenic (total)	mg/L	0.0002		0.01	0.0002	< 0.0002
Boron (total)	mg/L	0.002		5	0.010	0.008
Barium (total)	mg/L	0.00008		1	0.0285	0.0313
Beryllium (total)	mg/L	0.000007			0.000007	< 0.000007
Bismuth (total)	mg/L	0.00001			< 0.00001	< 0.00001
Cobalt (total)	mg/L	0.000004			0.000113	0.000043
Calcium (total)	mg/L	0.01			96.2	94.7
Cadmium (total)	mg/L	0.000003		0.005	0.000003	< 0.000003
Copper (total)	mg/L	0.0002	1		0.0006	0.0007
Chromium (total)	mg/L	0.00008		0.05	0.00021	0.00015
Iron (total)	mg/L	0.007	0.3		0.804	0.371
Potassium (total)	mg/L	0.009			0.377	0.365
Magnesium (total)	mg/L	0.001			4.83	4.72

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			s	ample Number	7	8
······································				Sample Name	11056WellA3777	11056WellA3777
				•	96_1hr	96_6hr
L1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water	r - Reg O.169_03			Sample Matrix	Ground Water	Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking V	Water - Reg O.169_03			Sample Date	02/11/2023	02/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Manganese (total)	mg/L	0.00001	0.05		0.0199	0.0134
Molybdenum (total)	mg/L	0.00004			0.00024	0.00019
Nickel (total)	mg/L	0.0001			0.0006	0.0004
Sodium (total)	mg/L	0.01	200	20	2.37	2.24
Phosphorus (total)	mg/L	0.003			0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	< 0.00009	< 0.00009
Silicon (total)	mg/L	0.02			4.76	4.72
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.168	0.165
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			0.00007	< 0.00006
Titanium (total)	mg/L	0.00007			0.00049	0.00011
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00013	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000176	0.000202
Vanadium (total)	mg/L	0.00001			0.00015	0.00016
Zinc (total)	mg/L	0.002	5		< 0.002	< 0.002
Cation sum	meq/L	-9999			5.36	5.25
Anion Sum	meq/L	-9999			5.16	5.09
Anion-Cation Balance	% difference	-9999			1.99	1.55
Ion Ratio	none	-9999			1.04	1.03

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

		:	Sample Number	7	8
			Sample Name	11056WellA3777	11056WellA3777
				96_1hr	96_6hr
Reg O.169_03			Sample Matrix	Ground Water	Ground Water
ter - Reg 0.169_03			Sample Date	02/11/2023	02/11/2023
Units	RL	L1	L2	Result	Result
mg/L	-9999			268	264
uS/cm	-9999			526	517
@ 4° C	-9999			0.38	0.32
pHs @ 4°C	-9999			7.61	7.62
cfu/100mL	0		0	0	0
cfu/100mL	0		0	0	0
cfu/1mL	0			130	36
No unit	0.05	8.5		7.99	7.94
mg/L	1	250		6	6
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.002		T	< 0.002	< 0.002
	er - Reg 0.169_03 Units Mg/L US/cm @ 4° C pHs @ 4°C cfu/100mL cfu/100mL cfu/100mL No unit Mo unit mg/L mg/L	L Units RL mg/L -9999 uS/cm -9999 @ 4° C -9999 @ 4° C -9999 pHs @ 4°C -9999 cfu/100mL 0 cfu/100mL 0 cfu/100mL 0 mg/L 1 mg/L 0.00001	Image: Description of the second s	Ateg 0.169_03 Sample Matrix Sample Date units RL L1 L2 mg/L -9999	keg 0.169_03 Sample Matrix 96_1hr keg 0.169_03 Sample Matrix Ground Water er - Reg 0.169_03 Sample Date 02/11/2023 Units RL L1 L2 Result mg/L -9999 268 uS/cm -9999 526 @ 4° C -9999 526 @ 4° C -9999 7.61 pHs @ 4°C -9999 7.61 cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 130 No unit 0.05 8.5 7.99 mg/L 1 250 6 mg/L 0.00001 <00

EXCEEDANCE SUMMARY

				WATER / Table 4 - Drinking Water -	WATER / Ta 1,2 and 3 -
				Reg 0.169_03	Drinking Wate
					Reg 0.169_03
- '	Method	Units	Result	L1	L2
Parameter	Meuloa	Offite	Kosuk	L1	
Parameter 56WellA377796_1hr Turbidity	SM 2130	NTU	6.9	5	1
56WellA377796_1hr					

Turbidity	SM 2130	NTU	2.4		1
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	256	100	
Iron	SM 3030/EPA 200.8	mg/L	0.371	0.3	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	LCS/Spike Blank		M	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Alkalinity	EWL0114-NOV23	mg/L as CaCO3	2	< 2	1	20	102	80	120	NA			

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recovery Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Ammonia+Ammonium (N)	SKA0056-NOV23	mg/L	0.04	<0.04	ND	10	97	90	110	92	75	125	

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery	Recover (%	•	Spike Recovery		ery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High	
Chloride	DIO5010-NOV23	mg/L	1	<1	ND	20	104	80	120	107	75	125	
Sulphate	DIO5010-NOV23	mg/L	2	<2	13	20	102	80	120	105	75	125	

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)	Spike Recovery	Recove	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Bromide	DIO0191-NOV23	mg/L	0.3	<0.3	ND	20	103	90	110	93	75	125
Nitrite (as N)	DIO0191-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	103	75	125
Nitrate (as N)	DIO0191-NOV23	mg/L	0.06	<0.06	ND	20	101	90	110	105	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	(%)	•	Spike Recovery	Recover (%	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125
Total Organic Carbon	SKA0054-NOV23	mg/L	1	<1	2	20	95	90	110	98	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Ma	atrix Spike / Rei	F.
	Reference			Blank	RPD AC		AC Spike (%) Recovery	Recover (%	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Carbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0114-NOV23	mg/L as CaCO3	2	< 2	1	10	NA	90	110	NA		
ОН	EWL0114-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0166-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0114-NOV23	uS/cm	2	< 2	0	20	99	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		Matrix Spike / Ref.		i.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0169-NOV23	mg/L	0.06	<0.06	ND	10	100	90	110	94	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference		Blank	RPD	RPD AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	y Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0007-NOV23	mg/L	0.00001	< 0.00001	ND	20	93	80	120	91	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike Recovery		ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0035-NOV23	mg/L	0.00005	<0.00005	ND	20	98	90	110	87	70	130
Aluminum (total)	EMS0035-NOV23	mg/L	0.001	<0.001	7	20	100	90	110	112	70	130
Arsenic (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	ND	20	98	90	110	97	70	130
Barium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	93	90	110	75	70	130
Beryllium (total)	EMS0035-NOV23	mg/L	0.000007	<0.000007	12	20	98	90	110	88	70	130
Boron (total)	EMS0035-NOV23	mg/L	0.002	<0.002	10	20	107	90	110	96	70	130
Bismuth (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	ND	20	97	90	110	83	70	130
Calcium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	3	20	105	90	110	127	70	130
Cadmium (total)	EMS0035-NOV23	mg/L	0.000003	<0.000003	0	20	99	90	110	99	70	130
Cobalt (total)	EMS0035-NOV23	mg/L	0.000004	<0.000004	0	20	99	90	110	94	70	130
Chromium (total)	EMS0035-NOV23	mg/L	0.00008	<0.00008	0	20	101	90	110	105	70	130
Copper (total)	EMS0035-NOV23	mg/L	0.0002	<0.0002	2	20	98	90	110	97	70	130
Iron (total)	EMS0035-NOV23	mg/L	0.007	<0.007	0	20	102	90	110	100	70	130
Potassium (total)	EMS0035-NOV23	mg/L	0.009	<0.009	2	20	103	90	110	111	70	130
Magnesium (total)	EMS0035-NOV23	mg/L	0.001	<0.001	1	20	107	90	110	89	70	130
Manganese (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	1	20	96	90	110	78	70	130
Molybdenum (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	5	20	96	90	110	96	70	130
Sodium (total)	EMS0035-NOV23	mg/L	0.01	<0.01	1	20	105	90	110	95	70	130
Nickel (total)	EMS0035-NOV23	mg/L	0.0001	<0.0001	7	20	94	90	110	86	70	130
Lead (total)	EMS0035-NOV23	mg/L	0.00009	<0.00009	ND	20	98	90	110	88	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	<i>.</i>
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0035-NOV23	mg/L	0.003	<0.003	ND	20	103	90	110	NV	70	130
Antimony (total)	EMS0035-NOV23	mg/L	0.0009	<0.0009	ND	20	97	90	110	97	70	130
Selenium (total)	EMS0035-NOV23	mg/L	0.00004	<0.00004	ND	20	100	90	110	92	70	130
Silicon (total)	EMS0035-NOV23	mg/L	0.02	<0.02	1	20	102	90	110	NV	70	130
Tin (total)	EMS0035-NOV23	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Strontium (total)	EMS0035-NOV23	mg/L	0.00008	<0.0008	1	20	99	90	110	82	70	130
Titanium (total)	EMS0035-NOV23	mg/L	0.00007	<0.00005	ND	20	98	90	110	NV	70	130
Thallium (total)	EMS0035-NOV23	mg/L	0.000005	<0.000005	0	20	98	90	110	88	70	130
Uranium (total)	EMS0035-NOV23	mg/L	0.000002	2e-006	5	20	98	90	110	89	70	130
Vanadium (total)	EMS0035-NOV23	mg/L	0.00001	<0.00001	16	20	97	90	110	98	70	130
Zinc (total)	EMS0035-NOV23	mg/L	0.002	<0.002	5	20	101	90	110	97	70	130

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike Recovery		ry Limits %)	Spike Recovery	Recover (9	-
						(%)	(%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9064-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
	BAC9064-NOV23	cfu/100mL		ACCEPTED	D ACCEPTE							
E. Coli	BAC9064-NOV23	CIU/ TOOML	-	ACCEPTED	D							
Total Coliform	BAC9064-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD			Recove	-	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0114-NOV23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC (%)		Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0052-NOV23	mg/L	0.002	<0.002	ND	10	109	80	120	96	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Re		f.
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0090-NOV23	mg/L	0.02	<0.02	ND	20	105	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	•		LC	S/Spike Blank		M	latrix Spike / Ref			
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0223-NOV23	mg/L	2	< 2	1	10	95	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	CS/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)		Recovery Limits (%)		Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen (N)	SKA0041-NOV23	mg/L	0.05	<0.05	ND	10	108	90	110	107	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC Spike (%) Recovery			ery Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
Turbidity	EWL0102-NOV23	NTU	0.10	< 0.10	0	10	99	90 110		NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Sampled By (NAME): CH2S OSTIC Relinquished by (NAME): CH2S OSTIC Revision # 1.2 Date of Issue: 09 Sept. 2019 the contract, or in an alternative for	A377796_6hr	-Ihr	ENTIFICATION	(RSC)	Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium Table Fine Indexed	Regulation 153/04: Oth	Email: (bolvin@dMW/115, Com Email: C REGULATIONS	0.00	TREPERENCIAL ON	Address: 150 JAMESON DUVE CON	OM WILLS	REPORT INFORMATION	Received Date: 11 / 02 / 23 (mm/dd/yy) Received Time: 11 : 10 (hr : min)	Received By:	SGS Environment, Health & Safety - Lat
STIC Signature: Signat	Nov 2/23 3:20 AM 13 GW	Nov 2/23 10:20AM 13 GW			Day min TAT) MER ther:	Other Regulations: Sewer By-Law:	in accounts@dmwills.com	ne:	Address:	Company:Contact:	(same as Report Information)	INVOICE INFORMATION	Custody Seal Intact: Yes No	Received By (signature):	Request for Laboratory Services and CHAIN - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-
Linksion of samples to SGS is acknowledgement that you have been provided difference of the mail to an unlimited number of addresses for no additional cost samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. spling documents). (3) Results may be sent by enail to an unlimited number of addresses for no additional cost is drawn to the fination of the initiation of analytication and unstanding and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. spling documents). (3) Results may be sent by enail to an unlimited number of addresses for no additional cost factors will able upon request. This document is issued by the Company under its General Conditions of Service accessible at the contract, or in an alternative format (e.g. spling documents). (4) Frended copies are available upon request. This document is issued by the Company under its General Conditions of Service accessible at the contract or in an alternative format (e.g. spling documents). (5) Frended copies are available upon request. This document is issued by the Company under its General Conditions of Service accessible at the contract or in an alternative format (e.g. spling documents). (7) Friede copies are available upon request. This document is issued by the Company under its General Conditions of Service accessible at the contract or in an alternative format (e.g. spling documents). (7) Friede copies are available upon request. This document is submitted by the Company under its General Conditions of Service accessible at the contract or in an alternative format (e.g. spling documents). (7) Friede copies are available upon request to the format on adivide accessible at the contract oreginant and the sp			Field Filtered (Y/I Metals & Inorga Ind GY/I CNHg PH/(B(HWS)) (Cl. Na-water) Full Metals Suit ICP Metals Suit ICP Metals only SbAs Ba.Ba.B.Cd.Gr.Co.Cu.P PAHs only SVOCS allind PAHs. ABNs, CPs	e e Pb,Mc	CS SAR-soil) Hg, CrVI	M & I SVOC PCE	Specify Due Date:	RUSH TAT (Additional Charges May Apply): 1 Day 2 Days 3 Days 4 Day PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION		Project #: 11036 TURNAROUND	Quotation #:	1000	Cooling Agent Present: Yes No C Type: TCC	Laboratory Information Section - Lab use only	Request for Laboratory Services and CHAIN OF CUSTODY Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-6060 Fax: 519-672-0361
III		× 1	Organochlorine or specify of Sewer Use: Specify pkg: Water Character	riza xten	tion Pkg	Pest Other (please specify) TCLP	DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY REQUESTED	2 Days 3 Days 4 Days TATIVE PRIOR TO SUBMISSION	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	Site Location/ID: TURNAROUND TIME (TAT) REQUIRED	P.O.#_ 11056		DECN DATE THE THE THE THE THE THE THE THE THE T		No: 011390

CA14296-NOV23 R1

11056

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	D.M. Wills -Peterborough	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	705-652-2000
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	Maarit.Wolfe@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14296-NOV23
Project	11056	Received	11/08/2023
Order Number		Approved	11/15/2023
Samples	Ground Water (2)	Report Number	CA14296-NOV23 R1
		Date Reported	11/15/2023

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 5 degrees C Cooling Agent Present: Yes

Custody Seal Present: Yes

Chain of Custody Number: 036655

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Little

TABLE OF CONTENTS

First Page	1
ndex	2
Results	. 3-6
Exceedance Summary	7
QC Summary	8-18
_egend	19
Annexes	20

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			Sa	ample Number	7	8
			٤	Sample Name	11056-WellA377	11056-WellA377
					799_1hr	799_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinkir				Sample Matrix		Ground Water
L2 = ODWS_MAC / WATER / Table 1,2 and 3 - D				Sample Date		08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
General Chemistry						
UV Transmittance	%Т				96.7	97.1
Alkalinity	mg/L as CaCO3	2	500		198	198
Bicarbonate	mg/L as CaCO3	2			198	198
Carbonate	mg/L as CaCO3	2			< 2	< 2
ОН	mg/L as CaCO3	2			< 2	< 2
Colour	TCU	3	5		4	3
Conductivity	uS/cm	2			397	409
Total Suspended Solids	mg/L	2			2	< 2
Turbidity	NTU	0.10	5	1	0.80	0.55
Organic Nitrogen	mg/L	0.05	0.15		< 0.05	< 0.05
Total Kjeldahl Nitrogen (N)	as N mg/L	0.05			< 0.05	< 0.05
Ammonia+Ammonium (N)	as N mg/L	0.04			< 0.04	< 0.04
Dissolved Organic Carbon	mg/L	1	5		1	1
Total Organic Carbon	mg/L	1			< 1	1

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

			Sample Number	7	8
			Sample Name	11056-WellA377	11056-WellA377
				799_1hr	799_6hr
g Water - Reg O.169_03			•		Ground Water
rinking Water - Reg O.169_03			-		08/11/2023
Units	RL	L1	L2	Result	Result
mg/L	0.06		1.5	< 0.06	< 0.06
mg/L	0.3			< 0.3	< 0.3
as N mg/L	0.03		1	< 0.03	< 0.03
as N mg/L	0.06		10	1.84	1.62
mg/L	2	500		7	8
mg/L	0.02			< 0.02	< 0.02
mg/L as CaCO3	0.05	100		220	225
mg/L	0.001	0.1		0.007	0.003
mg/L	0.0002		0.01	< 0.0002	< 0.0002
mg/L	0.002		5	0.015	0.015
mg/L	0.00008		1	0.00993	0.00982
mg/L	0.000007			< 0.000007	< 0.000007
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.000004			0.000105	0.000031
mg/L	0.01			82.1	83.9
mg/L	0.000003		0.005	< 0.000003	< 0.000003
mg/L	0.0002	1		0.0009	0.0006
mg/L	0.00008		0.05	0.00073	0.00049
mg/L	0.007	0.3		0.074	0.026
mg/L	0.009			0.373	0.361
mg/L	0.001			3.61	3.82
	nking Water - Reg O.169_03 Units Mg/L Mg/L Mg/L As N mg/L As N mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L Mg/L M	Inking Water - Reg 0.169_03 Units RL mg/L 0.06 mg/L 0.3 as N mg/L 0.03 as N mg/L 0.03 as N mg/L 0.06 mg/L 0.03 as N mg/L 0.06 mg/L 0.02 mg/L 0.02 mg/L 0.001 mg/L 0.001 mg/L 0.0002 mg/L 0.0002 mg/L 0.00003 mg/L 0.00001 mg/L 0.00003 mg/L 0.00003 mg/L 0.0002 mg/L 0.0002 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003	Water - Reg 0.169_03 Units RL L1 mg/L 0.06	Water - Reg 0.169_03 Sample Matrix Ning Water - Reg 0.169_03 RL L1 L2 Units RL L1 L2 mg/L 0.06 1.5 mg/L 0.03 1 as N mg/L 0.03 1 as N mg/L 0.06 10 mg/L 0.06 100 mg/L 0.02 0.01 mg/L 0.001 0.1 mg/L 0.002 0.01 mg/L 0.002 5 mg/L 0.0002 1 mg/L 0.00007 1 mg/L 0.00004 1 mg/L 0.0003 0.005 mg/L 0.0003 0.005 mg/L 0.0003 0.05 mg/L 0.007 0.3 mg/L	Sample Name 11056-WellA377 799_1hr Sample Matrix Ground Water nking Water - Reg 0.169_03 Sample Date 08/11/2023 Units RL L1 L2 Result mg/L 0.06 1.5 < 0.66

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

MATRIX: WATER			s	ample Number	7	8
				Sample Name	11056-WellA377	11056-WellA377
					799_1hr	799_6hr
1 = ODWS_AO_OG / WATER / Table 4 - Drinking Water - Reg	eg O.169_03			Sample Matrix	Ground Water	Ground Water
2 = ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Water	r - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Manganese (total)	mg/L	0.00001	0.05		0.00835	0.00197
Molybdenum (total)	mg/L	0.00004			0.00018	0.00009
Nickel (total)	mg/L	0.0001			0.0005	0.0002
Sodium (total)	mg/L	0.01	200	20	1.54	1.61
Phosphorus (total)	mg/L	0.003			< 0.003	< 0.003
Lead (total)	mg/L	0.00009		0.01	0.00011	< 0.00009
Silicon (total)	mg/L	0.02			4.28	4.34
Silver (total)	mg/L	0.00005			< 0.00005	< 0.00005
Strontium (total)	mg/L	0.00008			0.137	0.140
Thallium (total)	mg/L	0.000005			< 0.000005	< 0.000005
Tin (total)	mg/L	0.00006			< 0.00006	< 0.00006
Titanium (total)	mg/L	0.00007			0.00018	< 0.00007
Antimony (total)	mg/L	0.0009		0.006	< 0.0009	< 0.0009
Selenium (total)	mg/L	0.00004		0.05	0.00015	0.00012
Uranium (total)	mg/L	0.000002		0.02	0.000186	0.000177
Vanadium (total)	mg/L	0.00001			0.00027	0.00027
Zinc (total)	mg/L	0.002	5		< 0.002	< 0.002

Client: D.M. Wills -Peterborough

Project: 11056

Project Manager: Ralf Bolvin

		5	Sample Number	7	8
			Sample Name	11056-WellA377	11056-WellA377
				799_1hr	799_6hr
- Reg 0.169_03			Sample Matrix	Ground Water	Ground Water
Water - Reg O.169_03			Sample Date	08/11/2023	08/11/2023
Units	RL	L1	L2	Result	Result
cfu/100mL	0		0	6	2
cfu/100mL	0		0	0	0
cfu/1mL	0			640	115
No unit	0.05	8.5		8.15	8.09
mg/L	1	250		2	3
mg/L	0.00001			< 0.00001	< 0.00001
mg/L	0.002			< 0.002	< 0.002
	Vater - Reg 0.169_03 Units cfu/100mL cfu/100mL cfu/1mL No unit mg/L mg/L	Vater - Reg 0.169_03 Units RL cfu/100mL 0 cfu/100mL 0 cfu/101mL 0 cfu/100mL 0 cfu/100mL 0 cfu/100mL 0 cfu/100mL 0 cfu/100mL 0 cfu/100mL 0 0 1 mg/L 0.00001	Nater - Reg 0.169_03 Units RL L1 cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 5 mg/L 0.055 8.5 mg/L 1 250 mg/L 0.00001 1	Sample Matrix Nater - Reg 0.169_03 Sample Date Units RL L1 L2 cfu/100mL 0 0 0 cfu/100mL 0 0 0 cfu/100mL 0 0 0 cfu/100mL 0 0 0 mg/L 0.05 8.5 1 mg/L 1 250 1 mg/L 0.00001 1 1	Sample Name 11056-WellA377 799_1hr Reg 0.169_03 Sample Matrix Water - Reg 0.169_03 Sample Date Units RL L1 L2 Result cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 0 cfu/100mL 0 640 mg/L 1 250 2 mg/L 0.00001

EXCEEDANCE SUMMARY

				ODWS_AO_OG / WATER / Table 4 - Drinking Water -	ODWS_MAC / WATER / Table 1,2 and 3 -
				Reg 0.169_03	Drinking Water -
					Reg O.169_03
Parameter	Method	Units	Result	L1	L2
)56-WellA377799_1hr					
Total Coliform	OMOE	cfu/100mL	6		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	220	100	
056-WellA377799_6hr					
Total Coliform	OMOE	cfu/100mL	2		0
	MICROMFDC-E3407A				
Hardness	SM 3030/EPA 200.8	mg/L as CaCO3	225	100	

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0252-NOV23	mg/L as CaCO3	2	< 2	2	20	94	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0112-NOV23	mg/L	0.04	<0.04	1	10	96	90	110	97	75	125

Anions by discrete analyzer

Method: US EPA 325.2 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		f.
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)			ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO5030-NOV23	mg/L	1	<1	ND	20	102	80	120	109	75	125
Sulphate	DIO5030-NOV23	mg/L	2	<2	ND	20	104	80	120	108	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Bromide	DIO0361-NOV23	mg/L	0.3	<0.3	ND	20	97	90	110	91	75	125	
Nitrite (as N)	DIO0361-NOV23	mg/L	0.03	<0.03	ND	20	99	90	110	101	75	125	
Nitrate (as N)	DIO0361-NOV23	mg/L	0.06	<0.06	ND	20	102	90	110	99	75	125	

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		F.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recove	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Dissolved Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125
Total Organic Carbon	SKA0113-NOV23	mg/L	1	<1	2	20	103	90	110	96	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units			Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)		Low	High	(%)	Low	High
Carbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0252-NOV23	mg/L as CaCO3	2	< 2	2	10	NA	90	110	NA		
ОН	EWL0252-NOV23	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	Units RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0304-NOV23	TCU	3	< 3	0	10	105	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0252-NOV23	uS/cm	2	4	0	20	100	90	110	NA		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0261-NOV23	mg/L	0.06	<0.06	0	10	103	90	110	NV	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ret	F.
	Reference			Blank	RPD				ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0019-NOV23	mg/L	0.00001	< 0.00001	3	20	98	80	120	98	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	y Limits 6)	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0100-NOV23	mg/L	0.00005	<0.00005	ND	20	106	90	110	78	70	130
Aluminum (total)	EMS0100-NOV23	mg/L	0.001	<0.001	19	20	100	90	110	83	70	130
Arsenic (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	4	20	107	90	110	103	70	130
Barium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	102	90	110	96	70	130
Beryllium (total)	EMS0100-NOV23	mg/L	0.000007	<0.000007	ND	20	92	90	110	94	70	130
Boron (total)	EMS0100-NOV23	mg/L	0.002	<0.002	1	20	97	90	110	94	70	130
Bismuth (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	ND	20	106	90	110	86	70	130
Calcium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	4	20	100	90	110	80	70	130
Cadmium (total)	EMS0100-NOV23	mg/L	0.000003	<0.000003	ND	20	108	90	110	94	70	130
Cobalt (total)	EMS0100-NOV23	mg/L	0.000004	<0.000004	10	20	100	90	110	94	70	130
Chromium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	ND	20	104	90	110	90	70	130
Copper (total)	EMS0100-NOV23	mg/L	0.0002	<0.0002	1	20	102	90	110	94	70	130
Iron (total)	EMS0100-NOV23	mg/L	0.007	<0.007	1	20	106	90	110	75	70	130
Potassium (total)	EMS0100-NOV23	mg/L	0.009	<0.009	1	20	99	90	110	88	70	130
Magnesium (total)	EMS0100-NOV23	mg/L	0.001	<0.001	1	20	101	90	110	89	70	130
Manganese (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	2	20	99	90	110	97	70	130
Molybdenum (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	2	20	100	90	110	90	70	130
Sodium (total)	EMS0100-NOV23	mg/L	0.01	<0.01	1	20	101	90	110	91	70	130
Nickel (total)	EMS0100-NOV23	mg/L	0.0001	<0.0001	12	20	105	90	110	95	70	130
Lead (total)	EMS0100-NOV23	mg/L	0.00009	<0.00009	ND	20	105	90	110	93	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	-	Spike Recovery	Recover (9	•
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus (total)	EMS0100-NOV23	mg/L	0.003	<0.003	2	20	101	90	110	NV	70	130
Antimony (total)	EMS0100-NOV23	mg/L	0.0009	<0.0009	ND	20	103	90	110	94	70	130
Selenium (total)	EMS0100-NOV23	mg/L	0.00004	<0.00004	ND	20	102	90	110	111	70	130
Silicon (total)	EMS0100-NOV23	mg/L	0.02	<0.02	0	20	99	90	110	NV	70	130
Tin (total)	EMS0100-NOV23	mg/L	0.00006	<0.00006	ND	20	97	90	110	NV	70	130
Strontium (total)	EMS0100-NOV23	mg/L	0.00008	<0.00008	2	20	98	90	110	92	70	130
Titanium (total)	EMS0100-NOV23	mg/L	0.00007	<0.00005	3	20	96	90	110	NV	70	130
Thallium (total)	EMS0100-NOV23	mg/L	0.000005	<0.000005	ND	20	105	90	110	93	70	130
Uranium (total)	EMS0100-NOV23	mg/L	0.000002	2e-006	1	20	92	90	110	101	70	130
Vanadium (total)	EMS0100-NOV23	mg/L	0.00001	<0.00001	6	20	102	90	110	105	70	130
Zinc (total)	EMS0100-NOV23	mg/L	0.002	<0.002	ND	20	104	90	110	110	70	130

Microbiology

Method: SM 9215A | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery	Recover (9	-
							(%)	Low	High	(%)	Low	High
Heterotrophic Plate Count (HPC)	BAC9164-NOV23	cfu/1mL	-	ACCEPTED	ACCEPTE							
					D							
E. Coli	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							
Total Coliform	BAC9164-NOV23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD			Recove		Spike Recovery		ry Limits
					RPD AC Spike (%) Recovery (%) (%)		-	Low	High	(%)	Low (9	6) High
рН	EWL0252-NOV23	No unit	0.05	NA	1	1	100			NA	1	

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	latrix Spike / Re	ıf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)
				(%)	Recovery (%)	Low	High	(%)	Low	High		
4AAP-Phenolics	SKA0107-NOV23	mg/L	0.002	<0.002	ND	10	99	80	120	NV	75	125

Sulphide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphide	SKA0114-NOV23	mg/L	0.02	<0.02	ND	20	116	80	120	NA	75	125

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference	Reference B	Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	-	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0346-NOV23	mg/L	2	< 2	0	10	97	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Kjeldahl Nitrogen (N)	SKA5051-NOV23	mg/L	0.05	<0.05	3	10	100	90	110	90	75	125

Turbidity

Method: SM 2130 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0243-NOV23	NTU	0.10	< 0.10	0	10	100	90	110	NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

Appendix I

Certificates of Analysis – Groundwater – Nitrates

CA12213-OCT22 R----

11056 - OSAC.A

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	i	LABORATORY DETAILS	3
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Lynsey Tuters	Telephone	705-652-2143
Telephone	289-385-6230	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	ltuters@dmwills.com	SGS Reference	CA12213-OCT22
Project	11056 - OSAC.A	Received	10/05/2022
Order Number		Approved	10/18/2022
Samples	Ground Water (3)	Report Number	CA12213-OCT22 R
		Date Reported	10/18/2022

COMMENTS

Temperature of Sample upon Receipt: 20 degrees C

Cooling Agent Present: Yes

Custody Seal Present: Yes

Chain of Custody Number: 031488

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3
Exceedance Summary	4
QC Summary	5-6
Legend	7
Annexes	8

Client: D.M. Wills -Peterborough

Project: 11056 - OSAC.A

Project Manager: Lynsey Tuters

Samplers: L. Tuters

MATRIX: WATER				Sample Number	5	6	7
				Sample Name	11056 - MW22 -	11056 - MW05 -	11056 - MW11 -
					08	Geotech3	Geotech 2
L1 = ODWS_MAC / WATER / Table 1,2 and 3 - I	Drinking Water - Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water
				Sample Date	05/10/2022	05/10/2022	05/10/2022
Parameter	Units	RL	L1		Result	Result	Result
Metals and Inorganics							
	as N ma/l	0.03	1		< 0.03	< 0.03	< 0.03
Nitrite (as N)	as N mg/L	0.05	· ·				
Nitrite (as N) Nitrate (as N)	as N mg/L	0.06	10		4.35	0.39	0.68

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ery Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0214-OCT22	mg/L	0.03	<0.03	ND	20	93	90	110	95	75	125
Nitrate (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	0	20	99	90	110	NV	75	125
Nitrate + Nitrite (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0229-OCT22	mg/L	0.03	<0.03	0	20	94	90	110	84	75	125
Nitrate (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	0	20	100	90	110	96	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

-		Consolitation (1011) 2011 2011 1011 2011 1011 2011 1011 2011 1011 2011 2011 2011 2011 2011 2011 2011 2011 2011				Chapter				1 2-000								
Received By: J'nd om Ja Har	-4	Received Bv (signature):	mature):	Labor	Laboratory Information Section - Lab use only	ormation	Sectio	n - Lab	use or	ly	ale an							
Received Date: 001 0 5/202 (mm/dd/yy) Received Time: 14 0 (hr : min)	ļ.	Custody Seal Intact: Yes Custody Seal Intact: Yes	esent: Yes [Cooling	Cooling Agent Present: Yes Temperature Upon Receipt (°C)	sent: Ye	Cooling Agent Present: Yes Who		Type:	P	ł					12213-0CT
REPORT INFORMATION	N	INVOICE INFORMATION	MATION															
Company: D. M. WillS	V same as R	Came as Report Information)	(ut		Quotation #	#							1200	P.O.#:	1026	ې		
LTURN	Company:				Project #:	11656	010	SAC	A					Site Location/ID:	on/ID:			
150 taneson Dr.	Contact:		-			1					TURNA	GNNOS	TIME (TA	TURNAROUND TIME (TAT) REQUIRED	RED			
S	Address:		Refering		5	Regular TAT (5-7days)	AT (5-7d	ays)					TA' Sar	l's are quo nples receiv	ed in busin red after 6p	ess days (emotion we	xclude stat	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
Phone: 289-385-6230				¢.	RUSH TAT (Additional Charges May Apply):	r (Additic	nal Cha	rges Ma	y Apply)		1 Day	lay	2 Days] 3 Days	4 Days	S		2
	Phone:		-		PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	CONFIRM	RUSH	EASIBI	LITY WI	TH SGS	REPRE	SENTA1	TIVE PRIC	WATER S4	MAPI ES EC	N R HIMAN	CONSTIM	DTION MUST RE SURMI
Email: INPOSSOMMUNIT.COM	Email: accounted muills com	ntegan	-SIIIUNH		Specify Due Date	le Date:				T			WITH	SGS DRIN	KING WAT	ER CHAIN	OF CUSTO	WITH SGS DRINKING WATER CHAIN OF CUSTODY
-	REGULATIONS	?							AN	IALY.	SIS R	EQUI	ANALYSIS REQUESTED					
O.Reg 153/04 O.Reg 406/19	Other Regulations:	tions:	Sewer By-Law:	y-Law:	M	181	S	SVOC	PCB	PHC	VOC	C Pest	st	Other (Other (please specify)		SPLP TCLP	4
Table 1 Res/Park Soil Texture:	Reg 347/558	Beg 347/558 (3 Day min TAT) PWQO MMER		Sanitary	1.6	-			E							<u> </u>	Specify Specify	ify
Table 3 Agri/Other Medium/Fine		Other:	Municipality:	ality:	(lio	L.	,bጋ,8,e		oclor [
olume <	DODWS Not F	DWS Not Reportable *See note	lote		SO	ViO , gł	8.68.2v		Arc		N. G. L.					[]	Metals M&I	
RECORD OF SITE CONDITION (RSC)	TYES NO	NO			insp	i te H (Vino li	A,d2 \				MARK		other			pəpu	232	COMMENTS:
			Sec. 1		0101	nS NS	راno T.eA.e	sdC	listo	y =			Pecify 29		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Exter	Dioxane	g
	DATE	TIME	# OF		11 %	elej VH)8 eu	S,IN,oM	15.1.1.1.1		Webberg a		1.1.00.9.3	ue ot si		:95	Γ		a)P
	SAMPLED	SAMPLED BC	BOTTLES		ield Fi sicrvi, cu sicrvi, cu bi ^{va-vate}	e netata pi M IIU	9М 9 ; .	SOCs	SBS	81EX 81EX	ind BTEX	o X3T Sticio	AIT-		U 19W	ecify pkg:	OABN CABN	lit.
1 110×6 - MUDD -08	1145122	AM		117			Cr.	0.803 (0.805)	2204 22028	Terrar		and the second se				M		
	10 10									1						1		
2	ats/22	LA		GU GU									2					
3 1/056-MW11-GROLEDAZ	od 5/22	MM	_	SUN									>					
4		27528				200 TATA 1					N.							
5		10.00					a pr		100 A		10,0000			il _{ele}				
9											- gginero							T.
2					Charles Constant						1940.000		Naggar					
8						145,233					10000	Seg.			12			
σ													25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- A				
10		9		est.		-				100 K-	-							
11		18. 18.				1.913							1.3.5			3		
12							a de sera				1 200500							
Observations/Comments/Special Instructions			8	1					5		1		i defen	-			100	
Sampled By (NAME): U. T. D. D. S.	4 4	Sig	Signature:	Cluton	M					an year		Date:	1 105	51202 is	2	(ww/dd/ww)		Pink Copy - Client
Relinquished by (NAME):		Sig	Signature:	44	Tool	6						Date: CV A	100	101	22	(vv/pp/mm)		Yellow & White Copy - SGS
Revision: 1.16 Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample, of action of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be related on file in Data files. (1) Nov 2020 the contrast of one and environments. (2) Data files in and laboration of samples to SGS is considered authorization of work. Signatures may appear on this form or be related on file in Data files in a neuron in the contrast of one and environments. (2) Data files in and laboration of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be related on file in Data files in the contrast of one and environments. (2) Data files in and laboration of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be related on file in Data files in the contrast of one and laboration of samples to SGS is considered authorization for completion of work.	acknowledgement that	at you have been pro	vided direction o	n stample delle	ction/handlin	g and transp	ortation of s	amples. {2}	Submissio	n of samp	es to SGS	is consider	ed authorizat	ion for comp.	etion of work	Signatures	may appear	on this form or be retained or

CA14187-DEC23 R

11056

Prepared for

D.M. Wills -Peterborough

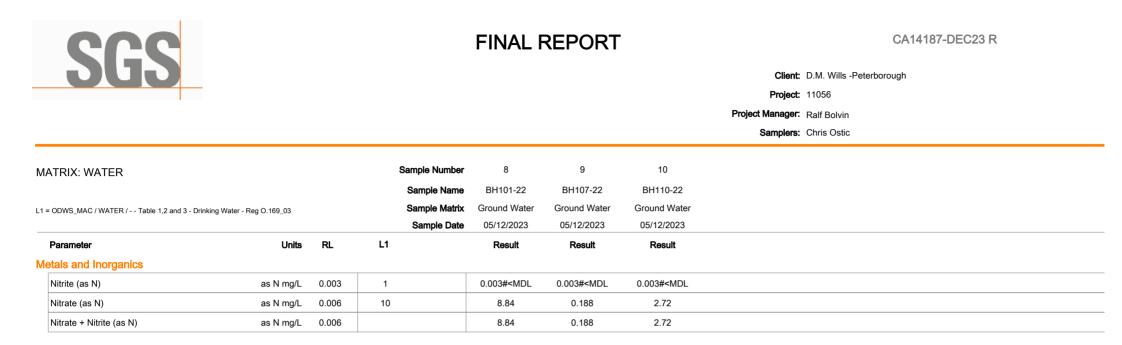
First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	D.M. Wills -Peterborough	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Ralf Bolvin	Telephone	2165
Telephone	705-868-1691	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	jill.campbell@sgs.com
Email	rbolvin@dmwills.com	SGS Reference	CA14187-DEC23
Project	11056	Received	12/06/2023
Order Number		Approved	12/11/2023
Samples	Ground Water (3)	Report Number	CA14187-DEC23 R
		Date Reported	12/11/2023

COMMENTS

MAC - Maximum Acceptable Concentration AO/OG - Aesthetic Objective / Operational Guideline MDL - SGS Method Detection Limit

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes Chain of Custody Number: 036540


SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4
Exceedance Summary	5
QC Summary	6
Legend	7
Annexes	8

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Re	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	NA		NA			NA		
Nitrite (as N)	DIO0149-DEC23	mg/L	0.003	<0.003	ND	20	100	90	110	80	75	125
Nitrate (as N)	DIO0149-DEC23	mg/L	0.006	<0.006	1	20	99	90	110	103	75	125

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

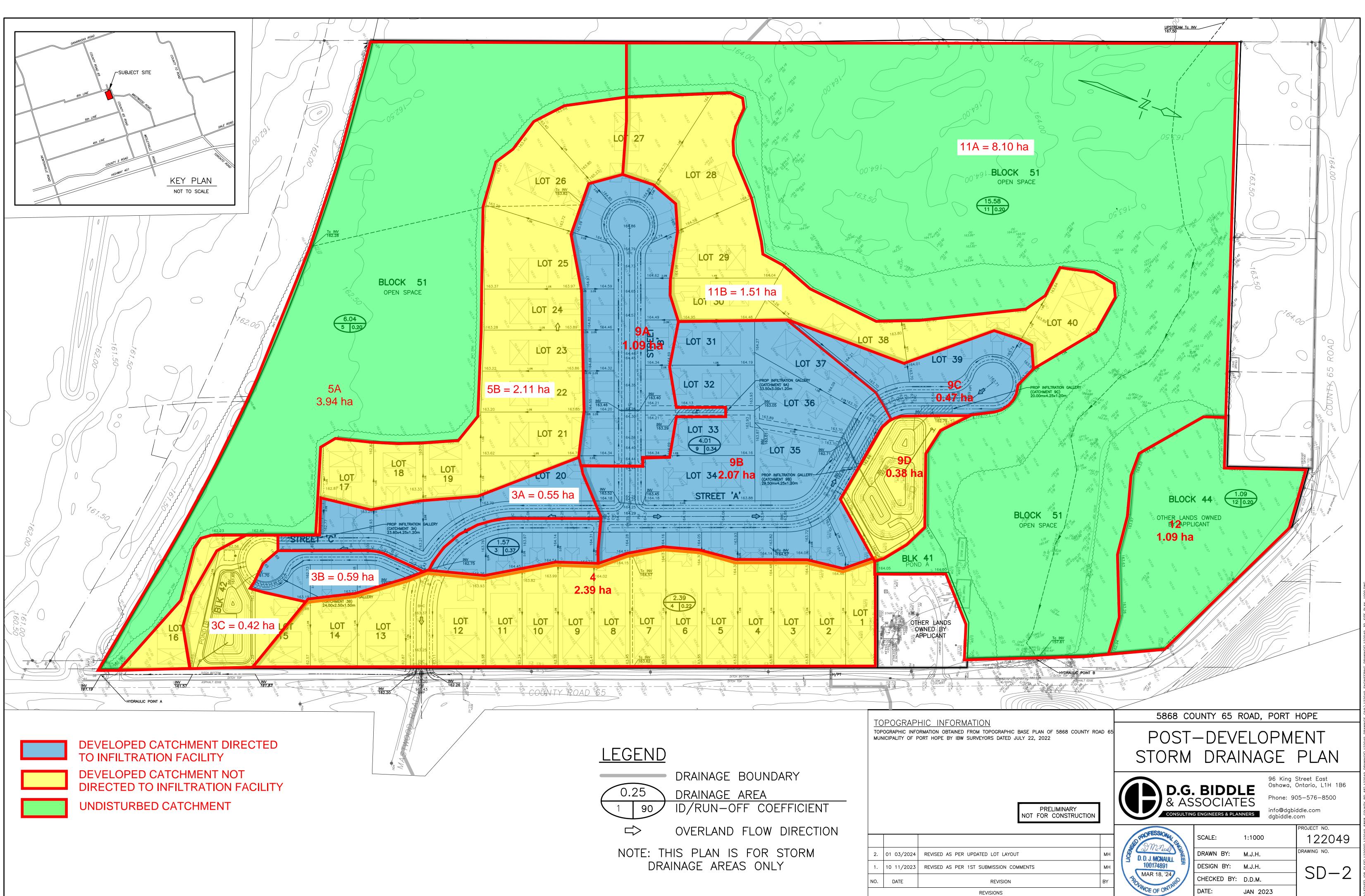
Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.


-- End of Analytical Report --

Revieword by (gipnane): Cooling Agent Present: Yes No Custory Seal Inter: Yes No Cooling Agent Present: Yes No Manna Shapet Inter: Yes No Cooling Agent Present: Yes No Manna Shapet Inter: Yes No Cooling Agent Present: Yes No Manna Shapet Inter: Yes No Cooling Agent Present: Yes No Manna Shapet Information) Cooling Agent Present: Yes No Cooling Agent Present: Yes No Manna Shapet Information) Cooling Agent Information) Cooling Agent Present: Yes No Cooling Agent Present: Yes No Manna Shapet Information) Cooling Agent Information) Cooling Agent Present: Yes No No No Manna Shapet Information Cooling Agent Information Cooling Agent Present: Yes No No No Manna Shapet Information Cooling Agent Information Cooling Agent Present: Yes No No No Manna Shapet Information Cooling Agent Information Second Statian No No No Manna Shapet Information Cooling Agent Information Second Statian No No No Manna Shapet Information Presenter By Line Ganty Fas Area Babata No No
Received By (signature): Custody Seal Present: Yes Custody Seal Intact: Yes INVOICE INFORMATION as Report Information) as Report Information) as Report Information) Municip
ess: act: act: act: act: act: act: act: act:

Appendix J

Water Balance

F\JOB FILES\122000\122049 5868 COUNTY RD 65\122049 DRAWINGS\122049 DRAWINGS CIVIL\122049 ENGINEERING DRAWINGS\122049-3D-SITE PLA

Monthly Water Budget Calculations

Sheet 1 of 4

WILLS

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

CANADIAN CLIMATE NORMALS FOR 'OSHAWA WPCP (4996)' (1981-2010)

Climate ID =	6155878
Latitude =	43.87
Longitude =	-78.83

	Thornthwaite	(1948) Inputs			Monthly	/ Water Budget	Analysis	
Month	Mean Temperature (°C) ¹	Total Precipitation (mm) ¹	Heat Index	PET (mm)	Daylight Correction Factor	Adjusted PET (mm)	Surplus (mm)	Deficit (mm)
January	-4.8	65.6	0.00	0.0	0.78	0.0	65.6	0.0
February	-3.6	56.6	0.00	0.0	0.88	0.0	56.6	0.0
March	0.4	54.2	0.02	1.4	1.00	1.4	52.8	0.0
April	6.6	72.7	1.52	29.3	1.12	32.9	43.4	0.0
May	12.3	78.9	3.91	60.1	1.23	73.9	18.8	0.0
June	17.6	73.9	6.72	86.2	1.28	110.7	0.0	36.8
July	20.6	73.1	8.53	106.0	1.26	133.1	0.0	60.0
August	20.0	77.4	8.16	102.6	1.16	119.1	0.0	41.7
September	15.9	94.0	5.76	77.1	1.04	80.3	16.9	0.0
October	9.5	70.1	2.64	45.2	0.92	41.4	24.9	0.0
November	4.2	84.8	0.77	17.8	0.80	14.4	67.0	0.0
December	-1.2	70.7	0.00	0.0	0.75	0.0	70.7	0.0
Totals		872.0	38.03			607.3	416.6	138.6
	Thornthwaite	Coefficient (α)	1.100			Total Water	Surplus (mm)	264.7

<u>Notes:</u> 1. Temperature and Precipitation are taken from Canadian Climate Normals 1981-2010

2. Water budget adjusted for latitude and length of daylight

Potential Evapotranspiration (PET) is calculated based on the Thornthwaite 1948 equation
 Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted evapotranspiration

Water Balance Calculations for Existing Conditions

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP

Date: 22-Mar-24

				 	 -	 	
Catchment Parameters	EX-1	EX-2					Total
Drainage Area (m ²)	108400	138700					247100
Pervious Area (m ²)	108400	138700					247100
Impervious Area (m ²)	0	0					0
Evapotranspiration Factors							
Pervious PET Ratio	0.70	0.70					0.70
Impervious Evapotranspiration ³	0.20	0.20					0.00
Infiltration Factors							
Topography Infiltration Factor	0.30	0.25					0.27
Soil Infiltration Factor	0.40	0.40					0.40
Land Cover Infiltration Factor	0.14	0.12					0.13
MOE Infiltration Factor	0.84	0.77					0.80
Actual Infiltration Factor	0.84	0.77					0.80
Run-Off Coefficient	0.16	0.23					0.20
Runoff from Impervious Surfaces	0.80	0.80					
Inputs (mm/yr)			I		1		
Precipitation	872.0	872.0					872.0
Run-On	0.0	0.0					0.0
Other Inputs	0.0	0.0					0.0
Total Inputs	872.0	872.0					872.0
Outputs (mm/yr)							
Precipitation Surplus	264.7	264.7					264.7
Net Surplus	264.7	264.7					264.7
Evapotranspiration	607.3	607.3					607.3
Infiltration	223.5	204.3					212.7
Infiltration Features ⁴	0.0	0.0					0.0
Total Infiltration	223.5	204.3					212.7
Runoff Pervious Areas	41.2	60.5					52.0
Runoff Impervious Areas	0.0	0.0					0.0
Total Unadjusted Runoff	41.2	60.5					52.0
Total Adjusted Runoff ⁵	41.2	60.5					52.0
Total Outputs	872.0	872.0					872.0
Inputs (m ³ /yr)				 			
Precipitation	94,525	120,946				1	215,471
Run-On	0	0					0
Other Inputs	0	0					0
Total Inputs	94.525	120,946					215,471
Outputs (m ³ /yr)	0.,020	,			1		-,
Precipitation Surplus	28,697	36,718					65,415
Net Surplus	28,697	36,718					65,415
Evapotranspiration	65,828	84,228					150,056
Infiltration	24,228	28,333					52,561
Infiltration Features ⁴	0	0					0
Total Infiltration	24,228	28,333					52,561
Runoff Pervious Areas	4,469	8,385					12,854
Runoff Impervious Areas	0	0					Ó
Total Unadjusted Runoff	4,469	8,385					12,854
Total Adjusted Runoff ⁵	4,469	8,385					12,854
Total Outputs	94,525	120,946					215,471

Notes: 1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments (June 2013)

2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculations

3. Evaporation from impervious areas was assumed to be 0% of Precipitation

4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to

contribute with no infiltration occuring during months with a negative average temperature.

5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) - (Infiltration Features)

Water Balance Calculations for Proposed Conditions (40 Lots)

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

														1
Catchment Parameters	PR-3A	PR-3B	PR-3C	PR-4	PR-5A	PR-5B	PR-9A	PR-9B	PR-9C	PR-9D	PR-11A	PR-11B	PR-12	Total
Drainage Area (m ²)	5500	5900	4200	23900	39400	21100	10900	20700	4700	3800	81000	15100	10900	247100
Pervious Area (m ²)	4400	4100	3900	23200	39400	21100	8175	16560	3525	3800	81000	15100	10900	235160
Impervious Area (m ²)	1100	1800.0	300	700	0	0	2725	4140	1175	0	0	0	0	11940
Evapotranspiration Factors					-			-			-			
Pervious PET Ratio	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Impervious Evapotranspiration ³	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Infiltration Factors														
Topography Infiltration Factor	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Soil Infiltration Factor	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Land Cover Infiltration Factor	0.10	0.10	0.10	0.10	0.18	0.10	0.10	0.10	0.10	0.10	0.16	0.10	0.10	0.13
MOE Infiltration Factor	0.75	0.75	0.75	0.75	0.83	0.75	0.75	0.75	0.75	0.75	0.81	0.75	0.75	0.78
Actual Infiltration Factor	0.75	0.75	0.75	0.75	0.83	0.75	0.75	0.75	0.75	0.75	0.81	0.75	0.75	0.78
Run-Off Coefficient	0.25	0.25	0.25	0.25	0.17	0.25	0.25	0.25	0.25	0.25	0.19	0.25	0.25	0.22
Runoff from Impervious Surfaces	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Inputs (mm/yr)				•										
Precipitation	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0	872.0
Run-On	0.0	0.0	0.0	0.0	0.0	0.0	0.0	51.0	0.0	0.0	0.0	0.0	0.0	4.3
Other Inputs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Inputs	872.0	872.0	872.0	872.0	872.0	872.0	872.0	923.0	872.0	872.0	872.0	872.0	872.0	876.3
Outputs (mm/yr)														
Precipitation Surplus	351.3	396.8	295.6	277.4	264.7	264.7	372.9	351.3	372.9	264.7	264.7	264.7	264.7	285.6
Net Surplus	351.3	396.8	295.6	277.4	264.7	264.7	372.9	371.9	372.9	264.7	264.7	264.7	264.7	287.4
Evapotranspiration	520.7	475.2	576.4	594.6	607.3	607.3	499.1	551.1	499.1	607.3	607.3	607.3	607.3	588.9
Infiltration	158.8	138.0	184.4	192.7	218.7	198.5	148.9	168.1	148.9	198.5	214.2	198.5	198.5	198.1
Infiltration Features ⁴	192.5	209.3	0.0	0.0	0.0	0.0	172.9	178.9	212.4	0.0	0.0	0.0	0.0	35.9
Total Infiltration	351.3	347.3	184.4	192.7	218.7	198.5	321.8	347.0	361.3	198.5	214.2	198.5	198.5	234.0
Runoff Pervious Areas	66.2	66.2	66.2	66.2	46.0	66.2	66.2	66.2	66.2	66.2	50.5	66.2	66.2	57.4
Runoff Impervious Areas	697.6	697.6	697.6	697.6	0.0	0.0	697.6	697.6	697.6	0.0	0.0	0.0	0.0	697.6
Total Unadjusted Runoff	192.5	258.8	111.3	84.7	46.0	66.2	224.0	192.5	224.0	66.2	50.5	66.2	66.2	88.3
Total Adjusted Runoff ⁵	0.0	49.5	111.3	84.7	46.0	66.2	51.1	13.6	11.7	66.2	50.5	66.2	66.2	52.4
Total Outputs	872.0	872.0	872.0	872.0	872.0	872.0	872.0	911.7	872.0	872.0	872.0	872.0	872.0	875.3
Inputs (m ³ /yr)								-						
Precipitation	4,796	5,145	3,662	20,841	34,357	18,399	9,505	18,050	4,098	3,314	70,632	13,167	9,505	215,471
Run-On	0	0	0	0	0	0	0	1,056	0	0	0	0	0	1,056
Other Inputs	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Inputs	4,796	5,145	3,662	20,841	34,357	18,399	9,505	19,106	4,098	3,314	70,632	13,167	9,505	216,527
Outputs (m ³ /yr)														
Precipitation Surplus	1,932	2,341	1,242	6,630	10,430	5,586	4,065	7,272	1,753	1,006	21,443	3,997	2,886	70,583
Net Surplus	1,932	2,341	1,242	6,630	10,430	5,586	4,065	7,697	1,753	1,006	21,443	3,997	2,886	71,009
Evapotranspiration	2,864	2,804	2,421	14,211	23,926	12,813	5,440	11,409	2,346	2,308	49,189	9,170	6,619	145,518
Infiltration	874	814	774	4,606	8,617	4,189	1,623	3,480	700	754	17,353	2,998	2,164	48,948
Infiltration Features ⁴	1,059	1,235	0	0	0	0	1,885	3,703	998	0	0	0	0	8,880
Total Infiltration	1,932	2,049	774	4,606	8,617	4,189	3,508	7,184	1,698	754	17,353	2,998	2,164	57,828
Runoff Pervious Areas	291	271	258	1,535	1,813	1,396	541	1,096	233	251	4,090	999	721	13,499
Runoff Impervious Areas	767	1,256	209	488	0	0	1,901	2,888	820	0	0	0	0	8,329
Total Unadjusted Runoff	1,059	1,527	467	2,024	1,813	1,396	2,442	3,984	1,053	251	4,090	999	721	21,828
Total Adjusted Runoff ⁵	0	292	467	2,024	1,813	1,396	557	281	55	251	4,090	999	721	12,948
Total Outputs	4,796	5,145	3,662	20,841	34,357	18,399	9,505	18,873	4,098	3,314	70,632	13,167	9,505	216,294

Notes:

1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments (June 2013)

2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculations

3. Evaporation from impervious areas was assumed to be 20% of Precipitation

4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to contribute with no infiltration occuring during months with a negative average temperature.

5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) - (Infiltration Features)

Sheet 3 of 4

Water Balance Assessment (40 Lots)

Sheet 4 of 4

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Characteristic	Existing	Proposed No Mitigation	Change	Proposed With Mitigation	Change
Inputs (m ³ /yr)					
Precipitation	215,471	215,471	0.0%	215,471	0.0%
Run-On	0	1,056	0.0%	1,056	0.0%
Other Inputs	0	0	0.0%	0	0.0%
Total Inputs	215,471	216,527	0.5%	216,527	0.5%
Outputs (m ³ /yr)					
Precipitation Surplus Net Surplus	65,415 65,415	70,583 71,009	7.9% 8.6%	70,583 71,009	7.9% 8.6%
Evapotranspiration Infiltration	150,056 52,561	145,518 48,948	-3.0% -6.9%	145,518 48,948	-3.0% -6.9%
Infiltration Features Total Infiltration	0 52,561	0 48,948	0.0% -6.9%	8,880 57,828	0.0% 10.0%
Runoff Pervious Areas	12,854	13,499	5.0%	13,499	5.0%
Runoff Impervious Areas	0	8,329	0.0%	8,329	0.0%
Total Runoff	12,854	21,828	69.8%	12,948	0.7%
Total Outputs	215,471	216,294	0.4%	216,294	0.4%

Nitrate Dilution Calculations			
Total Dilution Area	24.71	1 ha	
No. of Lots	40	2	
Sewage Flow per Lot	1000	0 L/day	
Total Daily Sewage Loading	40,000	L/day	
Nitrate in Septic Effluent	40	0 mg/L	
Background Nitrates	2.86	6 mg/L	
Stormwater Effluent Nitrates	0	0 mg/L	
Infiltration Rates			
Infiltration Rate (Clean Water)	138.0	mm/year	
Infiltration Rate (Clean Water)	134,103	L/day	
Infiltration Rate (Stormwater)	35.9	mm/year	
Infiltration Rate (Stormwater)	24,329	L/day	
Nitrate Concentrations			
Nitrate Loading - Development	1,600,000) mg/day	
Nitrate Loading - Rainfall	383,534	4 mg/day	
Nitrate Loading - Runoff	0	0 mg/day	
Total Nitrate Loading	1,983,534	4 mg/day	
Dilution - Development	40,000	L/day	
Dilution - Groundwater Recharge	158,432	L/day	
Total Dilution	198,432	L/day	
Boundary Nitrate Concentration	10.00	mg/L	

Infiltration Factor Calculations for EX-1

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	0.48%	
Slope Description	Flat Land	
Topography Infiltration Factor	0.30	

Soils			
Hydrologic Soil Group ²	A		
Soil Type	Brighton Sand	Total	
Area (ha)	10.84	10.84	
Soil Infiltration Factor	0.40	0.40	

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture	6.04	0.10	
Range			
Grass			
Woods			
Wetland	4.80	0.20	
Bare Earth (>70% Rock)			
Impervious			
Total ³	10.84	0.14	

MOE Infiltration Factor	0.84
Actual Infiltration Factor	0.84

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for EX-2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	2.22%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils			
Hydrologic Soil Group ²	A		
Soil Type	Brighton Sand	Total	
Area (ha)	13.87	13.87	
Soil Infiltration Factor	0.40	0.40	

Cover				
Land Use	Area (ha)	Cover Infiltration Factor		
Agriculture	10.87	0.10		
Range				
Grass				
Woods	3.00	0.20		
Wetland				
Bare Earth (>70% Rock)				
Impervious				
Total ³	13.87	0.12		

MOE Infiltration Factor	0.77
Actual Infiltration Factor	0.77

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-3A

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography			
Average Slope	2.00%		
Slope Description	Flat/Rolling Land		
Topography Infiltration Factor	0.25		

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	0.55	0.55
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	0.44	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.11		
Total ³	0.44	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Features for PR-3A

Sheet 2 of 2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Infiltration Features Summary			
Total Storage Volume ¹	48.6 m ³		
Contributing Area ²	5500 m ²		
Pervious Area	4400 m ²		
Impervious Area	1100 m ²		
Maximum Drawdown	24 hrs		
Average Infiltration	1079 m³/yr		
Volume ³	196.2 mm/yr		

Notes:

1. Total Storage Volume from all Infiltration Features in the catchment

2. The entire catchment contributes flow to the Infiltration Features

3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.

4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-3B

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope 2.00%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	0.59	0.59
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	0.41	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.18		
Total ³	0.41	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Features for PR-3B

Sheet 2 of 2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Infiltration Features Summary			
Total Storage Volume ¹	36.0 m ³		
Contributing Area ²	5900 m ²		
Pervious Area	4100 m ²		
Impervious Area	1800 m ²		
Maximum Drawdown	24 hrs		
Average Infiltration	1235 m³/yr		
Volume ³	209.3 mm/yr		

Notes:

1. Total Storage Volume from all Infiltration Features in the catchment

2. The entire catchment contributes flow to the Infiltration Features

3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.

4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-3C

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	0.99%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	0.42	0.42
Soil Infiltration Factor	0.40	0.40

Cover			
Land Use	Area (ha)	Cover Infiltration Factor	
Agriculture			
Range			
Grass	0.39	0.10	
Woods			
Wetland			
Bare Earth (>70% Rock)			
Impervious	0.03		
Total ³	0.39	0.10	

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-4

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	1.55%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	А	
Soil Type	Brighton Sand	Total
Area (ha)	2.39	2.39
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	2.32	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.07	
Total ³	2.32	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-5A

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope 0.70%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	3.94	3.94
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range	0.94	0.10
Grass		
Woods	3.00	0.20
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	3.94	0.18

MOE Infiltration Factor	0.83
Actual Infiltration Factor	0.83

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-5B

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope 1.00%		
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	2.11	2.11
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	2.11	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	2.11	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-9A

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography	
Average Slope	2.00%
Slope Description	Flat/Rolling Land
Topography Infiltration Factor	0.25

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	1.09	1.09
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.82	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.27	
Total ³	0.82	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Features for PR-9A

Sheet 2 of 2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Infiltration Features Summary			
Total Storage Volume ¹	48.0 m ³		
Contributing Area ²	10900 m ²		
Pervious Area	8175 m ²		
Impervious Area	2725 m ²		
Maximum Drawdown	24 hrs		
Average Infiltration	1885 m³/yr		
Volume ³	172.9 mm/yr		

Notes:

1. Total Storage Volume from all Infiltration Features in the catchment

2. The entire catchment contributes flow to the Infiltration Features

3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.

4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9B

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	2.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils				
Hydrologic Soil Group ²	А	A		
Soil Type	Brighton Sand	Brighton Sand		Total
Area (ha)	1.52	0.55		2.07
Soil Infiltration Factor	0.40	0.40		0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	1.66	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.41	
Total ³	1.66	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Features for PR-9B

Sheet 2 of 2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Infiltration Features Summary		
Total Storage Volume ¹	120.4 m ³	
Contributing Area ²	20700 m ²	
Pervious Area	16560 m ²	
Impervious Area	4140 m ²	
Maximum Drawdown	24 hrs	
Average Infiltration	3703 m³/yr	
Volume ³	178.9 mm/yr	

Notes:

1. Total Storage Volume from all Infiltration Features in the catchment

2. The entire catchment contributes flow to the Infiltration Features

3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.

4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9C

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	2.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

	Soils	
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	0.47	0.47
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.35	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious	0.12	
Total ³	0.35	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Features for PR-9C

Sheet 2 of 2

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Infiltration Features Summary		
Total Storage Volume ¹	40.8 m ³	
Contributing Area ²	4700 m ²	
Pervious Area	3525 m ²	
Impervious Area	1175 m ²	
Maximum Drawdown	24 hrs	
Average Infiltration	998 m³/yr	
Volume ³	212.4 mm/yr	

Notes:

1. Total Storage Volume from all Infiltration Features in the catchment

2. The entire catchment contributes flow to the Infiltration Features

3. Average Infiltration Volume is calculated using daily climate data and averaged over the number of years of available data. No benefit is assumed for Infiltration Features during months with a negative average temperature.

4. Daily climate data is taken from Environment Canada Station 'OSHAWA WPCP' from 1981-2006

Infiltration Factor Calculations for PR-9D

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	2.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	0.38	0.38
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	0.38	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	0.38	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-11A

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	0.77%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	8.10	8.10
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture	3.30	0.10
Range		
Grass		
Woods		
Wetland	4.80	0.20
Bare Earth (>70% Rock)		
Impervious		
Total ³	8.10	0.16

MOE Infiltration Factor	0.81
Actual Infiltration Factor	0.81

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-11B

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	0.87%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	1.51	1.51
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range		
Grass	1.51	0.10
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	1.51	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Infiltration Factor Calculations for PR-12

Project No: 11056 Project Name: Osaca Whitepine Subdivision Designed/Checked By: NN / CP Date: 22-Mar-24

Topography		
Average Slope	1.00%	
Slope Description	Flat/Rolling Land	
Topography Infiltration Factor	0.25	

Soils		
Hydrologic Soil Group ²	A	
Soil Type	Brighton Sand	Total
Area (ha)	1.09	1.09
Soil Infiltration Factor	0.40	0.40

Cover		
Land Use	Area (ha)	Cover Infiltration Factor
Agriculture		
Range	1.09	0.10
Grass		
Woods		
Wetland		
Bare Earth (>70% Rock)		
Impervious		
Total ³	1.09	0.10

MOE Infiltration Factor	0.75
Actual Infiltration Factor	0.75

Notes:

1. Infiltration Factors are derived from Table 3.1, MOE SWM Design Manual 2003

2. Hydrologic Soil Group obtained from Design Chart H2-6A, M.T.O. Drainage Manual, 1980.

Appendix K

Mass Balance Equation

Appendix K – D-5-4 Groundwater Impact Assessment: Mass Balance Equation

$Q_tC_t = Q_eC_e + Q_iC_i$

Where Q_t = Total Volume ($Q_e + Q_i$)

Note: As per the requirements of D-5-4, the maximum volume of effluent allowed to be used as dilution water is 1000L/day/lot.

Ct = Total Concetration of nitrate at property boundary

Qe = volume of septic effluent

Ce = Concentration of nitrate in effluent (40 mg/L)

Qi = Volume of available dilution water

Ci = Concentration of nitrate in dilution water

In order to determine the concertation of the nitrate at the property boundary (C_t) , the mass balance equation is rearranged to the following:

$$Ct = \frac{QeCe + QiCi}{Qt}$$