©l|ltonplon

Garden Hill Estates
 Residential Subdivision

3852 Ganaraska Road
Garden Hill, Ontario

Municipality of Port Hope

Traffic Study Report

Prepared by:
Tranplan Associates
PO Box 455
Lakefield, ON
K0L 2H0
www.tranplan.com

Mistral Land Development Inc.
Per Monument Geomatics
November, 2022

November 23, 2022
Mistral Land Development Inc.
5905 Earlscourt Crescent
Ottawa, ON K4M 1KZ

Attn: Mr. Chris Donegan

Dear Sir:

RE: Traffic Study - Proposed Garden Hill Estates Residential Subdivision To Be Located at 3852 Ganaraska Rd. (County Rd. 9), Garden Hill, Ontario

Tranplan Associates is pleased to present the results of the traffic study carried out to assess the potential traffic impacts of the proposed Garden Hill Estates Residential Subdivision. This traffic study has been based on a total of 50 residential homes and 10 apartment units. The final lot/apartment count has yet to be set but is expected to be less than the 50 lots assumed for the traffic study. The subdivision will be located in the Hamlet of Garden Hill on a new street (Street "A") running north from County Road (CR) 9. Additional access will be provided by connections to Frost Ave and Porter Cres. located on the east side of the subdivision. The site traffic volumes forecast to be generated by the 50 lot subdivision and 10 apartment units can be accommodated on existing roads and intersections. Drivers accessing CR 9 and CR 10 from the subdivision will experience acceptable levels of delay.

The future CR 9/site entrance intersection operating with single lane approaches will support new subdivision and background traffic. No auxiliary turning lanes or right turn taper will be required on CR 9 to support the new subdivision. The future Street "A" connecting the new residences to CR 9 should be constructed to current County/Municipal standards for a rural residential subdivision. Tranplan Associates is pleased to have the opportunity to work with your study team on this project. If you should require any further information on the study analyses or reporting, please contact me at your convenience

Yours truly,

William Copeland, P.Eng.
Principal
Tranplan Associates

© Tranplan Associates

This document and the information contained within has been prepared exclusively for the Client identified on the cover of this report for the purpose for which it has been prepared. Tranplan Associates undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of Tranplan Associates.

TABLE OF CONTENTS

TABLE OF CONTENTS 3
LIST OF TABLES 4

1. INTRODUCTION 5
1.1 Background 5
1.2 Principal Findings 6
2. EXISTING CONDITIONS 8
2.1 The Study Site 8
2.2 Adjacent Development 8
2.3 Access to the Study Site 9
2.3.1 Northumberland County Road 9 (Ganaraska Road) 9
2.3.2 Northumberland County Road 10 10
2.3.3 Mill Street 10
2.3.4 Woodland Avenue \& Frost Avenue 1011
2.3.5 The Mill Street/CR 9 Intersection 11
2.3.6 The Woodland Ave/CR 9 Intersection 11
2.3.7 The CR 10/CR 9 Intersection 12
2.3.8 The Woodland Ave/CR 10 Intersection 12
2.3.9 The Woodland Ave/Frost Ave Intersection 12
2.4 Current Traffic Data 13
2.5 Current Traffic Operations 13
3. THE PROPOSED DEVELOPMENT 15
3.1 Trip Generation Forecasts 15
3.2 Site Trip Distribution 16
4. FUTURE CONDITIONS 17
4.1 Future Background Traffic 17
4.2 Future Total Traffic 17
4.3 Weekday Site Traffic Impacts 17
4.4 Auxiliary Lane Warrant Analyses 19
4.5 Future Site Access 20
4.6 Active Transportation Links 21
5. CONCLUSIONS AND RECOMMENDATIONS 22
5.1 Conclusions 22
5.2 Recommendations 22
LIST OF TABLES
1: Weekday Peak Hour Site Trip Generation (vph) 15
2: Weekday Peak Hour Site Trip Distribution 16
3: Summary Weekday Study Intersections' Performance 18
4: Summary Street "A"/CR 9 Sight Lines 20

1. INTRODUCTION

1.1 Background

Tranplan Associates is pleased to present the results of a traffic study to determine the impact of the proposed Garden Hill Estates Residential Subdivision on adjacent roads and intersections. The subdivision will be located in the Hamlet of Garden Hill, Ontario on the north side of Northumberland County Road (CR) 9 (Ganaraska Rd.) The general location of the Garden Hill community and the study site within Northumberland County are illustrated Exhibit 1 - Key Map (following report text). The subdivision will be located on a green field site in the north-central part of the Hamlet. The traffic study has been based a 50 lot residential subdivision and a 10 unit apartment building. The final lot count has yet to be set, but it is expected to be less than the 50 lots assumed for the traffic study analyses. The proposed layout of the subdivision and its facilities are illustrated in Exhibit 2 - Preliminary Site Plan. Each lot on the east side of the subdivision will have direct access via its own driveway to the new Street "A" that will connect through a new intersection to CR 9. Street "A" will also have an easterly connection to Porter Crescent. Lots on the west side of the subdivision will be served by a secondary road, Street "B" that will connect to Street "A". The location of the new subdivision and the main activity centres of the Garden Hill community are illustrated in Exhibit 3 - Site Context.

This traffic study has been requested by the County of Northumberland and the Municipality of Port Hope as part of the planning approval process for the proposed subdivision. Discussions were held with the study team and the approving agencies to establish the scope of the traffic study. Tranplan Associates staff have completed four site visits to collect peak hour traffic counts, observe current traffic operations, measure existing road and intersection geometrics, review adjacent land uses and measure sight lines along CR 9 from the proposed Street "A" intersection with CR 9.

Traffic analyses completed for this study included five existing intersections and the new site entrance to CR 9. The study intersections include the following (see Exhibit 3).

- The future Street "A"/CR 9 intersection (site entrance)
- The Mill Street/CR 9 intersection.
- The Woodland Ave./CR 9 intersection
- The CR 10/CR 9 intersection
- The Woodland Ave/CR 10 intersection
- The Woodland Ave/Frost Ave. intersection as a surrogate for the intersections in the Woodlands of Garden Hill subdivision

The study analyses considered the traffic impacts of peak traffic demands during representative weekday peak hour periods. The analyses included auxiliary lane warrant calculations to assess the need for auxiliary lanes to support future site and background traffic at each of the study intersections. The analyses were based on future peak hour volumes for a 10 year planning horizon to 2032. The total traffic volumes used in the analyses included traffic generated by full development of the new subdivision combined with growth in background traffic from observed 2021 volumes to 2032.

1.2 Principal Findings

The principal findings derived from the analyses of weekday peak hour periods include the following:

- The present adjacent road network and the five existing study intersections operate at good Levels of Service (LoS) ${ }^{1}$ during weekday peak hour periods. There is considerable residual capacity for future growth in traffic.
- During 2032 weekday total traffic peak hour periods all six study intersections, with their present geometrics, are forecast to operate at good LoS with residual capacity for future growth beyond the 2032 planning horizon.
- All 2032 weekday peak hour traffic movements at the future Street "A"/CR 9 intersection are forecast to operate at the boundary of LoS "B" or better. This is considered a good LoS for peak hour traffic conditions. Drivers accessing CR 9 from the new subdivision will face acceptable delay.
- The new Street "A" intersection with CR 9, and the new internal roads in the subdivision (Street "A" \& Street "B") should be designed to meet current Northumberland County and Municipality of Port Hope standards for local residential roads located in a rural residential subdivision. The roads and internal intersections should be designed to accommodate municipal service vehicles, EMS vehicles, school buses and vehicles supporting handicapped access.
- No auxiliary lanes will be required at the new Street "A"/CR 9 intersection to support 2032 total peak hour traffic volumes. The future Street "A" intersection with single lane approaches and Stop Control (TWSC) on Street "A" as the minor approach will support future 2032 total peak hour volumes.

In summary, during future 2032 weekday peak hour conditions, all five existing study intersections, with existing geometrics are forecast to operate at good LoS. There will be considerable residual capacity for future growth in site and background traffic at these intersections. The new Street "A" entrance to CR 9

[^0]with single lane approaches and TWSC will operate at good LoS with considerable residual capacity for future growth in traffic.

2. EXISTING CONDITIONS

2.1 The Study Site

The proposed Garden Hill Estates Residential Subdivision will be located on part Lot 16, Concession 8, Geographic Township of Hope, now part of the Municipality of Port Hope. The proposed subdivision will be located on a green field site north of CR 9 in the east-central part of the Garden Hill Community (see Exhibit 3). The subdivision has been assumed to contain up to 50 individual lots for single family residential housing in the main part of the site. The final lot count will likely be less. The south east corner of the site is separated by a water course. This portion of the site will contain a 10 unit apartment building. The southern portion of the site has been in agricultural use. The northern portion is presently wooded.

Road/vehicle access to the main part of the new subdivision will be via a new municipal road, Street "A". Street "A" will access CR 9 as illustrated in Exhibit 2. Secondary access to the east will be provided by a new connection to the existing Porter Crescent. Access to the new apartments will be provided by a new connection to Frost Ave. These two streets are part of the existing local road network of the Woodlands of Garden Hill subdivision. Each residential lot will have its own driveway to access the new Streets "A" \& "B" as illustrated in Exhibit 2. Additional development information for the study site is contained in related planning documentation that will be submitted with this traffic report for the necessary planning approvals.

2.2 Adjacent Development

The study site will be located on the north side of CR 9 in the north central part of the Garden Hill Community. Exhibit 3 illustrates current development in Garden Hill. The main part of the community lies between CR 10 and Mill Street along CR 9. The Woodlands of Garden Hill subdivision is the main development on the east side of Garden Hill. It will form the east boundary of the Garden Hill Estates. The core of the traditional Garden Hill community lies between John Street and Mill Street along the south side of CR 9. It contains a mix of older residential development south of CR 9 and older commercial development along CR 9. This commercial development consists of the Garden Hill General Store, an LCBO outlet and community mail boxes. Parallel parking is available along both sides of CR 9 in the immediate vicinity of the general store. Additional commercial development includes the Garden Hills Farmers Market located in the southwest quadrant of the Mill Street/CR 9 intersection. Its layout is similar to a large scale "produce stand" with parking in front of the store along Mill Street south of CR 9.

A residential subdivision is located on LaRose Ave. about 500 m south of CR 9 on the east side of Mill Street. The subdivision contains about 25 single family homes.

A former mill pond is located along the west side of Mill Street north of CR 9. It is now a part of the Garden Hill Conservation Area located primarily along the west side of the mill pond. The Alex Carruthers Memorial Park is located about 400 m west of Mill Street on the south side of CR 9 . The park contains outdoor community recreational facilities including ball diamonds and playing fields. The Municipality of Port Hope EMS Station No 3 is located on the west side of the Park.

The North Hope Central Public School is located about 1 km west of Mill Street on the north side of CR 9. There is additional rural residential development located along CR 9 between Mill Street the elementary school.

2.3 Access to the Study Site

2.3.1 Northumberland County Road 9 (Ganaraska Road)

County Road 9 is under the jurisdiction of Northumberland County and is classed as a rural/semi-urban arterial road. It is one of the principal east/west travel corridors in the mid-central part of the County (see Exhibit 1). It runs from the former Highway 45 (now CR 45) in the east, along the south side of Rice Lake connecting to CR 28 at Bewdley. From there it continues westerly through Campbellcroft and Garden Hill to Cold Springs Camp Road where it becomes Durham Regional Road 9. From there it continues west to Highway 115 at Kirby. Continuing west as Concession Rd. 7 it connects to Highway 407 and beyond. With this link to the eastern GTA, CR 9 will provide good regional connectivity for the new subdivision.

The new Street "A" entrance to the study site will access north side of CR 9 as illustrated in Exhibit 2. In the vicinity of the study site CR 9 functions as a rural/suburban collector road providing local access to the Garden Hill community as well connectivity for through east/west traffic travelling to/from CR 28 and Highway 115. In the vicinity of the study site it has a two lane rural cross-section with a 7.25 m asphalt surface and $2.4-2.5 \mathrm{~m}$ gravel shoulders. In this section of CR 9 the posted speed is 60 kph . Based on Tranplan Associates traffic count data, CR 9 at this location is estimated to carry a 2021 average daily traffic (ADT) volume of about 3,500 vehicles per day (vpd). The 2018 County average annual daily traffic (AADT) volume data for this section of CR 9 are listed as $2,900 \mathrm{vpd}$. A design speed of 80 kph (20 kph over posted) was assumed in assessing the geometric requirements for the new Street " A " intersection with CR 9. Exhibit 4 illustrates the current cross-section of CR 9 in the vicinity of the study site.

2.3.2 Northumberland County Road 10

CR 10 is a north/south rural/semi-urban arterial road under the jurisdiction of Northumberland County. It links Garden Hill to the west side of the Town of Port Hope as well as providing access to rural communities, residences and farms along the corridor itself (see Exhibit 1). North from Garden Hill it passes through the Ganaraska Forest into the County of Peterborough where it links to the Village of Millbrook. CR 10 will provide the new subdivision with access to adjacent communities to the south, as well as providing a direct link to the Town of Port Hope and regional access via Highway 401.

The new subdivision will have a connection to CR 10 through Woodland Ave. about 600 m north of the CR 10/CR9 intersection (see Exhibit 3). In the vicinity of the Woodland Ave. intersection, CR 10 has a rural open-ditch cross-section with a 6.7 m (2-lane) asphalt road platform and 0.5 m gravel shoulders. It has a posted speed of 80 kph . An assumed design speed of 100 kph was used for the auxiliary lane warrant analysis of the Woodland Ave./CR 10 intersection. Exhibit 5 illustrates a representative CR 10 crosssection in the vicinity of Woodland Ave. Based on Tranplan Associates 2021 traffic count data, CR 10 carries an estimated ADT of about 1650 1700 vpd north of CR 9. Northumberland County 2018 AADT data lists this section of CR 10 as having an AADT of 1700 vpd .

2.3.3 Mill Street

Mill Street is a rural collector road under the jurisdiction of the Municipality of Port Hope. South of CR 9 it has a rural open ditch cross-section with a 6.5 m asphalt platform. It provides access to local residences and farms along its corridor. South of CR 9 it has a posted speed of 50 kph . Based on Tranplan Associates 2021 traffic counts it carries less than 100 vpd.

North of CR 9, Mill Street has a rural open ditch cross-section with a 5.4 m gravel platform. It has a posted speed of 50 kph . This section Mill Street runs along the east side of the mill pond and then north for about 1.5 km . It provides access to about 6 residences on the north side of Garden Hill and further north to 4-5 rural residences/farms. Based on Tranplan Associates 2021 traffic counts it carries an estimated 50 vpd .

2.3.4 Woodland Avenue \& Frost Avenue

Woodland Ave and Frost Ave are local streets providing access to existing residences in Woodlands of Garden Hill, a rural estates residential subdivision. These streets are municipal roads under the jurisdiction of the Municipality of Port Hope. The layout of the streets is illustrated in Exhibit
3. Frost Ave. will provide access to the apartment units in Garden Hill Estates. Woodland Ave will provide access to CR 9 and CR 10 for both components of the new subdivision via connections through Frost Ave and Porter Cres.

Woodland Ave and Frost Ave are representative of the streets in the Woodlands of Garden Hill subdivision. They have a rural open ditch crosssection with 6.9 m all-weather surface (2-lane) and $0.8-1.0 \mathrm{~m}$ gravel shoulders.

2.3.5 The Mill Street/CR 9 Intersection

The Mill Street/CR 9 intersection is a four leg intersection with Two Way Stop Control (TWSC) with Stop signs on Mill Street as the minor approach. All four approaches have single through lanes with no auxiliary turning lanes. The east and west approaches (CR 9), carrying the higher volumes, have paved asphalt shoulders. To the east the paved shoulders run to the General Store and provide for parallel parking. To the west the paved shoulders run from Mill Street for about 200 m to the entrance to the Conservation Area. These paved shoulders provide an active transportation link connecting the core are of the traditional Garden Hill community to the Conservation Area. The current intersection approaches are illustrated in Exhibit 6.

Additional geometric details were collected for each of the intersection approaches during one of the site visits. These data included lane widths and approach grades that were subsequently used for input to the Synchro intersection analyses. These geometric data are summarized on the Synchro print-out sheets included in the Technical Appendix - Intersection Capacity Analyses.

2.3.6 The Woodland Ave/CR 9 Intersection

Woodland Ave. is the principal access from CR 9 into the Woodlands of Garden Hill residential subdivision. The intersection is located about 300 m west of the CR 10/CR 9 intersection. Woodland Ave forms a 3-leg intersection with CR 9. It has STOP-control on Woodland Ave. as the minor approach. All approaches are single lanes with no auxiliary turning lanes. The three approaches have rural open-ditch cross-sections as illustrated in Exhibit 7. In reviewing the exhibit it will be noted that Woodland Ave has boulevard splitting northbound and southbound traffic. The boulevard starts about 10 m from the north edge of CR 9 and runs an additional 15 m north.

The Woodland Ave site entrance geometric details were collected during one of the site visits. This information included data that were subsequently used for input to the Synchro intersection analyses. These geometric data are summarized on the Synchro print-out sheets included in the Technical Appendix - Intersection Capacity Analyses.

2.3.7 The CR 10/CR 9 Intersection

The CR 10/CR 9 intersection is a four leg intersection with Two Way Stop Control (TWSC) on CR 10 as the minor approach. All four approaches have single through lanes with no auxiliary turning lanes. The four quadrants of the intersection have concrete curb and gutter radii with paved asphalt maintenance strips. The curb and gutters drain into the adjacent open ditch sections on each of the intersection approaches. The current intersection approaches are illustrated in Exhibit 8.

The CR 10/CR 9 geometric details are summarized on the Synchro printout sheets included in the Technical Appendix - Intersection Capacity Analyses.

2.3.8 The Woodland Ave/CR 10 Intersection

Woodland Ave. has a northern access point to CR 10 (see Exhibit 3). This intersection is located about 600 m north of the CR 10/CR 9 intersection. The intersection will provide the Garden Hill Estates subdivision with access to CR 10 for traffic travelling north towards Peterborough County. It is a 3leg intersection with Woodland Ave forming the west approach. The intersection has STOP-control on Woodland Ave. as the minor approach. All approaches are single lanes with no auxiliary turning lanes. The three approaches have rural open-ditch cross-sections as illustrated in Exhibit 5. There are concrete curb and gutter radii on the Woodland Ave approach that drain into the adjacent open ditches.

The Woodland Ave/CR 10 geometric details are summarized on the Synchro print-out sheets included in the Technical Appendix - Intersection Capacity Analyses.

2.3.9 The Woodland Ave/Frost Ave Intersection

The Woodland Ave/Frost Ave. intersection has been included in the study analyses as a surrogate for the intersections within the Woodlands of Garden Hill subdivision. It has been evaluated to assess the potential impacts of new site traffic from the Garden Hills Estate subdivision. Woodland Ave/Frost Ave is a 3-leg intersection with stop control on Frost

Ave as the minor approach. All approaches have a rural open-ditch crosssection with all-weather road platforms and grassed ditches/berms.

Intersection geometric details are summarized on the Synchro print-out sheets included in the Technical Appendix - Intersection Capacity Analyses.

2.4 Current Traffic Data

Tranplan Associates staff reviewed the collection of the required 2021 traffic data with County and Municipal staff and the study team. The discussions covered peak periods to be included in the analyses and field collection of the traffic count data. It was determined that current September 2021 weekday peak periods would be acceptable for the traffic study analyses.

Tranplan Associates staff completed representative weekday peak period traffic counts on Tuesday/Wednesday September 28/29, 2021. These count data were collected at four study intersections as follows:

- Mill Street \& CR 9
- Woodland Ave \& CR 9
- CR 10 \& CR 9
- Woodland Ave \& CR 10

Copies of these count data are included in the Technical Appendix - Traffic Data. Peak hour turning volumes for the Woodland Ave/Frost Ave were estimated from the Woodland Ave approach volumes at CR 9 and CR 10 and the number adjacent residential units on these roads.

The observed peak hour volumes were collated and adjusted to produce "balanced" volumes between the intersections. The adjustment process consisted of factoring observed volumes of adjacent intersections to the higher of the two adjacent sets of volumes. This process produced 2021 Design Hour Volumes (DHV) for the AM and PM peak hour periods. Since the counts were taken during a non-lockdown period, no adjustments were made to the observed peak hour volumes. The observed peak hour data from the counts and the DHV are illustrated in Exhibits 9A \& 9B. These DHV formed the base for forecasting future 2032 background and total peak hour volumes.

2.5 Current Traffic Operations

Detailed intersection capacity analyses were carried out based on the current 2021 DHV (see Exhibits $9 A \& 9 B$) for the five existing intersections as described in Section 1.1. The analyses applied the current Highway Capacity Manual (HCM)
methodologies for intersection analyses using Trafficware's Synchro 10 software. The parameters for the intersection analyses were derived as follows:

- Intersection geometrics were taken from the observed field data collected during the site visits.
- Peak hour factors (phf) were based on the Synchro recommended factors for the peak hour approach volumes ${ }^{2}$.
- Observed pedestrian volumes were rounded up to the nearest 5 pedestrians
- Observed cyclist volumes were rounded up to the nearest 5 bicycles
- Percent heavy trucks were rounded up to the next 5\%

These parameters were held constant for the 2021 and 2032 analyses so that any change in intersection performance could be attributed to the changes in the assigned volumes.

Based on the representative 2021 weekday AM and PM design hour volumes (DHV), all critical movements at the five study intersections presently operate at LoS "B" or better. Drivers at these intersections face little delay. All movements at the study intersections have considerable residual capacity for growth in future traffic. More detailed summaries of the intersections' critical movements are provided in Table 3. The full Synchro printouts of the weekday 2021 intersection capacity analyses for the five existing intersections are included in the Technical Appendix - Intersection Capacity Analyses.

[^1]
3. THE PROPOSED DEVELOPMENT

3.1 Trip Generation Forecasts

The traffic analyses for the Garden Hill Estates Residential Subdivision were based on 50 new building lots for single family dwelling units and a single building with 10 apartment units. The layout of the proposed subdivision will have individual lots fronting on a new Street "A" and a supporting Street "B" as illustrated in Exhibit 2. Street "A" will provide the main access to CR 9. Both streets will terminate in culs-de-sac at the north end of the site. The 10 unit apartment building to be located on Lot 44 on the east side of the water course and will access Frost Ave. It will have connectivity to CR 9 and CR 10 via Woodland Ave.

Site trip generation forecasts were computed based on rates taken from the current Institute of Transportation Engineers (ITE) Trip Generation Manual (11 ${ }^{\text {th }}$ ed.). The selected land uses were Single-Family Detached Housing (LU 210) and Multifamily Housing (Low Rise) (LU 220). Two options are available for calculating site trip generation for many of the common land uses. The first is a statistically derived equation and the second is a computed average trip rate. The current ITE Trip Generation Handbook ($3^{\text {rd }}$ ed.) lays out the procedure for selecting either the equation or average rate for determining future site trip generation. Following this process LU 210 was computed using the equations for the AM and PM peak hours. The average rate method was selected for LU 220. The main reason for applying the average rate for LU 220 is that there will only be 10 apartment units and this number of units is below the boundary of the equation for that land use. Table 1 following, summarizes the site trip generation by land use type for the Garden Hill Estates subdivision.

Table 1: Weekday Peak Hour Site Trip Generation (vph)

Garden Hill Estates Subdivision Residential Categories	Units	AM Peak Hour			PM Peak Hour		
		$\mathrm{In}^{\text {A }}$	Out	Total	$1 \mathrm{I}^{\text {A }}$	Out	Total
Residential Units (LU 210 - equation)	50	10	30	40	33	19	52
Apartment Units (LU 220 - avg. rate)	10	1	3	4	3	2	5
Total	60	11	33	44	36	21	57

A - In/out distribution split based on ITE surveys for LU 210.
The proposed development is forecast to generate a total of 44 new vehicle trips during a weekday AM peak hour and 57 new vehicle trips during a weekday PM peak hour. The forecast future traffic volumes during the PM peak hour will be, on the average less than 1 new vehicle trip every minute added to adjacent travel corridors. This will have little impact on future traffic operations on the existing road network. Since the proposed development is a residential subdivision, no trip volume reductions were made for "linked trips", "diverted trips" or "pass-by" trips.

3.2 Site Trip Distribution

There are four potential "gateways" to the study site as listed following:

- CR 10 North
- CR 10 South
- CR 9 East
- CR 9 West

The distribution of future Garden Hill Estates site traffic was derived from the observed distribution of site traffic from the Woodlands of Garden Hill subdivision. Both the existing and future subdivision will share similar land use characteristics, development and travel patterns.

The observed individual turning movements to/from Woodland Ave to CR 9 and CR 10 were extracted from the observed traffic counts (see Exhibits 9A \& 9B) for each peak hour period. Based on the total observed Woodlands of Garden Hill peak hour trip generation, the percent trip distribution was computed for travel to/from each gateway. The split/distribution of site traffic at the CR 10/CR19 intersection was guided by the turning volumes at the intersection. The resulting assumed weekday trip distributions are summarized in Table 2 following.

Table 2: Weekday Peak Hour Site Trip Distribution

	AM Peak Hour		PM Peak Hour	
Gateway	Inbound	Outbound	Inbound	Outbound
CR 10 North	20%	18%	20%	12%
CR 10 South	20%	27%	30%	34%
CR 9 East	20%	19%	20%	20%
CR 9 West	40%	36%	30%	34%
	Total	$\mathbf{1 0 0 0} \%$	$\mathbf{1 0 0} \%$	$\mathbf{1 0 0} \%$

It is noted that there are some differences in the distribution of travel between the AM and PM peak hour periods. Some of this can be attributed to the different composition of trip purposes in each of the peak hour periods. The future AM peak hour will be comprised mostly of work trips and school trips. However, there will be a greater mix of other trip purposes during the PM peak hour.

Site traffic was assigned to adjacent roads and intersections based on the "shortest route" from the new subdivision to each of the "gateways".

4. FUTURE CONDITIONS

4.1 Future Background Traffic

Future background traffic forecasts were developed for a 10 year planning horizon to 2032. It is assumed that site build out will occur over the next few years. The 10 year planning horizon will allow for planning approvals, build out of the study site and time for additional growth in background traffic. A 2% annual traffic growth rate is commonly applied to background traffic forecasts for traffic studies in Northumberland County. While it can overstate the historic growth rates in the more rural areas of the County, it is considered appropriate for use in these traffic studies. The 2\% per year (compounded) traffic growth factor was applied to the 2021 design hour volumes as illustrated in Exhibits 9A \& 9B to forecast 2032 weekday AM and PM background peak hour volumes.

4.2 Future Total Traffic

The 2032 total weekday peak hour volumes for the study road network were computed by adding the new subdivision traffic to 2032 background traffic. The new site traffic was distributed to the study road network based on the assumptions described in Section 3.2. The resulting total peak hour volumes are illustrated in Exhibits 10A \& 10B-2032 Total Peak Hour Volumes. The assigned site traffic volumes are also illustrated in these exhibits.

4.3 Weekday Site Traffic Impacts

Detailed intersection capacity analyses were carried out to assess the impact of future site traffic on the study intersections. This was done using current 2010 HCM intersection capacity analyses as contained in Trafficware's Synchro 10 software. The weekday analyses were based on the 2032 total weekday peak hour volumes as illustrated in Exhibits 10A \& 10B. Table 3 below summarizes the weekday peak hour performance of the critical intersection movements in the six study intersections as measured by the three (3) HCM-defined measures of effectiveness (moe). The results of the 2021 capacity analyses have also been included in this summary table. This allows for a direct comparison in changes of LoS over the 11 year period from the 2021 Design Hour Volumes to the 2032 planning horizon.

In reviewing Table 3 it can be seen that during weekday peak hour periods, future site traffic will have little impact on the overall performance of the adjacent intersections. During 2032 weekday peak hour periods, drivers passing through the six study intersections will face acceptable levels of delay.

Table 3: Summary - Study Intersections Critical Movement Capacity Analyses

Mill Street/CR 9						
	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue ${ }^{\text {A }}$	LoS (Delay)	Vol/Cap	Queue ${ }^{\text {A }}$
2021 Design Hr Vol	SB LTR "A/B" (10.0s)	0.01	0 veh	SB LTR "B" (11.3s)	0.01	0 veh
2032 Backgrd Vol	SB LTR "A/B" (10.4s)	0.01	0 veh	SB LTR "B" (12.2s)	0.01	0 veh
2032 Total Peak Hr	SB LTR "A/B" (10.6s)	0.01	0 veh	SB LTR "B" (12.5s)	0.01	0 veh
Site Entrance/CR 9						

	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$	LoS (Delay)	Vol/Cap $^{\text {Queue }^{\text {A }}}$	
2032 Total Peak Hr	SB LR "A/B" (10.2s)	0.04	0.1 veh	SB LR "B" (12.2s)	0.04	0.1 veh
Woodland Ave/CR 9						

	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$
2021 Design Hr Vol	SB LR "A/B" (9.4s)	0.01	0 veh	SB LR "A/B" (10.3s)	0.02	0.1 veh
2032 Backgrd Vol	SB LR "A/B" (9.7s)	0.02	0.1 veh	SB LR "A/B" (11.0s)	0.03	0.1 veh
2032 Total Peak Hr	SB LR "A/B" (9.8s)	0.02	0.1 veh	SB LR "B" (11.2s)	0.03	0.1 veh

CR 10/CR 9

	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue $^{\mathrm{A}}$	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$
	SB LTR "B" (11.0s)	0.11	0.4 veh	NB LTR "B" (13.1s)	0.20	0.7 veh
2032 Backgrd Vol	SB LTR "B" (11.7s)	0.14	0.5 veh	NB LTR "B/C" (15.4s)	0.29	1.2 veh
2032 Total Peak Hr	SB LTR "B" (11.9s)	0.15	0.5 veh	NB LTR "C" (16.4s)	0.32	1.4 veh

	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$
	EB LR "A/B" (9.2s)	0.01	0 veh	EB LR "A/B" (9.3s)	0.01	0 veh
2032 Backgrd Vol	EB LR "A/B" (9.4s)	0.01	0 veh	EB LR "A/B" (9.3s)	0.01	0 veh
2032 Total Peak Hr	EB LR "A/B" (9.6s)	0.02	0 veh	EB LR "A/B" (9.6s)	0.01	0 veh

Frost Ave/Woodland Ave

	AM Peak Hour - Critical Movement			PM Peak Hour - Critical Movement		
	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$	LoS (Delay)	Vol/Cap	Queue $^{\text {A }}$
2032 Backgrd Vol	EB LR "A" (8.6s)	0.003	0 veh	EB LR "A" (8.5s)	0.01	0 veh
2032 Total Peak Hr	EB LR "A" (8.6s)	0.01	0 veh	EB LR "A" (8.5s)	0.01	0 veh

A - Queue is the $95^{\text {th }}$ percentile vehicle queue length measured in vehicles.

During future 2032 Total Peak Hour periods the critical turning movements at five of the six study intersections are forecast to operate at LoS "B" or better. This is considered to be a very good LoS for AM and PM peak hour conditions. The exception is the CR 10/CR 9 intersection. During the 2032 PM peak hour (total traffic) the northbound approach is forecast to operate at LoS "C" just beyond the boundary of LoS "B". This is considered a good LoS for suburban peak hour conditions. With a forecast maximum volume/capacity ratio of 0.32 on the south approach (northbound), there will be considerable residual capacity for future growth in site and background traffic.

In reviewing Table 3, it is noted that the combined growth in background traffic plus new site traffic during the 2032 PM peak hour will increase average driver delay about 1.0 second at the critical northbound movement at the CR 10/CR 9 intersection. The increase will be less for critical movements at the other five intersections. Based on the volume to capacity ratios listed in Table 3 there will be considerable residual capacity in the adjacent intersections and road corridors to accommodate traffic from the Garden Hill Estates Residential Subdivision.

The critical southbound movement at the new site entrance from Street "A" to CR 9 is forecast to operate at LoS "B" or better during 2032 weekday peak hour periods. Drivers accessing the CR 9 will face acceptable levels of delay. There will be considerable residual capacity for future growth in background traffic on CR 9 corridor beyond the 2032 planning horizon.

Detailed printouts of the capacity analyses summarized in Table 3 are included in the Technical Appendix - Intersection Capacity Analyses.

4.4 Auxiliary Lane Warrant Analyses

Auxiliary lane warrant analyses were carried out for each of the six study intersections to determine the need for auxiliary right and left turn lanes at the study intersections. Current Ministry of Transportation Ontario (MTO)/Transportation Association of Canada (TAC) criteria, standards, and procedures for the left turn lane warrant analyses were used for the assessments. The analyses were based on 2032 total peak hour volumes as illustrated in Exhibits 10A \& 10B. Based these analyses there are no warrants for new left turn lanes at any of the existing study intersections. Details of the left turn lane analyses are contained in the Technical Appendix - Auxiliary Lane Warrant Analyses.

Current MTO/TAC standards and guidelines do not provide a specific warrant procedure for assessing the need for right turn tapers/lanes. Right turn lane warrant analyses were carried out for the six study intersections applying the
current Virginia Department of Transportation (VDOT) right turn lane warrant procedures. This right turn lane warrant methodology has been used in a number of other traffic studies submitted to Northumberland County and the Municipality of Port Hope and found acceptable. The analyses were based on the forecast 2032 Total AM and PM peak hour volumes as illustrated in Exhibits 10A \& 10B. No warrant was found for new right turn lanes or tapers at the six study intersections for either 2032 weekday peak hour period. A summary of the right turn lane warrant analyses and a copies of the VDOT calculation sheet/nomographs used for the analyses are included in the Technical Appendix - Auxiliary Lane Warrant Analyses.

4.5 Future Site Access

Access to the Garden Hill Estates Residential Subdivision will be provided by a new local street, Street "A" running north from CR 9 (see Exhibit 2). At the County's request, the Street "A" intersection has been located to provide 200 m of separation from Mill Street[co1], a local street located west of the new Street "A" intersection.

Street "A" will provide access to lots along the east side of the subdivision. This access will be supplemented with an eastern connection to Porter Crescent/CR 10 (see Exhibit 3). A new Street "B" connecting to Street "A" will provide access to lots on the western side of the subdivision. Both streets will terminate in culs-desac at the north end of the study site. The southeastern corner of the subdivision is separated from the main subdivision by a watercourse. This corner of the subdivision will contain a 10 unit apartment building. [co2]Access to this part of the development will be provided by an extension of Frost Ave.

There are no sight line restrictions from Street "A" to the west along CR 9. There is clear visibility to the Mill Street intersection. To the east along CR 9 (see Exhibit 4) sight lines along CR 9 are reduced by a relatively short crest vertical curve. Field measurements were carried out by the study team to determine the available sight distance to the east. TAC criteria and field procedures were applied to measure available Intersection Sight Distance (ISD) and Stopping Sight Distance (SSD). The results of the field work are summarized in Table 4 following:

Table 4: Summary Street " A " Sight Lines

Sight Line	Required (80 kph)	Available	Residual
SSD to East \& to West	130 m	$150+\mathrm{m}$	$20+\mathrm{m}$
ISD to the West (Left Turn)	170 m	$200+\mathrm{m}$	$30+\mathrm{m}$
ISD to the East (Right Turn)	145 m	$180+\mathrm{m}$	$35+\mathrm{m}$

[^2][^3]Given the available residual sight distances, the future Street "A" intersection will have acceptable sight lines along the CR 9 corridor. The new Street " A " entrance on the north side of CR 9 will likely require a "fill" approach (see Exhibit 4). The vertical alignment of the approach should include an appropriate "platform" for vehicles on the Street "A" approach to queue before entering CR 9.

Based on the auxiliary lane warrant analyses completed for the new Street "A"/CR 9 intersection, there will be no requirement for an eastbound left turn lane on CR 9 or a westbound right turn lane or taper. Right turn "roundings" with appropriate radiused curbing meeting County and Municipal standards, will accommodate vehicles entering/exiting Street "A" from CR 9. The curb[co3] radii should be designed to accommodate delivery vehicles, municipal service vehicles, EMS vehicles, school buses and vehicles supporting handicapped access.

4.6 Active Transportation Links

The new subdivision will include pathways throughout the wetland compensation area and around the storm water retention pond(s) (see Exhibit 2). It is understood that the County is undertaking an Environmental Assessment (EA) study for the CR 9 corridor through Garden Hill. The County's current Transportation Master Plan (TMP) recommends that bike lanes be considered for any road reconstruction project. Plans for the new subdivision should consider appropriate active transportation connections within the new subdivision as well as connectivity to Woodlands of Garden Hill and the traditional areas of the Garden Hill Community including the General Store, Farmers Market, and Conservation Area. It is expected that concepts for future transportation links will be developed as part of the formal public consultation process to align with the requirements of the local residents and appropriate County and Municipal policies.

It is recommended that any active transportation linkages should be constructed during the first phase of site development so that they are available to new residents when they move into the subdivision. This will help to encourage nonauto travel for local trips within the community and reduce auto trip-dependency particularly during peak periods of traffic demand.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The following conclusions have been drawn from the traffic impact analyses completed for the proposed Garden Hill Estates Residential Subdivision. They include:

- The present (2021) study road network operates at a good LoS during weekday peak hour periods with residual capacity for future growth in traffic. Critical movements at the five study intersections during weekday peak hour periods operate a LoS "B" or better.
- Based on 2032 weekday peak hour conditions, no geometric improvements will be required at the five existing study intersections. The auxiliary lane warrant analyses for these intersections found that there is no requirement for either left turn lanes on or right turn tapers/lanes to support future 2032 peak hour traffic.
- The auxiliary lane warrant analyses for the new Street "A" site entrance intersection with CR 9 determined that there is no requirement for an eastbound left turn lane on CR 9 or a westbound right turn taper/lane to support access to new subdivision.
- Drivers accessing CR 9 from Street "A" at the new subdivision will experience acceptable delay when entering the CR 9 corridor.
- Based on an 80 kph design speed (20 kph over posted), available Intersection Sight Distance (ISD) and Stopping Sight Distance (SSD) at the new Street "A" entrance to CR 9 will meet/exceed current 2017 TAC requirements for both ISD and SSD.
- During future 2032 Total weekday peak hour periods, all traffic movements at the six study intersections are forecast to operate at Level of Service (LoS) "C" or better (see Table 3). This is considered a good LoS for peak hour traffic conditions.
- There will be considerable residual capacity at the study intersections to support future growth in traffic beyond the 2032 planning horizon.

5.2 Recommendations

The following recommendations have been developed from the study analyses and conclusions:

- The new subdivision access via Street "A", Street "B" and the internal road intersections (see Exhibit 2), should be constructed to current Northumberland County and Municipal of Port Hope standards for a local streets and intersections serving a rural residential subdivision.
- The Street "A" site entrance to CR 9 should be designed with appropriate curb radii, to accommodate commercial delivery vehicles, school buses, municipal service vehicles, EMS vehicles and vehicles supporting handicapped access.
- Active transportation links for the new subdivision should be developed to provide pedestrian/cycling facilities within the subdivision and connectivity to adjacent residential and commercial activities in the Garden Hill community. It is expected that planning for such facilities will be coordinated with the approving agencies and include community input.
- As required, all signage and pavement markings should be constructed in accordance with the guidance provided in the Ontario Traffic Manual (OTM) and the Manual of Uniform Traffic Control Devices of Canada (MUTCDC).

Study analyses have shown the existing road network has the capacity to accept future site traffic from the Garden Hill Estates Residential Subdivision. With the new site entrance and roadways constructed to current Northumberland County and Municipal of Port Hope standards, future site traffic will have an acceptable impact on adjacent roads and intersections. No other new road infrastructure will be required to support traffic from the Garden Hill Estates Residential Subdivision.

REPORT EXHIBITS

Exhibit 2

Preliminary Site Plan

Exhibit 3 Site Context

Exhibit 4 CR 9 at Future Site Entrance

CR 9 Looking East from Future Site Entrance

CR 9 Looking West from Future Site Entrance

Exhibit 5
 CR 10 and Woodland Ave

CR 10 Looking North at Woodland Ave

CR 10 Looking West at Woodland Ave

Exhibit 6

CR 9 and Mill Street

CR 9 at Mill St Looking East

Mill Street Looking North at CR 9

Exhibit 7
 Woodland Ave and CR 9

CR 9 Looking North at Woodland Ave

CR 9 Looking West at Woodland Ave

Exhibit 8
 CR 10 and CR 9

CR 9 Looking West at CR 10

CR 10 Looking North at CR 9

TECHNICAL APPENDIX

Intersection Capacity Analyses

DEFINITION OF LEVELS OF SERVICE
 Automobile Mode

UNSIGNALIZED INTERSECTIONS

Analysis of the Level of Service for unsignalized intersections is based on the Highway Capacity Manual (HCM 2010) procedures using current software for unsignalized intersections. The Level of Service for intersections is based on Control Delay. At two way stop controlled intersections (TWSC), Control Delay is the total elapsed time from a vehicle joining the queue until its departure from the stopped position at the head of the queue. The Control Delay includes the time required to decelerate to a stop and to accelerate to the free-flow speed.

The analysis of individual movements at TWSC intersections can also include the estimate of the ratio of volume or demand to available capacity for the movements. This is commonly know as the (v / c) ratio. The v / c ratio provides some indication of how well these individual intersection movements will function during peak hour periods.

Level of Service definitions for unsignalized intersections as defined by the Highway Capacity Manual are summarized in the table below.

Definition of Level of Service for Unsignalized Intersections (see Exhibit 19-1, Highway Capacity Manual 2010)

Level of Service	Average Delay (seconds)
A	$0-10$
B	$>10-15$
C	$>15-25$
D	$>25-35$
E	$>35-50$
F	More than 50 s and/or $\mathrm{v} / \mathrm{c}>1$

Level of Service (LoS) for a TWSC intersection is determined by the computed or measured Control Delay and is defined for each minor movement at the intersection. LoS is not defined for the major street approaches or the intersection as a whole. LoS "F" is considered to be undesirable for design or planning purposes. However, many individual turning movements at TWSC intersections and commercial entrances along urban arterial corridors operate at LoS "F" during peak hour periods.

Intersection												
Int Delay, s/veh	0.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			*			\uparrow	
Traffic Vol, veh/h	1	94	2	3	88	1	5	1	4	1	1	1
Future Vol, veh/h	1	94	2	3	88	1	5	1	4	1	1	1
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	3	-	-	-3	-	-	3	-	-	4	-
Peak Hour Factor	78	87	78	78	87	78	78	78	78	78	78	78
Heavy Vehicles, \%	2	10	5	5	10	2	5	2	5	2	2	2
Mvmt Flow	1	108	3	4	101	1	6	1	5	1	1	1

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\&			\&	
Traffic Vol, veh/h	1	210	2	2	126	2	1	1	2	1	1	1
Future Vol, veh/h	1	210	2	2	126	2	1	1	2	1	1	1
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	3	-	-	-3	-	-	3	-	-	4	-
Peak Hour Factor	78	87	78	78	87	78	78	78	78	78	78	78
Heavy Vehicles, \%	2	10	5	5	10	2	5	2	5	2	2	2
Mvmt Flow	1	241	3	3	145	3	1	1	3	1	1	1

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	106	0	-	0	228	111
Stage 1	-	-	-	-	106	-
Stage 2	-	-	-	-	122	-
Critical Hdwy	4.12	-	-	-	6.82	6.42
Critical Hdwy Stg 1	-	-	-	-	5.82	-
Critical Hdwy Stg 2	-	-	-	-	5.82	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1485	-	-	-	741	936
Stage 1	-	-	-	-	908	-
Stage 2	-	-	-	-	891	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1479	-	-	-	734	928
Mov Cap-2 Maneuver	-	-	-	-	734	-
Stage 1	-	-	-	-	903	-
Stage 2	-	-	-	-	887	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		9.4	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1479	-	-	-	830
HCM Lane V/C Ratio		0.002	-	-	-	0.014
HCM Control Delay (s)		7.4	0	-	-	9.4
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection							
Int Delay, s/veh	0.4						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		${ }_{1}$	个		*		
Traffic Vol, veh/h	3	210	125	6	5	5	5
Future Vol, veh/h	3	210	125	6	5	5	5
Conflicting Peds, \#/hr	5	0	0	5	5	5	5
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage, \#		0	0	-	0		-
Grade, \%	-	-3	3	-	2	-	-
Peak Hour Factor	78	87	87	78	78	78	
Heavy Vehicles, \%	2	10	10	2	2	2	2
Mvmt Flow	4	241	144	8	6	6	6

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	Mr		\uparrow			$\neq 1$
Traffic Vol, veh/h	2	1	58	1	2	43
Future Vol, veh/h	2	1	58	1	2	43
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	3	1	70	1	3	52

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	Mr		\uparrow			$\neq 1$
Traffic Vol, veh/h	2	3	63	4	1	99
Future Vol, veh/h	2	3	63	4	1	99
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	3	4	76	5	1	119

Intersection							
Int Delay, s/veh	0.5						
Movement E	EBL	EBT	WBT	WBR	SBL		
Lane Configurations		${ }_{*}$	\uparrow		*		
Traffic Vol, veh/h	2	121	108	1	5	6	
Future Vol, veh/h	2	121	108	1	5	6	
Conflicting Peds, \#/hr	5	0	0	5	5	5	
Sign Control Fr	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	-3	3	-	2	-	
Peak Hour Factor	78	87	87	78	78	78	
Heavy Vehicles, \%	2	10	10	2	2	2	
Mvmt Flow	3	139	124	1	6	8	

Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	130	0	- -	0	280	135
Stage 1	-	-	- -	-	130	-
Stage 2	-	-	- -	-	150	-
Critical Hdwy	4.12	-	- -	-	6.82	6.42
Critical Hdwy Stg 1	-	-	- -	-	5.82	-
Critical Hdwy Stg 2	-	-	- -	-	5.82	-
Follow-up Hdwy	2.218	-	- -	-	3.518	3.318
Pot Cap-1 Maneuver	1455	-	- -	-	688	907
Stage 1	-	-	- -	-	883	-
Stage 2	-	-	- -	-	863	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	1449	-	- -	-	681	899
Mov Cap-2 Maneuver	-	-	- -	-	681	-
Stage 1	-	-	- -	-	878	-
Stage 2	-	-	- -	-	860	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		9.7	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1449	析	-	-	785
HCM Lane V/C Ratio		0.002		-	-	0.018
HCM Control Delay (s)		7.5	-	-	-	9.7
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0		-	-	0.1

Intersection							
Int Delay, s/veh	0.4						
Movement E	EBL	EBT	WBT	WBR	SBL		
Lane Configurations		${ }_{*}$	\uparrow		*		
Traffic Vol, veh/h	4	261	155	7	6	6	
Future Vol, veh/h	4	261	155	7	6	6	
Conflicting Peds, \#/hr	5	0	0	5	5	5	
Sign Control Fr	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	-3	3	-	2	-	
Peak Hour Factor	78	87	87	78	78	78	
Heavy Vehicles, \%	2	10	10	2	2	2	
Mvmt Flow	5	300	178	9	8	8	

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	192	0	-	0	503	193
Stage 1	-	-	-	-	188	-
Stage 2	-	-	-	-	315	-
Critical Hdwy	4.12	-	-	-	6.82	6.42
Critical Hdwy Stg 1	-	-	-	-	5.82	-
Critical Hdwy Stg 2	-	-	-	-	5.82	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1381	-	-	-	500	839
\quad Stage 1	-	-	-	-	827	-
Stage 2	-	-	-	-	714	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1375	-	-	-	494	832
Mov Cap-2 Maneuver	-	-	-	-	494	-
Stage 1	-	-	-	-	820	-
Stage 2	-	-	-	-	711	-

Approach	EB	WB	SB
HCM Control Delay, s	0.1	0	11
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1375	-	-	-620
HCM Lane V/C Ratio	0.004	-	-	-0.025
HCM Control Delay (s)	7.6	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Intersection												
Int Delay, s/veh	4.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			4			\$	
Traffic Vol, veh/h	12	106	7	1	87	7	12	36	7	9	55	10
Future Vol, veh/h	12	106	7	1	87	7	12	36	7	9	55	10
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	2	-	-	-2	-	-	-3	-	-	2	-
Peak Hour Factor	83	87	83	83	87	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	10	5	5	10	5	5	5	5	5	5	5
Mvmt Flow	14	122	8	1	100	8	14	43	8	11	66	12

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			*			\uparrow	
Traffic Vol, veh/h	50	195	22	4	102	15	35	60	19	16	40	26
Future Vol, veh/h	50	195	22	4	102	15	35	60	19	16	40	26
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	2	-	-	-2	-	-	-3	-	-	2	-
Peak Hour Factor	83	87	83	83	87	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	10	5	5	10	5	5	5	5	5	5	5
Mvmt Flow	60	224	27	5	117	18	42	72	23	19	48	31

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	r		\uparrow			-
Traffic Vol, veh/h	2	1	72	2	2	53
Future Vol, veh/h	2	1	72	2	2	53
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	3	1	87	3	3	64

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	1	4	78	5	1	123
Future Vol, veh/h	1	4	78	5	1	123
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	1	5	94	6	1	148

Intersection						
Int Delay, s/veh	2.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			$\mathbf{4}$	F	
Traffic Vol, veh/h	1	4	4	7	9	1
Future Vol, veh/h	1	4	4	7	9	1
Conflicting Peds, \#/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	-4	-	-	2	-2	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	1	5	5	9	12	1

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			$\$$			\$	
Traffic Vol, veh/h	1	122	2	4	121	1	6	1	5	1	1	1
Future Vol, veh/h	1	122	2	4	121	1	6	1	5	1	1	1
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	3	-	-	-3	-	-	3	-	-	4	-
Peak Hour Factor	78	87	78	78	87	78	78	78	78	78	78	78
Heavy Vehicles, \%	2	10	5	5	10	2	5	2	5	2	2	2
Mvmt Flow	1	140	3	5	139	1	8	1	6	1	1	1

Intersection												
Int Delay, s/veh	0.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			4			\uparrow	
Traffic Vol, veh/h	1	272	2	2	165	2	1	1	2	1	1	1
Future Vol, veh/h	1	272	2	2	165	2	1	1	2	1	1	1
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	3	-	-	-3	-	-	3	-	-	4	-
Peak Hour Factor	78	87	78	78	87	78	78	78	78	78	78	78
Heavy Vehicles, \%	2	10	5	5	10	2	5	2	5	2	2	2
Mvmt Flow	1	313	3	3	190	3	1	1	3	1	1	1

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		Mr	
Traffic Vol, veh/h	4	124	115	4	14	11
Future Vol, veh/h	4	124	115	4	14	11
Conflicting Peds, \#/hr	5	0	0	5	5	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	-3	3	-	3	-
Peak Hour Factor	78	78	87	78	78	87
Heavy Vehicles, $\%$	2	10	10	2	2	2
Mvmt Flow	5	159	132	5	18	13

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	\uparrow		Mr	
Traffic Vol, veh/h	10	266	163	17	10	7
Future Vol, veh/h	10	266	163	17	10	7
Conflicting Peds, \#/hr	5	0	0	5	5	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	-3	3	-	3	-
Peak Hour Factor	78	78	87	78	78	87
Heavy Vehicles, $\%$	2	10	10	2	2	2
Mvmt Flow	13	341	187	22	13	8

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	214	0	-	0	575	208
Stage 1	-	-	-	-	203	-
Stage 2	-	-	-	-	372	-
Critical Hdwy	4.12	-	-	-	7.02	6.52
Critical Hdwy Stg 1	-	-	-	-	6.02	-
Critical Hdwy Stg 2	-	-	-	-	6.02	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	1356	-	-	-	436	818
\quad Stage 1	-	-	-	-	803	-
Stage 2	-	-	-	-	655	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1351	-	-	-	427	811
Mov Cap-2 Maneuver	-	-	-	-	427	-
Stage 1	-	-	-	-	790	-
Stage 2	-	-	-	-	652	-

Approach	EB	WB	SB
HCM Control Delay, s	0.3	0	12.2
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1351	-	-	-	522
HCM Lane V/C Ratio	0.009	-	-	-0.04	
HCM Control Delay (s)	7.7	0	-	-12.2	
HCM Lane LOS	A	A	-	-	B
HCM 95th \%tile Q(veh)	0	-	-	-	0.1

Intersection							
Int Delay, s/veh	0.6						
Movement E	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		${ }_{1}$	\uparrow		*		
Traffic Vol, veh/h	3	135	112	1	6	7	7
Future Vol, veh/h	3	135	112	1	6	7	7
Conflicting Peds, \#/hr	5	0	0	5	5	5	5
Sign Control Fr	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage, \#	-	0	0	-	0		-
Grade, \%	-	-3	3	-	2	-	-
Peak Hour Factor	78	87	87	78	78	78	
Heavy Vehicles, \%	2	10	10	2	2	2	2
Mvmt Flow	4	155	129	1	8	9	9

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	135	0	-	0	303	140	
Stage 1	-	-	-	-	135	-	
Stage 2	-	-	-	-	168	-	
Critical Hdwy	4.12	-	-	-	6.82	6.42	
Critical Hdwy Stg 1	-	-	-	-	5.82	-	
Critical Hdwy Stg 2	-	-	-	-	5.82	-	
Follow-up Hdwy	2.218	-	-	-3.518	3.318		
Pot Cap-1 Maneuver	1449	-	-	-	666	901	
\quad Stage 1	-	-	-	-	878	-	
Stage 2	-	-	-	-	846	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1443	-	-	-	659	893	
Mov Cap-2 Maneuver	-	-	-	-	659	-	
Stage 1	-	-	-	-	872	-	
Stage 2	-	-	-	-	843	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	9.8
HCM LOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1443	-	-	-767
HCM Lane V/C Ratio	0.003	-	-	-0.022
HCM Control Delay (s)	7.5	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Intersection							
Int Delay, s/veh 0.5							
Movement E	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		${ }_{*} 1$	\uparrow		*		
Traffic Vol, veh/h	5	271	172	8	7	7	
Future Vol, veh/h	5	271	172	8	7	7	
Conflicting Peds, \#/hr	5	0	0	5	5	5	
Sign Control F	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storage, \#	-	0	0	-	0	-	
Grade, \%	-	-3	3	-	2	-	
Peak Hour Factor	78	87	87	78	78	78	
Heavy Vehicles, \%	2	10	10	2	2	2	
Mvmt Flow	6	311	198	10	9	9	

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	213	0	-	0	536	213	
Stage 1	-	-	-	-	208	-	
Stage 2	-	-	-	-	328	-	
Critical Hdwy	4.12	-	-	-	6.82	6.42	
Critical Hdwy Stg 1	-	-	-	-	5.82	-	
Critical Hdwy Stg 2	-	-	-	-	5.82	-	
Follow-up Hdwy	2.218	-	-	-3.518	3.318		
Pot Cap-1 Maneuver	1357	-	-	-	476	817	
\quad Stage 1	-	-	-	-	808	-	
Stage 2	-	-	-	-	704	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1351	-	-	-	470	810	
Mov Cap-2 Maneuver	-	-	-	-	470	-	
Stage 1	-	-	-	-	801	-	
Stage 2	-	-	-	-	701	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	11.2
HCM LOS			B

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	1351	-	-	-	595
HCM Lane V/C Ratio	0.005	-	-	-0.03	
HCM Control Delay (s)	7.7	0	-	-	11.2
HCM Lane LOS	A	A	-	-	B
HCM 95th \%tile Q(veh)	0	-	-	-	0.1

Intersection												
Int Delay, s/veh	4.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			\$			\$	
Traffic Vol, veh/h	12	112	16	1	89	7	14	36	7	9	55	10
Future Vol, veh/h	12	112	16	1	89	7	14	36	7	9	55	10
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	2	-	-	-2	-	-	-3	-	-	2	-
Peak Hour Factor	83	87	83	83	87	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	10	5	5	10	5	5	5	5	5	5	5
Mvmt Flow	14	129	19	1	102	8	17	43	8	11	66	12

Intersection												
Int Delay, s/veh	6.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\uparrow			\&	
Traffic Vol, veh/h	50	199	29	4	110	15	45	60	19	16	40	26
Future Vol, veh/h	50	199	29	4	110	15	45	60	19	16	40	26
Conflicting Peds, \#/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	2	-	-	-2	-	-	-3	-	-	2	-
Peak Hour Factor	83	87	83	83	87	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	10	5	5	10	5	5	5	5	5	5	5
Mvmt Flow	60	229	35	5	126	18	54	72	23	19	48	31

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	8	1	72	4	2	53
Future Vol, veh/h	8	1	72	4	2	53
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	10	1	87	5	3	64

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	SET	SER	NWL	NWT
Lane Configurations	M		\uparrow			†
Traffic Vol, veh/h	3	4	78	12	1	123
Future Vol, veh/h	3	4	78	12	1	123
Conflicting Peds, \#/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	2	-	-2	-	-	2
Peak Hour Factor	78	78	83	78	78	83
Heavy Vehicles, $\%$	10	10	10	10	10	10
Mvmt Flow	4	5	94	15	1	148

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	262	112	0	0	114	0
Stage 1	107	-	-		-	-
Stage 2	155	-	-	-	-	-
Critical Hdwy	6.9	6.5	-	-	4.2	-
Critical Hdwy Stg 1	5.9	-	-	-	-	-
Critical Hdwy Stg 2	5.9	-	-	-	-	-
Follow-up Hdwy	3.59	3.39	-	-	2.29	-
Pot Cap-1 Maneuver	690	914	-	-	1427	-
Stage 1	887	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	684	907	-	-	1421	-
Mov Cap-2 Maneuver	684	-	-	-	-	-
Stage 1	883	-	-	-	-	-
Stage 2	835	-	-	-	-	-
Approach	EB		SE		NW	
HCM Control Delay, s	9.6		0		0.1	
HCM LOS	A					
Minor Lane/Major Mvmt		NWL NWT EBLn1			SET	SER
Capacity (veh/h)		1421		796	-	-
HCM Lane V/C Ratio		0.001	-	0.011	-	-
HCM Control Delay (s)		7.5	0	9.6	-	-
HCM Lane LOS		A	A	A	-	-
HCM 95th \%tile Q(veh)		0	-	0	-	-

Traffic Data

Municipality: Township of Port Hope Weather: AM: Mainly Clear

Day: Wednesday Survey Date: September 29, 2021

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING		CAR \& PICKUP	RKUP	HEAVY Left Thru Right			Ped	Bike	CAR \& PICKUP			HEAVY Left Thru Right			Ped	Bike	CAR \& PICKUP		KUP Right	HEAVY Left Thru Right			Ped	Bike		Thru	KUP Right	Left	HEAV Thru	$\begin{aligned} & \hline \hline \text { R } \\ & \text { Right } \end{aligned}$	Ped	Bike		
7:00	0	0	0	0	0	0	0	0	0	16	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	1	0	0	0	25	0
7:15	1	0	0	0	0	0	0	0	0	33	0	0	2	0	0	0	0	0	1	0	0	0	0	0	0	8	0	0	2	0	0	0	47	0
7:30	0	0	0	0	0	0	0	0	0	32	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	1	0	0	0	46	0
7:45	0	0	0	0	0	0	0	0	1	24	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	14	0	0	3	0	0	0	44	0
8:00	1	0	1	0	0	0	4	0	0	21	0	0	2	0	1	0	2	0	0	0	0	0	0	0	0	16	1	0	4	0	0	0	47	5
8:15	0	0	0	0	0	0	0	0	1	20	0	0	1	0	0	0	1	0	3	0	0	0	0	0	0	18	1	1	4	0	0	0	50	0
8:30	0	0	0	0	0	0	0	0	1	17	0	0	2	0	0	0	1	1	1	0	0	0	0	0	0	23	0	0	7	0	0	0	53	0
8:45	0	0	1	0	0	0	0	0	0	21	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	12	1	0	3	0	0	0	38	0
9:00	0	0	0	0	0	0	0	0	2	27	1	0	3	0	0	0	1	0	1	0	0	0	0	0	0	20	0	0	0	0	0	0	55	0

North-South Road: Mill Street
East-West Road: Ganaraska Road/CR 9

Municipality: Township of Port Hope Weather: PM: Mainly Clear

Day: Tuesday
Survey Date: September 28,2021 E(1) ETOMplan

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING	CAR \& PICKUP Left Thru Right			HEAVYLeftThru Right			Ped	Bike	$\begin{gathered} \text { CAF } \\ \text { Left } \end{gathered}$	R \& Pl	CKUP		$\begin{aligned} & \text { HEAV } \\ & \text { Thru } \end{aligned}$	Right	Ped	Bike	CAR \& PICKUP			HEAVY		Right	Ped	Bike	CAR	Thru	$\begin{aligned} & \text { KUUP } \\ & \text { Right } \\ & \hline \end{aligned}$		HEAV	Right	Ped	Bike		
15:00	0	0	0	0	0	0	0	0	0	31	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	2	0	0	0	50	0
15:15	0	0	0	0	0	0	0	0	1	35	0	0	8	0	0	0	0	0	1	0	0	0	0	0	0	34	0	0	6	0	0	0	85	0
15:30	0	0	1	0	0	0	0	0	0	35	1	0	2	0	0	0	0	0	1	0	0	0	0	0	0	32	1	0	3	0	0	0	75	0
15:45	0	0	0	0	0	0	0	0	1	37	0	0	5	0	0	0	1	0	2	0	0	0	0	0	0	24	0	0	4	0	0	0	74	0
16:00	1	0	0	0	0	0	0	0	2	33	0	0	2	0	0	0	0	0	1	0	0	0	0	0	0	40	0	0	3	0	0	0	82	0
16:15	0	0	0	0	0	0	0	0	0	31	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	56	1	0	2	0	0	0	91	0
16:30	0	0	0	0	0	0	0	0	1	29	1	0	2	0	0	0	1	0	1	0	0	0	0	0	0	32	0	0	1	0	0	0	68	0
16:45	0	0	1	0	0	0	0	0	0	27	0	0	3	0	0	0	0	0	1	0	0	0	0	0	0	54	0	0	3	0	0	0	88	0
17:00	0	0	0	0	0	0	0	0	0	24	1	0	2	0	0	0	0	1	1	0	0	0	0	0	1	46	1	0	2	0	0	0	79	0
17:15	1	0	0	0	0	0	0	0	0	30	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	59	0	0	2	0	0	0	93	0
17:30	0	0	0	0	0	0	0	0	1	27	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	41	1	0	3	0	0	0	74	0
17:45	0	0	0	0	0	0	0	0	0	34	1	0	3	0	0	0	1	0	1	0	0	0	0	0	0	41	0	0	0	0	0	0	81	0
18:00	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	0	0	0	0	0	0	60	0

TURNING MOVEMENT DIAGRAMS

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING		CAR \& PICKUP	RUP	HEAVYLeftThru Right			Ped	Bike	CAR \& PICKUP			HEAVY Left Thru Right			Ped	Bike		CAR \& PICKUP			$\begin{aligned} & \hline \text { HEAV } \\ & \text { Thru } \end{aligned}$	Right	Ped	Bike		$\begin{aligned} & \text { R \& PIC } \\ & \text { Thru } \end{aligned}$	$\begin{aligned} & \text { CKUP } \\ & \text { Right } \end{aligned}$	Left		$\begin{aligned} & \hline \hline \text { Y } \\ & \text { Right } \end{aligned}$	Ped	Bike		
7:00	0	0	1	0	0	0	0	0	0	15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	1	0	0	0	24	0
7:15	0	0	1	0	0	1	0	0	0	32	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	2	0	0	0	45	0
7:30	0	0	0	0	0	0	0	0	0	32	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	1	0	0	0	46	0
7:45	0	0	0	0	0	0	0	0	0	24	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	3	0	0	0	42	0
8:00	0	0	2	0	0	0	0	0	0	20	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	4	0	0	0	43	0
8:15	2	0	0	0	0	0	0	0	0	19	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	24	0	1	4	0	0	0	51	0
8:30	0	0	2	0	0	0	0	0	0	18	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	7	0	0	0	42	0
8:45	2	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	23	0	0	3	0	0	0	46	0
9:00	0	0	2	0	0	0	0	0	0	22	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	40	0

North-South Road: Woodland Avenue
East-West Road: Ganaraska Road/CR 9

Municipality: Township of Port Hope
Weather: PM: Mainly Clear

Day: Tuesday
Survey Date: September 28,2021 E(1) ETOMplan

Municipality: Township of Port Hope Weather: AM: Mainly Clear

Day: Wednesday survey Date: September 29, 2021

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING		CAR \& PICKUP	RUPht	HEAVY Left Thru Right			Ped	Bike	CAR \& PICKUP			HEAVY Left Thru Right			Ped	Bike	CAR \& PICKUP		$\begin{aligned} & \text { KUP } \\ & \text { Right } \end{aligned}$	HEAVY Left Thru Right			Ped	Bike		Thru	KUP Right	Left	HEAV	$\begin{aligned} & \hline \hline \text { VY } \\ & \text { Right } \end{aligned}$	Ped	Bike		
7:00	0	9	1	0	0	0	0	0	0	13	0	0	1	0	0	0	1	11	0	0	0	0	0	0	1	5	1	0	1	0	0	0	44	0
7:15	0	10	1	0	0	0	0	0	0	29	0	0	2	0	0	0	2	9	1	0	0	0	0	0	1	7	0	0	2	0	0	0	64	0
7:30	1	10	1	0	0	0	0	0	0	29	0	0	3	0	0	0	2	8	1	0	0	0	0	0	0	9	1	0	1	0	0	0	66	0
7:45	0	11	1	0	0	0	0	0	0	20	0	0	1	0	0	0	3	7	0	0	0	0	0	0	2	11	1	0	3	0	0	0	60	0
8:00	1	9	2	0	0	0	0	0	0	15	2	0	2	0	0	0	3	10	1	0	0	0	0	0	2	14	1	0	4	0	0	0	66	0
8:15	2	12	2	0	0	0	0	0	0	14	1	0	1	0	0	0	3	1	2	0	0	0	0	0	3	19	2	1	4	0	0	0	67	0
8:30	1	11	2	0	0	0	0	0	0	15	2	0	2	0	0	0	1	3	2	0	0	0	0	0	1	13	1	0	7	0	0	0	61	0
8:45	1	8	1	0	0	0	0	0	0	13	1	0	0	0	0	0	3	12	1	0	0	0	0	0	2	19	2	0	3	0	0	0	66	0
9:00	1	9	2	0	0	0	0	0	0	18	1	0	3	0	0	0	2	1	2	0	0	0	0	0	1	12	2	0	0	0	0	0	54	0

North-South Road: County Road 10
East-West Road: Ganaraska Road/CR 9

Municipality: Township of Port Hope
Weather: PM: Mainly Clear

Day: Tuesday Survey Date: September 28, 2021

II(6) tronplan

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING	 CAR \& PICKUP Left Thru Right			HEAVY Left			Ped	Bike		CAR \& PICKUP			HEAVY Thru Right		Ped	Bike	CAR \& PICKUP Left Thru Right			HEAVY Left Thru Right			Ped	Bike	CAR	Thru	$\begin{aligned} & \hline \text { CKUP } \\ & \text { Right } \\ & \hline \end{aligned}$		HEAV Thru	Right	Ped	Bike		
15:00	1	6	2	0	0	0	0	0	1	23	2	0	3	0	0	0	6	3	2	0	0	0	0	0	2	11	1	0	2	0	0	0	65	0
15:15	1	5	3	0	0	0	0	0	2	20	1	0	8	0	0	0	9	4	2	0	0	0	0	0	6	25	3	0	6	0	0	0	95	0
15:30	2	8	4	0	0	0	0	0	1	22	2	0	2	0	0	0	9	5	1	0	0	0	0	0	6	23	3	0	3	0	0	0	91	0
15:45	1	5	5	0	0	0	0	0	1	23	2	0	5	0	0	0	9	3	3	0	0	0	0	0	4	18	2	0	4	0	0	0	85	0
16:00	3	5	3	0	0	0	0	0	0	20	1	0	2	0	0	0	9	4	1	0	0	0	0	0	8	28	4	0	3	0	0	0	91	0
16:15	4	6	2	0	0	0	0	0	1	22	2	0	1	0	0	0	5	6	2	0	0	0	0	0	12	38	6	0	2	0	0	0	109	0
16:30	7	12	2	0	0	0	0	0	1	19	3	0	2	0	0	0	5	10	3	0	0	0	0	0	10	34	6	0	1	0	0	0	113	0
16:45	3	3	6	0	0	0	1	0	1	16	3	0	3	0	0	0	6	15	4	0	0	0	0	0	12	33	6	0	3	0	0	0	108	1
17:00	2	8	6	0	0	0	0	0	1	19	2	0	2	0	0	0	6	12	3	0	0	0	0	0	9	35	3	0	2	0	0	0	104	0
17:15	1	9	5	0	0	0	0	0	0	17	4	0	1	0	0	0	9	10	5	0	0	0	0	0	5	40	2	0	2	0	0	0	105	0
17:30	1	5	2	0	0	0	0	0	2	15	1	0	1	0	0	0	6	8	1	0	0	0	0	0	8	28	7	0	3	0	0	0	86	0
17:45	2	2	3	0	0	0	1	0	3	13	1	0	3	0	0	0	3	8	2	0	0	0	0	0	9	26	5	0	0	0	0	0	77	1
18:00	0	7	3	0	0	0	2	0	2	11	2	0	0	0	0	0	2	6	2	0	0	0	0	0	6	20	5	0	0	0	2	0	63	4

TURNING MOVEMENT DIAGRAMS

Weather: AM: Mainly Clear survey Date: September 29, 2021

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING	CAR \& PICKUP Left Thru Right			HEAVY Left $\begin{array}{l}\text { Thru Right }\end{array}$			Ped	Bike	$\begin{array}{\|c} \hline \text { CAR } \\ \text { Left } \end{array}$	CAR \& PICKUP		HEAVY Left Thru Right			Ped	Bike	CAR \& PICKUP			HEAVY			Ped	Bike	CAR	CAR \& PICKUP			HEAV Thru	Right	Ped	Bike		
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	12	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27	0
8:15	0	16	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	4	0	1	2	0	0	0	1	0	0	1	0	0	0	0	29	0
8:30	0	14	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	2	0	0	0	0	0	0	0	0	0	0	0	23	0
8:45	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	0
9:00	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5	0	1	2	0	0	0	0	0	0	0	0	0	0	0	21	0

North-South Road: County Road 10
East-West Road: Woodland Avenue

Municipality: Township of Port Hope Weather: PM: Mainly Clear

Day: Tuesday Survey Date: September 28, 2021

II(6) tronplan

	NORTH APPROACH								EAST APPROACH								SOUTH APPROACH								WEST APPROACH								Total Vehicular Traffic	Total PED/BIKE Traffic
TIME BEGINNING	CAR \& PICKUP Left Thru Right			HEAVY Left Thru Right			Ped	Bike	CAF	CAR \& PICKUP			$\begin{aligned} & \hline \text { HEAV } \\ & \text { Thru } \end{aligned}$	Right	Ped	Bike	CAR Left	CAR \& PICKUP	$\begin{aligned} & \hline \text { CKUP } \\ & \text { Right } \\ & \hline \end{aligned}$			Right	Ped	Bike	CAR Left	R \& PIC	$\begin{aligned} & \hline \text { CKUP } \\ & \text { Right } \end{aligned}$			Right	Ped	Bike		
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	12	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	2	0	0	0	0	0	40	0
16:45	0	17	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	27	0	0	2	0	0	0	1	0	1	1	0	0	0	0	51	0
17:00	0	6	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	0
17:15	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	0	0	1	0	0	0	0	0	0	0	0	0	0	0	32	0
17:30	0	9	1	0	1	0	1	0	0	0	0	0	0	0	1	0	2	15	0	0	1	0	0	0	0	0	0	0	0	0	0	0	28	2
17:45	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	1	0	0	0	0	0	0	0	25	0
18:00	0	8	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	1	0	0	0	0	0	0	0	0	0	0	0	27	0

TURNING MOVEMENT DIAGRAMS

Auxiliary Lane Warrant Analyses

Left Turn Lane Warrant Evaluation Based on 2032 Total Peak Hour Volumes

1. Mill Street/CR 9 Intersection

AM Peak Hour
Westbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=126 \mathrm{vph}$
$V_{\mathrm{L}}=4 \mathrm{vph} \sim 3.2 \%$ Assume 5\% - See Nomograph
$\mathrm{V}_{\mathrm{O}}=125 \mathrm{vph}$
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=125 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=1 \mathrm{vph}<1 \%$ - No Warrant
$\mathrm{V}_{\mathrm{O}}=126 \mathrm{vph}$

PM Peak Hour
Westbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=169 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=2 \mathrm{vph} \sim 1.2 \%$ - No Warrant
$\mathrm{V}_{\mathrm{O}}=275 \mathrm{vph}$
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=275 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=1 \mathrm{vph}<1 \%$ No Warrant
$\mathrm{V}_{\mathrm{O}}=169 \mathrm{vph}$
2. New Site Entrance (Street "A")/CR 9 Intersection

AM Peak Hour
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=128 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=4 \mathrm{vph} \sim 3.1 \%$ - Assume 5\% - See Nomograph
$\mathrm{V}_{\mathrm{O}}=119 \mathrm{vph}$

PM Peak Hour
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=276 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=10 \mathrm{vph}$ ~3.6\% - Assume 5\% - See Nomograph
$\mathrm{V}_{\mathrm{O}}=180 \mathrm{vph}$
3. WoodLand Ave/CR 9 Intersection

AM Peak Hour
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=138 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=3 \mathrm{vph} \sim 2.2 \%$ No Warrant
$\mathrm{V}_{\mathrm{O}}=113 \mathrm{vph}$

PM Peak Hour

Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=276 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=5 \mathrm{vph} \sim 1.8 \%$ - No Warrant
$\mathrm{V}_{\mathrm{O}}=180 \mathrm{vph}$
4. CR 10/CR 9 Intersection

AM Peak Hour
Westbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=97 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=1 \mathrm{vph} \sim 1 \%$ - No Warrant
$\mathrm{V}_{\mathrm{O}}=140 \mathrm{vph}$
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=140 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=12 \mathrm{vph} \sim 8.6 \%-\mathrm{V}_{\mathrm{O}}<100 \mathrm{vph}-$ No Warrant
$\mathrm{V}_{\mathrm{O}}=97 \mathrm{vph}$

PM Peak Hour

Westbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=129 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=4 \mathrm{vph} \sim 3.1 \%$ - Assume 5\% - See Nomograph
$\mathrm{V}_{\mathrm{O}}=278 \mathrm{vph}$
Eastbound CR 9 Left Turns
$\mathrm{V}_{\mathrm{A}}=278 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=50 \mathrm{vph} \sim 18 \%$ - Assume 20\% - See Nomograph
$\mathrm{V}_{\mathrm{O}}=129 \mathrm{vph}$
5. Woodland Ave/CR 10 Intersection

AM Peak Hour
Northbound CR 10 Left Turns
$\mathrm{V}_{\mathrm{A}}=55 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=2 \mathrm{vph} \sim 4 \%$ - All approach volumes < 100 vph - No Warrant
$\mathrm{V}_{\mathrm{o}}=76 \mathrm{vph}$

PM Peak Hour

Northbound CR 10 Left Turns
$\mathrm{V}_{\mathrm{A}}=124 \mathrm{vph}$
$\mathrm{V}_{\mathrm{L}}=1 \mathrm{vph} \sim 0.8 \%$ - Opposing Volume < 100 vph - No Warrant
$\mathrm{V}_{\mathrm{O}}=90 \mathrm{vph}$
6. Frost Ave/Woodland Ave

All approach volumes < 10 vph during both 2032 peak hour periods No LT warrants for Woodland Ave

Left Turn Warrant Analysis Westbound CR 9 @ Mill Street 2032 Weekday AM Total Peak Hour

No Left Turn Lane Warrant

Left Turn Warrant Analysis Eastbound CR 9 @ New Site Entrance 2032 Weekday Total Peak Hour

Left Turn Warrant Analysis

Eastbound CR 9 @ CR 10 2032 Weekday Total PM Peak Hour

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{A}}=278 \mathrm{vph} \\
& \mathrm{VL}=50 \mathrm{vph} \sim 18 \% \mathrm{LT}
\end{aligned}
$$

No Left Turn Lane Warrant

Left Turn Warrant Analysis

Westbound CR 9 @ CR 10

 2032 Weekday Total PM Peak Hour
$\mathrm{V}_{\mathrm{A}}=129 \mathrm{vph}$
$\mathrm{VL}=4 \mathrm{vph} \sim 3.1 \% \mathrm{LT}$
No Left Turn Lane Warrant

Garden Hills Estate Subdivision

Right Turn Lane Warrant Evaluation Based on 2032 Total Peak Hour Volumes

1. Mill Street/CR 9 Intersection

AM Peak Hour \& PM Peak Hour
No eastbound or westbound right turn lanes or tapers required on CR 9 at this intersection. All Right Turns < 20 vph (see following VDOT Nomograph)
2. New Site Entrance (Street " A ")/CR 9 Intersection

AM Peak Hour \& PM Peak Hour
No eastbound or westbound right turn lanes or tapers required on CR 9 at this intersection. All Right Turns < 20 vph
3. WoodLand Ave/CR 9 Intersection

AM Peak Hour \& PM Peak Hour
No eastbound or westbound right turn lanes or tapers required on CR 9 at this intersection. All Right Turns < 20 vph
4. CR 10/CR 9 Intersection

AM Peak Hour
No eastbound or westbound right turn lanes or tapers required on CR 9 at this intersection during AM Peak Hour. All Right Turns < 20 vph

PM Peak Hour

Westbound CR 9 Right Turns < 20 vph - No Warrant
Eastbound CR 9 Right Turns
$\mathrm{V}_{\mathrm{A}}=278 \mathrm{vph}$
$V_{R}=29 \mathrm{vph}$ - No Warrant - See Nomograph
5. Woodland Ave/CR 10 Intersection

AM Peak Hour \& PM Peak Hour
No southbound right turn lanes or tapers required on CR 10 at this intersection. All Right Turns < 20 vph

6. Frost Ave/Woodland Ave

All approach volumes < 10 vph during both 2032 peak hour periods
No right turn lane or tapers required for this Woodland Ave intersection.

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

VDOT Guidelines for Right Turn Treatment Two Lane Highway

[^0]: ${ }^{1}$ See Technical Appendix - Intersection Capacity Analysis for definitions of Levels of Service.

[^1]: ${ }^{2}$ See Technical Appendix - Traffic Data for Summary of Synchro recommended peak hour factors.

[^2]: See TAC Reference ${ }^{3}$.

[^3]: ${ }^{3}$ See Table 9.9.4, Chapt. 9, Geometric Design Guide for Canadian Roads, TAC pub., 2017

