

# **Globe Cambridge High School**

## **PROPOSED SCHOOL DORMITORY BUILDING**

**39 PINE STREET NORTH**

**THE MUNICIPALITY OF PORT HOPE, ON. L1A 3G5**



## **PRELIMINARY FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT**

### **ZBA/SPA APPLICATION**

WPE PROJECT #:2021

JUN. 24, 2024



## REVISION HISTORY

| REVISION | DATE       | REVISION DETAILS   |
|----------|------------|--------------------|
| 00       | 2024-06-24 | Issued for ZBA/SPA |
|          |            |                    |
|          |            |                    |
|          |            |                    |
|          |            |                    |
|          |            |                    |
|          |            |                    |

## DISCLAIMER

This Report represents the work of WPE Engineering Ltd (“WPE”). This Report may not be relied upon for detailed implementation or any other purpose not specifically identified within this Report. This Document is confidential and prepared solely for the use of Globe Cambridge High School. Neither WPE, its sub-consultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any party other than Globe Cambridge High School for any information or representation herein.

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

## TABLE OF CONTENTS

|                                                                      | Page |
|----------------------------------------------------------------------|------|
| 1. INTRODUCTION .....                                                | 3    |
| 1.1 Scope of the SWM Report .....                                    | 3    |
| 1.2 Site Location .....                                              | 3    |
| 1.3 Stormwater Management Plan Objectives .....                      | 3    |
| 1.4 SWM Design Criteria .....                                        | 4    |
| 2. EXISTING CONDITIONS .....                                         | 5    |
| 2.1 General .....                                                    | 5    |
| 2.2 Rainfall Information .....                                       | 5    |
| 2.3 Allowable Flow Rate .....                                        | 6    |
| 3. POST-DEVELOPMENT CONDITIONS .....                                 | 6    |
| 3.1 General .....                                                    | 6    |
| 3.2 Groundwater Discharge .....                                      | 7    |
| 3.3 Water Quality Control .....                                      | 7    |
| 3.4 Water Quantity Control .....                                     | 8    |
| 3.5 Water Balance Management .....                                   | 8    |
| 4. SITE SERVICING .....                                              | 9    |
| 4.1 Sanitary Sewage .....                                            | 9    |
| 4.2 Storm Drainage .....                                             | 10   |
| 4.3 Water Supply .....                                               | 11   |
| 5. EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION .....            | 13   |
| 6. CONCLUSIONS .....                                                 | 13   |
| 6.1 Stormwater Management Plan .....                                 | 13   |
| 6.2 Site Servicing .....                                             | 13   |
| 6.3 Temporary Erosion and Sediment Control during Construction ..... | 14   |

### **DRAWING (APPENDIX F)**

|        |                                   |
|--------|-----------------------------------|
| FIG.02 | Existing Storm Drainage Area Plan |
| FIG.03 | Prop. Storm Drainage Area Plan    |
| C-1    | Site Grading Plan                 |
| C-2    | Site Servicing Plan               |
| C-3    | Standard Drawings and Details     |
| C-4    | Standard Drawings and Details     |
| C-5    | Standard Drawings and Details     |

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

**LIST OF TABLES**

|                                                 |   |
|-------------------------------------------------|---|
| TABLE 1 Pre-Development Peak Flow Rates.....    | 6 |
| TABLE 2 Stormwater Management Plan Summary..... | 8 |

**APPENDICES**

- A Stormwater Peak Flow and Storage Calculations; Stormwater Treatment Unit; Layfield Aquabox HP Details
- B Excerpts of Geotechnical Investigation
- C Sanitary Flow Estimate
- D Water Supply
- E Field Locates by Premier Locates
- F Figures and Drawings

## 1. INTRODUCTION

### 1.1 Scope of the SWM Report

WPE Engineering Limited has been retained by Globe Cambridge High School to prepare a Functional Servicing and Stormwater Management Report (FSR Report) for the proposed 5-storey dormitory building located at 39 Pine Street North in the Municipality of Port Hope. This FSR report shall:

- Examine the potential water quality, quantity, and water balance impacts of the proposed dormitory building and summarize how each will be addressed per the local municipal, regional, and the provincial design criteria.
- Provide designs of SWM measures.
- Review the water supply, storm and sanitary servicing requirements of the proposed building, and propose a preliminary site servicing plan.
- Review the capacity of existing sanitary sewers, storm sewers and water supply.

### 1.2 Site Location

The development site, located at 39 Pine Street North, is bounded by North Street to the north, Pine Street to the west, St. John's Anglican Church and Port Hope United Church to the south, and residential area to the east. The site is currently occupied by a 2-storey school, paved parking area and driveway, and large landscaped area in the backyard. The site generally slopes eastwards per the existing topography, extensive retaining walls along the site perimeters exist due to the substantial grade differences within the site and along the site perimeters. The property is approximately 0.53 Ha in area. Refer to **Figure 1** for the location of the development site.

### 1.3 Stormwater Management Plan Objectives

The objectives of the stormwater management plan are as follows:

- Determine site specific stormwater management requirements to ensure that the development project is in conformance with the Ganaraska Region Conservation Authority (GRCA) Technical Engineering Guidelines for Stormwater Management Submissions.
- Prepare a stormwater management design documenting the strategy

along with the technical information necessary for sizing the proposed stormwater management practices.



**FIGURE 1: SITE LOCATION**

#### **1.4 SWM Design Criteria**

The proposed stormwater management strategy for the proposed development has been prepared in accordance with the municipal and GRCA guidelines.

##### **Water Quantity Control:**

- Post-development flow to be less than or equal to pre-development flow for all storms up to a 100-year event. (Water Quality Control Criteria, Section 3 of GRCA Technical Engineering Guidelines for Stormwater Management Submissions)
- Post-development drainage boundaries shall follow the pre-development pattern (Water Quality Control Criteria, Section 3 of GRCA Technical Engineering Guidelines for Stormwater Management Submissions)

### **Water Quality Control:**

- All runoff from the site shall achieve a long-term average removal of 80% of Total Suspended Solids (TSS) on an annual loading basis to meet the water quality targets (Water Quality Control Criteria, Section 5.2 of GRCA Technical Engineering Guidelines for Stormwater Management Submissions).

## **2. EXISTING CONDITIONS**

### **2.1 General**

The site is currently zoned as Institutional Urban, and rezoning will be required for the proposed dormitory building,

The development site is currently occupied by an 2-storey school building with two entrances off Pine Street North. Majority of the front yard and back yard are grassed while the driveway and parking lot are paved.

Two catchbasins (EX.CB-2 & EX.CB-4), along the north-side property line, collect rainfall runoff from the site and discharges the same to existing 600mm dia. storm sewers on North Street.

No overland flow outlet to the municipal road is observed on the site. Refer to **Fig.02 (Appendix E)** for the existing storm drainage area plan.

On the basis of the topographic survey, an impervious percent of 57.5% and a runoff coefficient of 0.62 are estimated. See **Appendix A** for calculations.

### **2.2 Existing Municipal Services**

Through discussion with the municipality, there is no as-built records of municipal services along the surrounding roads, and Premier Locates Inc. was retained to undertake the field investigation of all existing services and utilities, including the sewer pipe inverts at manholes and catchbasins. Field locates information is provided in **Appendix E**. Discrepancies are noted between the Field Locates and available municipal records in terms of the diameters of municipal water mains on Pine Street North.

### **2.3 Rainfall Information**

Per the GRCA Guidelines, the rainfall intensity of normal residential and industrial developments shall be determined from Yamell 5-year IDF Curve :

$$I = \frac{2464}{T + 16}$$

Where; I = rainfall intensity in mm/hr,

T = time of concentration in minutes,

An initial time of concentration,  $T_c$ , of 10 minutes is established as recommended in the GRCA Guidelines.

## 2.4 Allowable Flow Rate

Per the GRCA Guidelines, for storms having a return period of more than 10 years, runoff coefficients shall be increased as followings, up to a maximum of 0.95.

- 25-year event - add 10%
- 50-year event - add 20%
- 100-year event - add 25%

Relevant policies from the GRCA Guidelines restrict flow rates on this site to the allowable flow rates for discharge to municipal sewers. According to the GRCA Guidelines, the allowable release rates to the municipal storm sewer system from the development site is 86.35 L/s based on the 5-year pre-development flow rate calculated with the runoff coefficient value of 0.62. The calculated peak flow rates for the development site in the pre-development condition are summarized below in **Table 1**. Detailed calculations are provided in **Appendix A**.

**TABLE 1: PRE-DEVELOPMENT PEAK FLOW RATES**

| Return Period (Year) | Rainfall Intensity (mm/hr) | Peak Flow Rate (L/s) | Allowable Release Rate (L/s) |
|----------------------|----------------------------|----------------------|------------------------------|
| 5                    | 94.77                      | 86.35                | 86.35                        |
| 100                  | 147.05                     | 167.50               |                              |

## 3. POST-DEVELOPMENT CONDITIONS

### 3.1 General

The development proposes the construction of one new 5-storey student dormitory building with a total of 28 rooms and 1-level below grade. The proposed total residential GFA of 1,716 m<sup>2</sup>. The existing 2-storey building will remain. For details of project statistics, refer to the site plan, architectural floor

plans and sections of the proposed building.

Under the post-development condition, the rainfall runoff from the entire site will be captured by catchbasins, piped to the underground stormwater storage chamber located within the new parking lot, and discharges at allowable flow rate to municipal storm sewer on North Street via an welded orifice plate. Refer to **Figure 03 - Proposed Storm Drainage Area Plan (Appendix F)**.

### **3.2 Groundwater Conditions**

To determine existing soil and groundwater conditions, a geotechnical Investigation has been completed by Fisher Engineering. Refer to **Appendix B** for Borehole locations and groundwater level measurements.

The main findings of the geotechnical investigation include:

- The boreholes were found to be generally dry on completion of the respective soil borings.
- Monitoring wells were installed in all boreholes for water sampling and testing.
- Measured groundwater depths vary from 3.41m to 3.93m below ground.
- A construction dewatering system, such as a wellpoint system, may be required for the construction of underground levels.

Monitoring wells location plan and measured groundwater elevations are provided in **Appendix B - Figure A2** Borehole Location Map and **Table 2** Groundwater Depths and Elevations.

### **3.3 Water Quality Control**

Pursuant to the GRCA Guidelines, stormwater quality controls are to be implemented on-site to achieve a minimum of 80% long term total suspended solid (TSS) removal.

The soft landscaped areas and cool roof are not prone to sediment generation, and are not subject to petroleum hydrocarbon, and therefore are considered clean for water quality control purposes. In addition, an oil/grit separator (Stormceptor EFO4) is designed to treat the 90% rainfall runoff of the entire site. Therefore, the overall onsite stormwater quality treatment achieves 80% TSS removal. Refer to **Appendix A** for the sizing report, typical details and ETV certification of EFO oil/grit separator.

### 3.4 Water Balance Management

The GRCA Guidelines requires the post-development annual runoff volume to be less than the pre-development volume. One way of meeting this requirement is through the retention of all runoff from a 5 mm storm event through infiltration, irrigation, evapo-transpiration or rainwater reuse. Based on the post-development conditions, the required on-site retention volume is estimated to be 15.02m<sup>3</sup>. Refer to **Appendix A** for details of calculations.

Bottom portion of the underground stormwater storage chamber and clear stone below the storm outlet is utilized to retain the required volume.

### 3.5 Water Quantity Control

As depicted on **Fig. 03** - Prop. Storm Drainage Area Plan, and to ensure the quantity control criteria in Section 1.4 is met, it is proposed that stormwater from the site be collected, piped to and detained within an underground stormwater storage chamber in the proposed parking lot, and released via an orifice plate to the 600mm Conc. storm sewer on North Street. To control discharge into storm sewer, a welded orifice plate (217Φ) is proposed at the upstream of the oil/grit separator. Refer to **Appendix A** for orifice plate sizing details, and **Dwg. C-04** for typical details of welded orifice plate.

Using the GRCA's IDF curve parameters for different design storm events, the storage requirements are estimated in **Appendix A**, The summary of stormwater management plan is summarized in **Table 2** below:

**TABLE 2: STORMWATER MANAGEMENT PLAN SUMMARY**

|                                                            |                            |
|------------------------------------------------------------|----------------------------|
| Design Storm Events                                        | 100-Year                   |
| Allowable Site Discharge (5-yr Pre-Development Flow Rate): | 86.35L/s                   |
| Actual Allowable Release Rate by an orifice plate          | <b>86.35 L/s</b>           |
| Storage Required (see Appendix A) - Quantity Control:      | 90.72m <sup>3</sup>        |
| Storage Required (see Appendix A) - for Infiltration       | 15.02m <sup>3</sup>        |
| Total Storage Volume Required                              | <b>105.74m<sup>3</sup></b> |
| Active Storage Provided                                    | 147.62 m <sup>3</sup>      |
| Storage Provided - for Infiltration                        | 23.56 m <sup>3</sup>       |
| Total Storage Provided                                     | 171.18 m <sup>3</sup>      |

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

|                  |                            |
|------------------|----------------------------|
| Quantity Control | 217mm Welded Orifice Plate |
| Quality Control  | Oil Grit Separator         |

The underground storage chamber, consisting of Layfield Aquabox HP Module and surrounding 19mm clear stones, is located in the proposed parking lot and approx. 110 m<sup>2</sup> in area, and provide a storage volume of approximately 171 m<sup>3</sup>, thus satisfying the stormwater storage requirements.

The typical details of Layfield Aquabox HP and stage-storage calculations are provided in **Appendix A**. Shop drawings shall be required at the construction stage.

## 4. SITE SERVICING

The purpose of this site servicing study is to review the site servicing requirement of the proposed development, and adequacy of existing water, sanitary and storm services. As mentioned in Section 2.2, there is no as-built records of municipal services along the surrounding roads, and Premier Locates Inc. was retained to undertake the field investigation of all existing services and utilities, including the sewer pipe inverts at manholes and catchbasins.

### 4.1 Sanitary Sewage

Based on the field investigation, under the existing condition, there exists an existing 250mm dia. clay sanitary sewer at a slope of 5.42% along North Street. An 150mm dia. existing sanitary service lateral for the existing 2-storey building discharges sewage to the 250mm sanitary sewer on North Street.

The 150mm dia. existing sanitary service lateral for the existing 2-storey building will remain unchanged.

#### Design Parameters

The sanitary demands for the proposed site are based on the following design criteria:

##### Sanitary Demand Rate for New Local Sewers:

- Residential 450 L/s

##### Peaking Factors:

- Residential Harmon Equation  $PF=1+14/(4+P/1000)^{0.5}$

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

Extraneous Flows:

- Infiltration Allowance 0.26 L/s/ha (all areas)

Population densities:

- 1-bedroom 1.4
- 2-bedroom 2.1
- 3-bedroom 3.1

The above parameters are based on City of Toronto - Design Criteria for Sewers and Watermain which were accepted for other developments in Port Hope

Sanitary Flows

Based on the above design criteria, sanitary flow generated from the proposed development is 1.92 L/s as estimated in **Appendix C**.

Sanitary Service Connection

a 150mm dia. PVC sanitary service connection at a slope of 2.00% is proposed to discharge the sewage to the existing 250mm dia. clay sanitary sewer @ 5.42% on North Street. A sanitary manhole (No. SAN.MH.1A) is proposed at the connection. The flow capacity of the proposed sanitary service is 21.54 L/s. Refer to **Dwg. C-02** for location of proposed sanitary lateral.

Municipal Sanitary Sewers Capacity Review

Under the proposed development condition, the sanitary discharge into 250mm dia. clay municipal sanitary sewer is 1.92L/s. In comparison with the full flow capacity of the downstream 250mm dia. clay. sanitary sewer – 144.17 L/s, the sanitary flow from the development site accounts for 1.33% of the full flow capacity. Therefore, the existing 250mm dia. clay. municipal sanitary sewer is anticipated being adequate to support the proposed development.

## 4.2 Storm Drainage

Based on the field investigation, under the existing condition, there exists an existing 600mm dia. concrete storm sewer at a slope of 2.50% along North Street. Two existing catchbasins (No. Ex.CB-02 & Ex.CB-04) discharges stormwater to the 600mm storm sewers on North Street.

The existing catchbasin No. Ex.CB-02 & its connection will remain unchanged.

Through implementation of on-site stormwater management plan, stormwater

discharge from the site will be controlled to pre-development 5-year flow rate (86.35L/s) at all design storm events. In comparison with the full flow capacity of the 600mm dia. Conc. storm sewer at a slope of 2.56% – 1024L/s, the stormwater flow from the development site accounts for 8.43% of the full flow capacity. Therefore, the existing 600mm dia. Conc. storm sewer is anticipated adequate to support the proposed development.

A 300mm dia. PVC storm lateral at a slope of 2.00% is proposed as shown on **Dwg. C-02 Servicing Plan in Appendix F**. The flow capacity of the proposed storm service is 142.67 L/s – which is capable of accommodating the 86.35 L/s allowable release rate.

#### 4.3 Water Supply

Based on the municipal records (**Appendix E**), under the existing condition, two watermains 300 C.I and 200mm PVC (400mm & 760mm dia. Per field Locates) exists along Pine Street North. An existing municipal fire hydrant, on Pine Street North at the south side of the development site, is noticed during site review. It is worth to note that 300mm CI and 200mm PVC watermains are mentioned in the communications with the municipality. SUE QL-A investigation might be required to confirm the actual diameters of existing watermains on Pine Street North ,

An existing 50mm dia. water service feeds the existing 2-storey building, and will remain unchanged.

##### Design Parameters

The domestic water demands for the proposed site are based on the following municipal design criteria:

##### Water Demand Rate:

- Residential per capita water demand rate 270L/person/day

##### Peaking Factors – Peak Hour:

- Residential 3.0

##### Peaking Factors – Maximum Day:

- Residential 1.8

##### Population densities:

- 1-bedroom & Studio 1.4

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

- 2-bedroom 2.1
- 3-bedroom 3.1

The above parameters are based on the Design Criteria accepted by Port Hope for other development projects.

### **Water Demand**

Based on the City's design criteria, the domestic water demand is estimated in **Appendix D** and listed as below:

- Based on the City's design criteria, the domestic water demand (maximum day) is estimated to be 0.45 L/s.
- The calculation of the required fire flow using the Fire Underwriters Survey (FUS) method is completed in **Appendix D**. A fire flow of 66.67 L/s is required to meet the FUS requirement.
- Therefore, the design water demand is 67.12L/s (or 1063.8 USGPM).

### **Proposed Water Services**

Based on the available municipal watermains and fire hydrant, the proposed building will be separately fed by the existing 200mm water main on Pine Street North with below service connection (on **Dwg.C-02**):

- A combined 150mm PVC fire protection & domestic water service connected to existing 760mm water main with approved tapping sleeve and valve;
- A water meter and backflow preventer in chamber;
- A private hydrant.

### **Existing Municipal Water Supply**

The proposed new building will be fed by the 200mm PVC watermain on the east side of Pine Street North. A hydrant flow test was conducted on June 20, 2024 at the existing hydrants for the water main by Classic. Test records are included in **Appendix D**.

As shown by the test readings for the 200mm water main, the available water pressure ranges from 20.0 psi with a flow of 1,232 USGPM to 42.0 psi with a flow of 1,088 USGPM during the flow tests with a static pressure of 59psi. The flow at a residual pressure at 20.0 psi (1,232 USGPM) is higher than the

design water demand of 1063.8 USGPM. It is therefore anticipated that adequate water supply and pressure are available to serve the proposed residential buildings.

Refer to **Dwg. C-2** - Site Servicing Plan for details of proposed water service connections.

## 5. EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

In Accordance with the Erosion and Sediment Control Guidelines for Urban Construction, temporary erosion and sediment control measures are required for any development application. Due to the small size of the subject site, it is proposed that a sediment control fence be installed along the entire perimeter of the site.

Any existing/adjacent catch basins shall be protected with a Terrafix 360R geotextile fabric (or approved equal). In addition, a mud mat shall be installed along the Pine Street North frontage to prevent any mud tracking onto the municipal roads.

## 6. CONCLUSIONS

### 6.1 Stormwater Management Plan

- Water Balance: To enhance onsite infiltration, a volume of 15.02 m<sup>3</sup> will be retained within the underground storage chamber within the parking lot.
- Water Quantity Control: A total active storage volume of 90.72 m<sup>3</sup> will be required for quantity control. The proposed underground storage chamber within the parking lot will provide a total storage volume of 171 m<sup>3</sup>.
- To control the stormwater discharge flow rate, an welded orifice plate is proposed at the upstream of proposed oil grit separator.
- Water Quality Control: A oil/grit separator (Stormceptor EFO4) along with clean roofs and soft landscaped features are proposed to achieve 80% TSS removal;

### 6.2 Site Servicing

- Sanitary Service: A new 150mm dia. PVC sanitary service is proposed to service the proposed development.
- Storm Service: A new 300mm dia. PVC storm service is proposed to

Functional Servicing and Stormwater Management Report  
Prop. School Dormitory Building, 39 Pine Street North  
Municipality of Port Hope

---

service the proposed development.

- Water Services: A separate combined 150mm dia. fire protection and domestic water service off Pine Street North is proposed to service the proposed development.
- Existing 200mm dia. municipal water main has adequate flow and pressure to support the proposed development.
- Existing 250mm dia. municipal sanitary sewer has adequate flow and pressure to support the proposed development.
- Existing 600mm Conc. municipal storm sewer is adequate to support the proposed development.
- Existing site services for the 2-storey building shall remain functional.

### 6.3 Temporary Erosion and Sediment Control during Construction

Temporary erosion and sediment control measures should be provided before construction and maintained during construction in accordance with the GGHA CA's "Erosion & Sediment Control Guidelines for Urban Construction" and other requirements.

Prepared By:

**WPE Engineering Ltd.**



Michael Du, P.Eng., M.Eng.  
Project Manager

**Appendix A**  
**Stormwater Peak Flow and Storage Calculations**  
**Oil/Grit Separator Sizing Report**  
**Layfield Aquabox HP Details**

|                                                                                                                                                                       |                 |      |          |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|----------|---------------------|
|  <p><b>WPE Engineering Ltd.</b><br/>Engineers, Planners and<br/>Project Managers</p> | <b>Land Use</b> |      |          |                     |
|                                                                                                                                                                       | Prepared:       | A.L. | Page No. | A-01                |
| Project: Prop. School Dormitory Building, 39<br>Pine St North, Port Hope, On L1A 3G5                                                                                  | Checked:        | Z.D. |          |                     |
|                                                                                                                                                                       | Proj. #         | 2021 |          | Date: Apr. 10, 2024 |

### EXISTING CONDITIONS:

| <b>Existing Land Use</b> | <b>Area (m<sup>2</sup>)</b> |
|--------------------------|-----------------------------|
| Impervious Area          | 3024                        |
| Grassed Area             | 2234                        |
| <b>Total Site Area:</b>  | <b>5258</b>                 |

### PROPOSED DEVELOPMENT:

| <b>Proposed Land Use</b>         | <b>Area (m<sup>2</sup>)</b> |
|----------------------------------|-----------------------------|
| Building Roof                    | 1365                        |
| Impervious Area                  | 2391                        |
| Landscape and Permeable Pavement | 1502                        |
| <b>Total Site Area:</b>          | <b>5258</b>                 |

|                                                                                                                                                                 |                                  |          |               |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------|---------------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>Composite "C" Calculation</b> |          |               |      |
|                                                                                                                                                                 | Prepared:                        | A.L.     | Page No.      | A-02 |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                    |                                  | Checked: | Z.D.          |      |
| Proj. #                                                                                                                                                         | 2021                             | Date:    | Apr. 10, 2024 |      |

### Pre-Development Composite Runoff Coefficient "C"

| Land Use                | Area (ha)     | C    | Composite "C" |
|-------------------------|---------------|------|---------------|
| Roof                    | 0.3024        | 0.90 |               |
| Grassed Area            | 0.223         | 0.25 |               |
| Total                   | <b>0.5258</b> |      | <b>0.62</b>   |
| Imperviousness Percent: |               |      | <b>57.5</b>   |

### Post-Development Composite Runoff Coefficient "C"

| Land Use                      | Area (ha)     | C    | Composite "C" |
|-------------------------------|---------------|------|---------------|
| Roof                          | 0.1365        | 0.90 |               |
| Impervious Area               | 0.2391        | 0.90 |               |
| Landscape and Permeable Paver | 0.1502        | 0.45 |               |
| Total                         | <b>0.5258</b> |      | <b>0.77</b>   |
| Imperviousness Percent:       |               |      | <b>71.4</b>   |

|                                                                                                                                                                 |                                                        |               |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|----------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>Pre-Development Peak Flow Rates<br/>Calculation</b> |               |          |      |
|                                                                                                                                                                 | Prepared:                                              | A.L.          | Page No. | A-03 |
|                                                                                                                                                                 | Checked:                                               | Z.D.          |          |      |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                    | Proj. #                                                | 2021          |          |      |
|                                                                                                                                                                 | Date:                                                  | Apr. 10, 2024 |          |      |

**Rational Formulae:**  $Q = 2.78 \text{ CIA (L/s)}$

Entire Site Area: 0.5258 ha

Time of Concentration: 10 minutes as per WWFM Guidelines

Runoff Coefficient : 0.62 Pre-development condition

**Rainfall Intensity:**  $I_5 = 2464/(T+16)$ ,  $I_{100} = 5588/(T+28)$ ;

|                             |       |        |  |  |
|-----------------------------|-------|--------|--|--|
| Return Period:              | 5-yr  | 100-yr |  |  |
| Rainfall Intensity (mm/hr): | 94.77 | 147.05 |  |  |

**Peak Flow Rate (L/s):**

|                                       |       |        |  |
|---------------------------------------|-------|--------|--|
| Return Period:                        | 5-yr  | 100-yr |  |
| Under existing site conditions (L/s): | 86.35 | 167.50 |  |

Allowable release rate from the entire development site (2 yr): 86.35 L/s

|                                                                                                                                                                 |                                                                             |          |               |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|---------------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>Post-Development Peak Flow Rates</b><br><b>Calculation(Uncontrolled)</b> |          |               |      |
|                                                                                                                                                                 | Prepared:                                                                   | A.L.     | Page No.      | A-04 |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                    |                                                                             | Checked: | Z.D.          |      |
| Proj. #                                                                                                                                                         | 2021                                                                        | Date:    | Apr. 10, 2024 |      |

**Rational Formulae:**  $Q = 2.78 \text{ CIA (L/s)}$

Entire Site Area: 0.5258 ha

Time of Concentration: 10 minutes as per WWFM Guidelines

Runoff Coefficient : 0.77 Post-development

**Rainfall Intensity:**  $I_5 = 2464/(T+16)$ ,  $I_{100} = 5588/(T+28)$ ;

|                             |       |        |  |
|-----------------------------|-------|--------|--|
| Return Period:              | 5-yr  | 100-yr |  |
| Rainfall Intensity (mm/hr): | 94.77 | 147.05 |  |

**Peak Flow Rate (L/s):**

|                                          |        |        |  |
|------------------------------------------|--------|--------|--|
| Return Period:                           | 5-yr   | 100-yr |  |
| Under post-development conditions (L/s): | 106.87 | 165.82 |  |

|                                                                                                                                                                 |                                                                |          |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|----------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>5mm Rainfall Retention Volume</b><br><b>(Water Balance)</b> |          |          |      |
|                                                                                                                                                                 | Prepared:                                                      | A.L.     | Page No. | A-05 |
| Project: Prop. School Dormitory Building, 39<br>Pine St North, Port Hope, On L1A 3G5                                                                            |                                                                | Checked: | Z.D.     |      |
| Proj. # 2021<br>Date: Apr. 10, 2024                                                                                                                             |                                                                |          |          |      |

As per GRCA Guidelines - Retain a minimum of 50% of the total average annual rainfall volume (or equivalent 5 mm from each rainfall event) generated from all site surfaces through infiltration, evapotranspiration, water harvesting and/or reuse

Site Area: 0.5258 ha

Runoff Coefficient : 0.77 Post-development site conditions

Runoff volume from 5mm rainfall event on site:

$$V = 5258 \text{ m}^2 \times 5\text{mm} \quad 26.29 \text{ m}^3$$

Initial Abstraction 5mm for pervious area & 1mm for Impervious area

Imperviousness Area:  $=1\text{mm} \times 3756 \text{ m}^2 \quad 3.76 \text{ m}^3$

Pervious Area:  $=5\text{mm} \times 1502 \text{ m}^2 \quad 7.51 \text{ m}^3$

**Required on-site retention volume for 5mm rainfall event: 15.02 m<sup>3</sup>**

|                                                                                                                                                                 |                                                             |               |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|----------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>On-Site Storage Calculation</b><br><b>(5-Year Storm)</b> |               |          |      |
|                                                                                                                                                                 | Prepared:                                                   | A.L.          | Page No. | A-06 |
|                                                                                                                                                                 | Checked:                                                    | Z.D.          |          |      |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                    | Proj. #                                                     | 2021          |          |      |
|                                                                                                                                                                 | Date:                                                       | Apr. 10, 2024 |          |      |

Total Drainage Area (ha) = 0.5258 ha

Drainage Area Composite C = 0.77

Actual allowable Release Rate (5-year) = 86.35 L/s

Return Period = 5 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|--------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 94.77                            | 106.79             | 64.07                                          | 86.35                    | 51.81                                          | 12.26                                              |
| 12                | 88.00                            | 99.16              | 71.40                                          | 86.35                    | 62.18                                          | 9.22                                               |
| 14                | 82.13                            | 92.55              | 77.74                                          | 86.35                    | 72.54                                          | 5.20                                               |
| 16                | 77.00                            | 86.77              | 83.30                                          | 86.35                    | 82.90                                          | 0.40                                               |

**Required Storage Volume = 12.26 m<sup>3</sup>**

|                                                                                                                                                                |                                                                 |               |          |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------|----------|------|
| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners<br>and Project Managers | <b>On-Site Storage Calculation</b><br><b>(100 - Year Storm)</b> |               |          |      |
|                                                                                                                                                                | Prepared:                                                       | A.L.          | Page No. | A-07 |
|                                                                                                                                                                | Checked:                                                        | Z.D.          |          |      |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                   | Proj. #                                                         | 2021          |          |      |
|                                                                                                                                                                | Date:                                                           | Apr. 10, 2024 |          |      |

Total Drainage Area (ha) = 0.5258 ha  
 Drainage Area Composite C = 0.95 C100  
 Actual allowable Release Rate (5-year) = 86.35 L/s  
 Return Period = 100 Year

**Site storage Requirement:**

| Time<br>(minutes) | Rainfall<br>Intensity<br>(mm/hr) | Peak Flow<br>(L/s) | Storm<br>Runoff<br>Volume<br>(m <sup>3</sup> ) | Release<br>Rate<br>(L/s) | Release<br>Flow<br>Volume<br>(m <sup>3</sup> ) | Required<br>Storage<br>Volume<br>(m <sup>3</sup> ) |
|-------------------|----------------------------------|--------------------|------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------|
| 10                | 147.05                           | 204.06             | 122.43                                         | 86.35                    | 51.81                                          | 70.62                                              |
| 12                | 139.70                           | 193.85             | 139.57                                         | 86.35                    | 62.18                                          | 77.39                                              |
| 14                | 133.05                           | 184.62             | 155.08                                         | 86.35                    | 72.54                                          | 82.54                                              |
| 16                | 127.00                           | 176.23             | 169.18                                         | 86.35                    | 82.90                                          | 86.28                                              |
| 18                | 121.48                           | 168.57             | 182.05                                         | 86.35                    | 93.26                                          | 88.79                                              |
| 20                | 116.42                           | 161.54             | 193.85                                         | 86.35                    | 103.63                                         | 90.22                                              |
| 22                | 111.76                           | 155.08             | 204.71                                         | 86.35                    | 113.99                                         | 90.72                                              |
| 24                | 107.46                           | 149.12             | 214.73                                         | 86.35                    | 124.35                                         | 90.38                                              |
| 26                | 103.48                           | 143.59             | 224.01                                         | 86.35                    | 134.71                                         | 89.30                                              |
| 28                | 99.79                            | 138.47             | 232.62                                         | 86.35                    | 145.08                                         | 87.54                                              |
| 30                | 96.34                            | 133.69             | 240.65                                         | 86.35                    | 155.44                                         | 85.21                                              |
| 32                | 93.13                            | 129.24             | 248.13                                         | 86.35                    | 165.80                                         | 82.33                                              |
| 34                | 90.13                            | 125.07             | 255.14                                         | 86.35                    | 176.16                                         | 78.98                                              |
| 36                | 87.31                            | 121.16             | 261.70                                         | 86.35                    | 186.53                                         | 75.17                                              |
| 38                | 84.67                            | 117.49             | 267.87                                         | 86.35                    | 196.89                                         | 70.98                                              |

**Required Storage Volume = 90.72 m<sup>3</sup>**

|                                                                                                                                                                       |                                                                     |               |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|----------|
|  <p><b>WPE Engineering Ltd.</b><br/>Engineers, Planners and<br/>Project Managers</p> | <b>Orifice Size Calculation</b><br><b>(Orifice Plate @ U/S OGS)</b> |               |          |
|                                                                                                                                                                       | Prepared:                                                           | A.L.          | Page No. |
|                                                                                                                                                                       | Checked:                                                            | Z.D.          | A-08     |
| <b>Project: Prop. School Dormitory Building,<br/>39 Pine St North, Port Hope, On L1A 3G5</b>                                                                          | Proj. #                                                             | 2021          |          |
|                                                                                                                                                                       | Date:                                                               | Apr. 10, 2024 |          |

Orifice Discharge Formula:  $Q = CA \times \sqrt{2gh}$

| Knowing Max. Q & Depth |         |       | For Assumed Diameter |        |               |
|------------------------|---------|-------|----------------------|--------|---------------|
| Max. Flow:             | 86.35   | l/s   | Diameter:            | 217.12 | mm            |
| Max. Depth:            | 0.80    | m     | Area:                | 0.037  | $m^2$         |
| Req'd Area:            | 0.037   | $m^2$ | Coeff:               | 0.63   | Orifice Plate |
| Req'd Dia.:            | 217.12  | mm    | Gravitational Accel: | 9.81   | $m/s^2$       |
| Orifice C/L Elev.:     | 99.577  | m     | Invert               | 99.47  | m             |
| H.W.L                  | 100.270 | m     |                      |        |               |

| Depth (m) | Head (m) | Q (L/s) | Elevation (m) | Remarks                 |
|-----------|----------|---------|---------------|-------------------------|
| 0         |          |         | 99.47         | Orifice Invert          |
| 0.11      | 0.00     | 0.00    | 99.58         | Center Elev. of Orifice |
| 0.22      | 0.11     | 34.04   | 99.69         | Top Elev. of Orifice    |
| 0.47      | 0.36     | 61.87   | 99.94         |                         |
| 0.72      | 0.61     | 80.60   | 100.19        |                         |
| 0.81      | 0.70     | 86.35   | 100.28        | H.W.L                   |
| 0.90      | 0.79     | 91.75   | 100.37        |                         |
| 0.99      | 0.88     | 96.84   | 100.46        |                         |
| 1.08      | 0.97     | 101.68  | 100.55        |                         |
| 1.17      | 1.06     | 106.30  | 100.64        |                         |
| 1.27      | 1.16     | 111.21  | 100.74        |                         |
| 1.37      | 1.26     | 115.91  | 100.84        |                         |
| 1.62      | 1.51     | 126.90  | 101.09        |                         |
| 1.87      | 1.76     | 137.01  | 101.34        |                         |
| 2.12      | 2.01     | 146.43  | 101.59        |                         |
| 2.37      | 2.26     | 155.27  | 101.84        |                         |
| 2.62      | 2.51     | 163.64  | 102.09        |                         |

## Imbrium® Systems

## ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

04/10/2024

|                           |                      |
|---------------------------|----------------------|
| Province:                 | Ontario              |
| City:                     | Port Hope            |
| Nearest Rainfall Station: | BELLEVILLE           |
| Climate Station Id:       | 6150689              |
| Years of Rainfall Data:   | 29                   |
| Site Name:                | 39 Pine Street North |
| Drainage Area (ha):       | 0.53                 |
| % Imperviousness:         | 72.00                |

Runoff Coefficient 'c': 0.73

|                   |                                                 |
|-------------------|-------------------------------------------------|
| Project Name:     | Prop. Residential Development, 39 Pine St North |
| Project Number:   | WPE#2021                                        |
| Designer Name:    | Michael Du                                      |
| Designer Company: | WPE Engineering Ltd                             |
| Designer Email:   | mdu@wpeengineering.com                          |
| Designer Phone:   | 416-578-8682                                    |
| EOR Name:         |                                                 |
| EOR Company:      |                                                 |
| EOR Email:        |                                                 |
| EOR Phone:        |                                                 |

|                             |      |
|-----------------------------|------|
| Particle Size Distribution: | Fine |
| Target TSS Removal (%):     | 80.0 |

|                                                   |       |
|---------------------------------------------------|-------|
| Required Water Quality Runoff Volume Capture (%): | 90.00 |
| Estimated Water Quality Flow Rate (L/s):          | 13.33 |
| Oil / Fuel Spill Risk Site?                       | Yes   |
| Upstream Flow Control?                            | No    |
| Peak Conveyance (maximum) Flow Rate (L/s):        |       |
| Influent TSS Concentration (mg/L):                | 200   |
| Estimated Average Annual Sediment Load (kg/yr):   | 456   |
| Estimated Average Annual Sediment Volume (L/yr):  | 371   |

**Net Annual Sediment (TSS) Load Reduction Sizing Summary**

| Stormceptor Model | TSS Removal Provided (%) |
|-------------------|--------------------------|
| EFO4              | 86                       |
| EFO6              | 94                       |
| EFO8              | 97                       |
| EFO10             | 99                       |
| EFO12             | 99                       |

Recommended Stormceptor EFO Model: **EFO4**Estimated Net Annual Sediment (TSS) Load Reduction (%): **86**Water Quality Runoff Volume Capture (%): **> 90**

## THIRD-PARTY TESTING AND VERIFICATION

► **Stormceptor® EF and Stormceptor® EFO** are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** and performance has been third-party verified in accordance with the **ISO 14034 Environmental Technology Verification (ETV)** protocol.

## PERFORMANCE

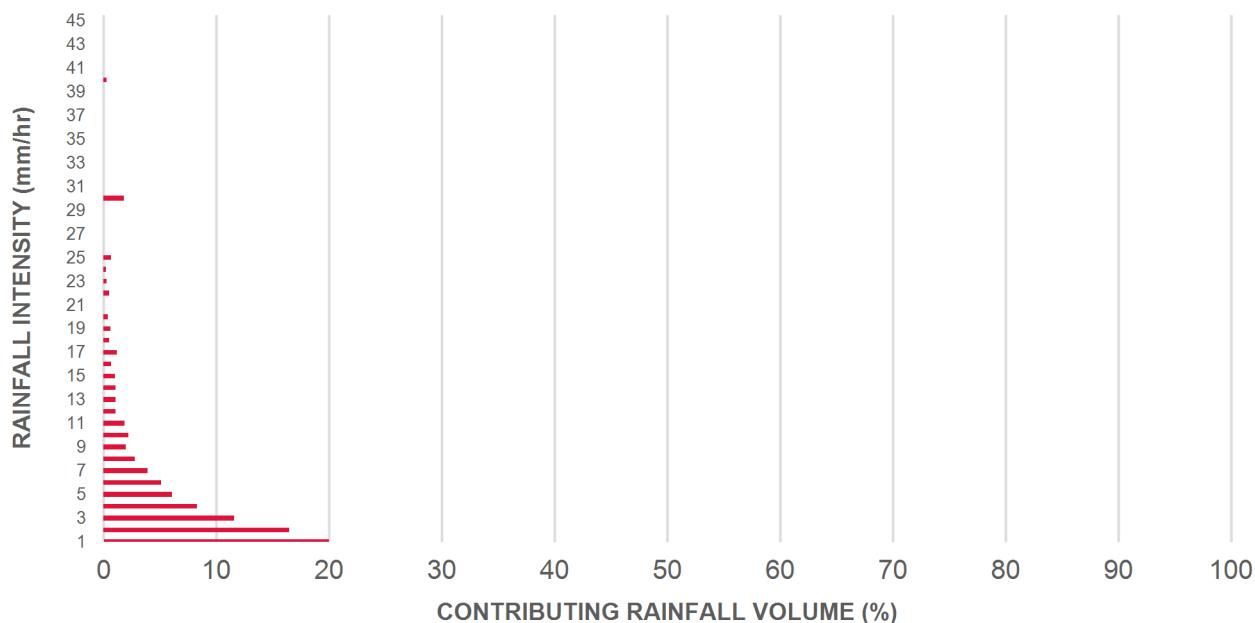
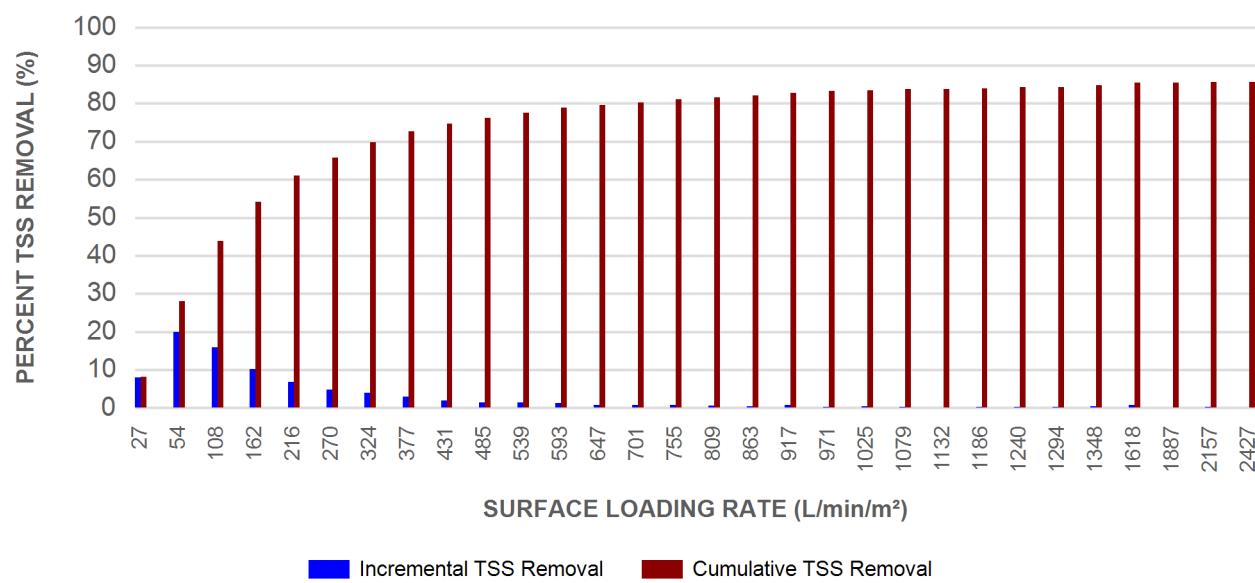
► **Stormceptor® EF and EFO** remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

## PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

| Particle Size (μm) | Percent Less Than | Particle Size Fraction (μm) | Percent |
|--------------------|-------------------|-----------------------------|---------|
| 1000               | 100               | 500-1000                    | 5       |
| 500                | 95                | 250-500                     | 5       |
| 250                | 90                | 150-250                     | 15      |
| 150                | 75                | 100-150                     | 15      |
| 100                | 60                | 75-100                      | 10      |
| 75                 | 50                | 50-75                       | 5       |
| 50                 | 45                | 20-50                       | 10      |
| 20                 | 35                | 8-20                        | 15      |
| 8                  | 20                | 5-8                         | 10      |
| 5                  | 10                | 2-5                         | 5       |
| 2                  | 5                 | <2                          | 5       |





## Stormceptor® EF Sizing Report

| Rainfall Intensity (mm / hr)                                | Percent Rainfall Volume (%) | Cumulative Rainfall Volume (%) | Flow Rate (L/s) | Flow Rate (L/min) | Surface Loading Rate (L/min/m²) | Removal Efficiency (%) | Incremental Removal (%) | Cumulative Removal (%) |
|-------------------------------------------------------------|-----------------------------|--------------------------------|-----------------|-------------------|---------------------------------|------------------------|-------------------------|------------------------|
| 0.50                                                        | 8.1                         | 8.1                            | 0.54            | 32.0              | 27.0                            | 100                    | 8.1                     | 8.1                    |
| 1.00                                                        | 20.0                        | 28.0                           | 1.08            | 65.0              | 54.0                            | 100                    | 20.0                    | 28.0                   |
| 2.00                                                        | 16.5                        | 44.5                           | 2.16            | 129.0             | 108.0                           | 96                     | 15.8                    | 43.9                   |
| 3.00                                                        | 11.6                        | 56.2                           | 3.24            | 194.0             | 162.0                           | 88                     | 10.3                    | 54.1                   |
| 4.00                                                        | 8.3                         | 64.5                           | 4.31            | 259.0             | 216.0                           | 83                     | 6.9                     | 61.0                   |
| 5.00                                                        | 6.1                         | 70.6                           | 5.39            | 324.0             | 270.0                           | 80                     | 4.9                     | 65.8                   |
| 6.00                                                        | 5.1                         | 75.7                           | 6.47            | 388.0             | 324.0                           | 78                     | 4.0                     | 69.8                   |
| 7.00                                                        | 3.9                         | 79.6                           | 7.55            | 453.0             | 377.0                           | 75                     | 2.9                     | 72.7                   |
| 8.00                                                        | 2.8                         | 82.3                           | 8.63            | 518.0             | 431.0                           | 72                     | 2.0                     | 74.7                   |
| 9.00                                                        | 2.0                         | 84.3                           | 9.71            | 582.0             | 485.0                           | 70                     | 1.4                     | 76.2                   |
| 10.00                                                       | 2.2                         | 86.6                           | 10.79           | 647.0             | 539.0                           | 67                     | 1.5                     | 77.6                   |
| 11.00                                                       | 1.9                         | 88.5                           | 11.86           | 712.0             | 593.0                           | 65                     | 1.2                     | 78.9                   |
| 12.00                                                       | 1.1                         | 89.6                           | 12.94           | 777.0             | 647.0                           | 64                     | 0.7                     | 79.6                   |
| 13.00                                                       | 1.1                         | 90.7                           | 14.02           | 841.0             | 701.0                           | 64                     | 0.7                     | 80.3                   |
| 14.00                                                       | 1.1                         | 91.8                           | 15.10           | 906.0             | 755.0                           | 63                     | 0.7                     | 81.0                   |
| 15.00                                                       | 1.0                         | 92.8                           | 16.18           | 971.0             | 809.0                           | 63                     | 0.6                     | 81.6                   |
| 16.00                                                       | 0.7                         | 93.5                           | 17.26           | 1035.0            | 863.0                           | 63                     | 0.4                     | 82.1                   |
| 17.00                                                       | 1.2                         | 94.7                           | 18.33           | 1100.0            | 917.0                           | 62                     | 0.8                     | 82.8                   |
| 18.00                                                       | 0.5                         | 95.2                           | 19.41           | 1165.0            | 971.0                           | 62                     | 0.3                     | 83.2                   |
| 19.00                                                       | 0.6                         | 95.8                           | 20.49           | 1230.0            | 1025.0                          | 61                     | 0.3                     | 83.5                   |
| 20.00                                                       | 0.4                         | 96.2                           | 21.57           | 1294.0            | 1079.0                          | 60                     | 0.3                     | 83.8                   |
| 21.00                                                       | 0.0                         | 96.2                           | 22.65           | 1359.0            | 1132.0                          | 59                     | 0.0                     | 83.8                   |
| 22.00                                                       | 0.5                         | 96.7                           | 23.73           | 1424.0            | 1186.0                          | 57                     | 0.3                     | 84.0                   |
| 23.00                                                       | 0.3                         | 97.0                           | 24.81           | 1488.0            | 1240.0                          | 56                     | 0.2                     | 84.2                   |
| 24.00                                                       | 0.2                         | 97.2                           | 25.88           | 1553.0            | 1294.0                          | 55                     | 0.1                     | 84.3                   |
| 25.00                                                       | 0.7                         | 97.9                           | 26.96           | 1618.0            | 1348.0                          | 54                     | 0.4                     | 84.7                   |
| 30.00                                                       | 1.8                         | 99.7                           | 32.36           | 1941.0            | 1618.0                          | 45                     | 0.8                     | 85.5                   |
| 35.00                                                       | 0.0                         | 99.7                           | 37.75           | 2265.0            | 1887.0                          | 39                     | 0.0                     | 85.5                   |
| 40.00                                                       | 0.3                         | 100.0                          | 43.14           | 2588.0            | 2157.0                          | 34                     | 0.1                     | 85.6                   |
| 45.00                                                       | 0.0                         | 100.0                          | 48.53           | 2912.0            | 2427.0                          | 30                     | 0.0                     | 85.6                   |
| <b>Estimated Net Annual Sediment (TSS) Load Reduction =</b> |                             |                                |                 |                   |                                 |                        |                         | <b>86 %</b>            |

Climate Station ID: 6150689 Years of Rainfall Data: 29

## Stormceptor® EF Sizing Report

## RAINFALL DATA FROM BELLEVILLE RAINFALL STATION

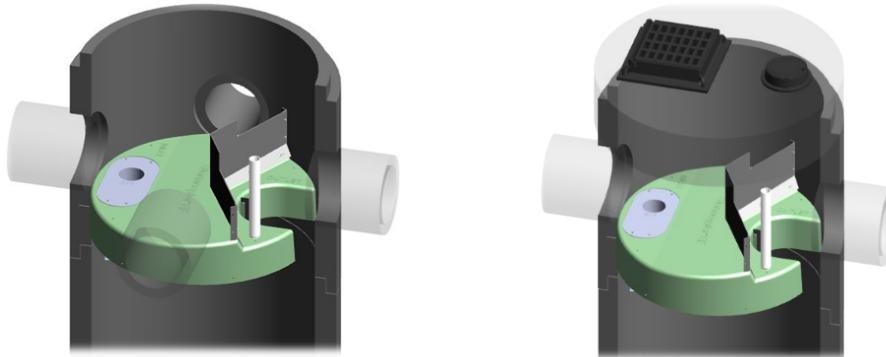
INCREMENTAL AND CUMULATIVE TSS REMOVAL  
FOR THE RECOMMENDED STORMCEPTOR® MODEL

## Stormceptor® EF Sizing Report

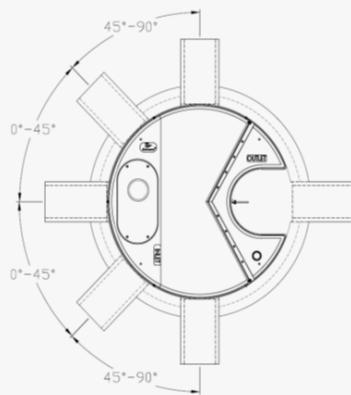
### Maximum Pipe Diameter / Peak Conveyance

| Stormceptor<br>EF / EFO | Model Diameter |      | Min Angle Inlet /<br>Outlet Pipes | Max Inlet Pipe<br>Diameter |      | Max Outlet Pipe<br>Diameter |      | Peak Conveyance<br>Flow Rate |       |
|-------------------------|----------------|------|-----------------------------------|----------------------------|------|-----------------------------|------|------------------------------|-------|
|                         | (m)            | (ft) |                                   | (mm)                       | (in) | (mm)                        | (in) | (L/s)                        | (cfs) |
| EF4 / EFO4              | 1.2            | 4    | 90                                | 609                        | 24   | 609                         | 24   | 425                          | 15    |
| EF6 / EFO6              | 1.8            | 6    | 90                                | 914                        | 36   | 914                         | 36   | 990                          | 35    |
| EF8 / EFO8              | 2.4            | 8    | 90                                | 1219                       | 48   | 1219                        | 48   | 1700                         | 60    |
| EF10 / EFO10            | 3.0            | 10   | 90                                | 1828                       | 72   | 1828                        | 72   | 2830                         | 100   |
| EF12 / EFO12            | 3.6            | 12   | 90                                | 1828                       | 72   | 1828                        | 72   | 2830                         | 100   |

### SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

### DESIGN FLEXIBILITY


► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

### OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, Stormceptor® EFO has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid re-entrainment testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.



## Stormceptor® EF Sizing Report



### INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

### HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

### Pollutant Capacity

| Stormceptor EF / EFO | Model Diameter |      | Depth (Outlet Pipe Invert to Sump Floor) |      | Oil Volume |       | Recommended Sediment Maintenance Depth * |      | Maximum Sediment Volume * |       | Maximum Sediment Mass ** |        |
|----------------------|----------------|------|------------------------------------------|------|------------|-------|------------------------------------------|------|---------------------------|-------|--------------------------|--------|
|                      | (m)            | (ft) | (m)                                      | (ft) | (L)        | (Gal) | (mm)                                     | (in) | (L)                       | (ft³) | (kg)                     | (lb)   |
| EF4 / EFO4           | 1.2            | 4    | 1.52                                     | 5.0  | 265        | 70    | 203                                      | 8    | 1190                      | 42    | 1904                     | 5250   |
| EF6 / EFO6           | 1.8            | 6    | 1.93                                     | 6.3  | 610        | 160   | 305                                      | 12   | 3470                      | 123   | 5552                     | 15375  |
| EF8 / EFO8           | 2.4            | 8    | 2.59                                     | 8.5  | 1070       | 280   | 610                                      | 24   | 8780                      | 310   | 14048                    | 38750  |
| EF10 / EFO10         | 3.0            | 10   | 3.25                                     | 10.7 | 1670       | 440   | 610                                      | 24   | 17790                     | 628   | 28464                    | 78500  |
| EF12 / EFO12         | 3.6            | 12   | 3.89                                     | 12.8 | 2475       | 655   | 610                                      | 24   | 31220                     | 1103  | 49952                    | 137875 |

\*Increased sump depth may be added to increase sediment storage capacity

\*\* Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³ )

| Feature                                                                 | Benefit                                           | Feature Appeals To                                  |
|-------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
| Patent-pending enhanced flow treatment and scour prevention technology  | Superior, verified third-party performance        | Regulator, Specifying & Design Engineer             |
| Third-party verified light liquid capture and retention for EFO version | Proven performance for fuel/oil hotspot locations | Regulator, Specifying & Design Engineer, Site Owner |
| Functions as bend, junction or inlet structure                          | Design flexibility                                | Specifying & Design Engineer                        |
| Minimal drop between inlet and outlet                                   | Site installation ease                            | Contractor                                          |
| Large diameter outlet riser for inspection and maintenance              | Easy maintenance access from grade                | Maintenance Contractor & Site Owner                 |

### STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit <http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef>

### STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit <http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef>

**STANDARD PERFORMANCE SPECIFICATION FOR  
“OIL GRIT SEPARATOR” (OGS) STORMWATER QUALITY TREATMENT DEVICE****PART 1 – GENERAL****1.1 WORK INCLUDED**

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

**1.2 REFERENCE STANDARDS & PROCEDURES**

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program’s **Procedure for Laboratory Testing of Oil-Grit Separators**

**1.3 SUBMITTALS**

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

**PART 2 – PRODUCTS****2.1 OGS POLLUTANT STORAGE**

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

|       |                                     |                                             |
|-------|-------------------------------------|---------------------------------------------|
| 2.1.1 | 4 ft (1219 mm) Diameter OGS Units:  | 1.19 m <sup>3</sup> sediment / 265 L oil    |
|       | 6 ft (1829 mm) Diameter OGS Units:  | 3.48 m <sup>3</sup> sediment / 609 L oil    |
|       | 8 ft (2438 mm) Diameter OGS Units:  | 8.78 m <sup>3</sup> sediment / 1,071 L oil  |
|       | 10 ft (3048 mm) Diameter OGS Units: | 17.78 m <sup>3</sup> sediment / 1,673 L oil |
|       | 12 ft (3657 mm) Diameter OGS Units: | 31.23 m <sup>3</sup> sediment / 2,476 L oil |

**PART 3 – PERFORMANCE & DESIGN****3.1 GENERAL**

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall



**Stormceptor® EF Sizing Report**

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

### **3.2 SIZING METHODOLOGY**

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m<sup>2</sup> to 1400 L/min/m<sup>2</sup>, and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m<sup>2</sup> and 1400 L/min/m<sup>2</sup> shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m<sup>2</sup> shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m<sup>2</sup>. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m<sup>2</sup>.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m<sup>2</sup> shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m<sup>2</sup>, and shall be calculated using a simple proportioning formula, with 1400 L/min/m<sup>2</sup> in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m<sup>2</sup>.

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

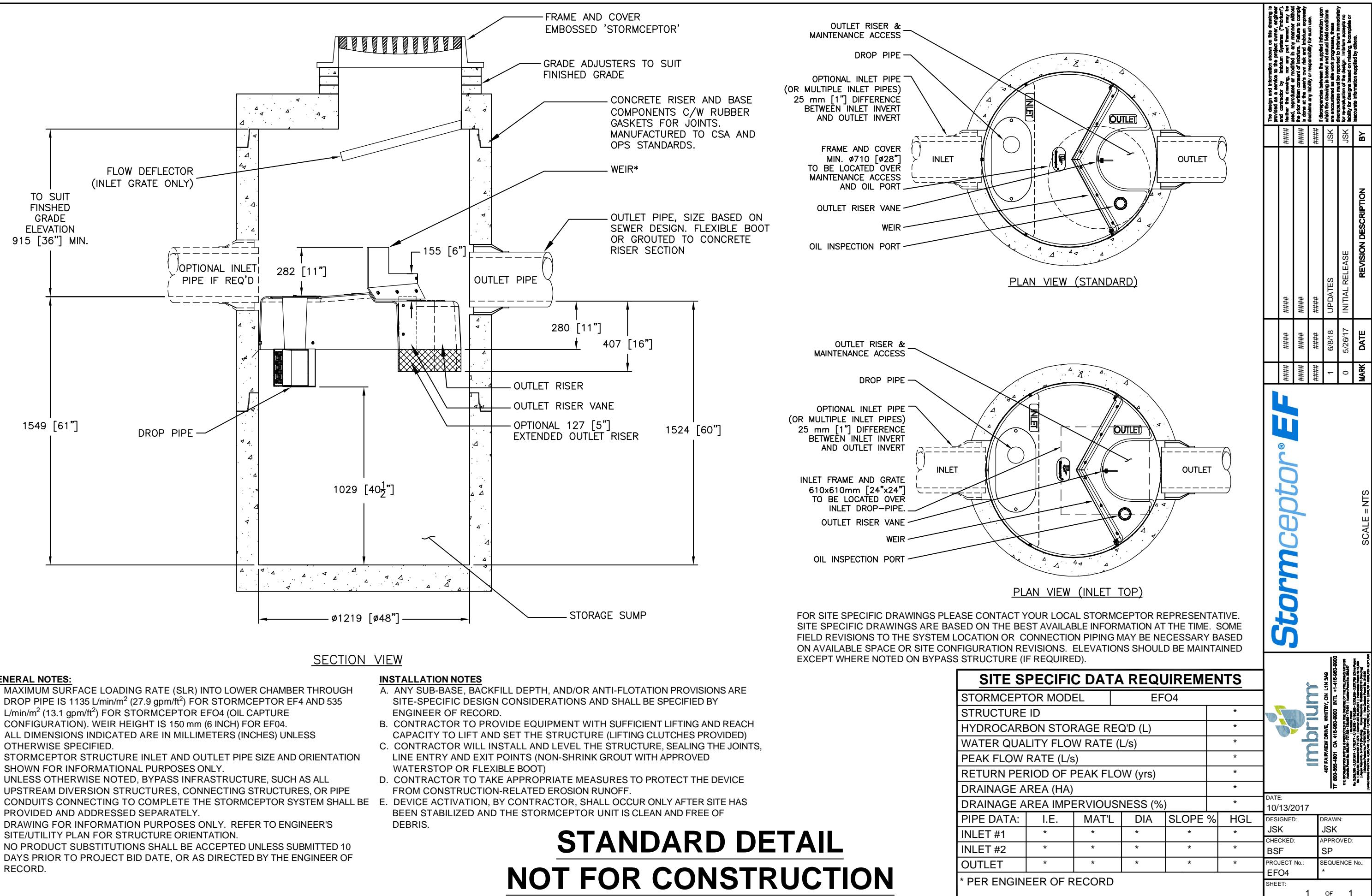
### **3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING**

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m<sup>2</sup>.

### **3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING**

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This re-entrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to




**Stormceptor® EF Sizing Report**

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m<sup>2</sup> to 2600 L/min/m<sup>2</sup>) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

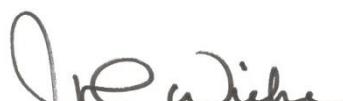




# VERIFICATION STATEMENT

## GLOBE Performance Solutions

Verifies the performance of


### Stormceptor® EF and EFO Oil-Grit Separators

Developed by Imbrium Systems, Inc.,  
Whitby, Ontario, Canada

Registration: GPS-ETV\_VR2020-11-15\_Imbrium-SC

In accordance with

**ISO 14034:2016**  
Environmental management —  
Environmental technology verification (ETV)



John D. Wiebe, PhD  
Executive Chairman  
GLOBE Performance Solutions

November 15, 2020  
Vancouver, BC, Canada



Verification Body  
GLOBE Performance Solutions  
404 – 999 Canada Place | Vancouver, B.C | Canada | V6C 3E2

## Technology description and application

The Stormceptor® EF and EFO are treatment devices designed to remove oil, sediment, trash, debris, and pollutants attached to particulates from Stormwater and snowmelt runoff. The device takes the place of a conventional manhole within a storm drain system and offers design flexibility that works with various site constraints. The EFO is designed with a shorter bypass weir height, which accepts lower surface loading rate into the sump, thereby reducing re-entrainment of captured free floating light liquids.

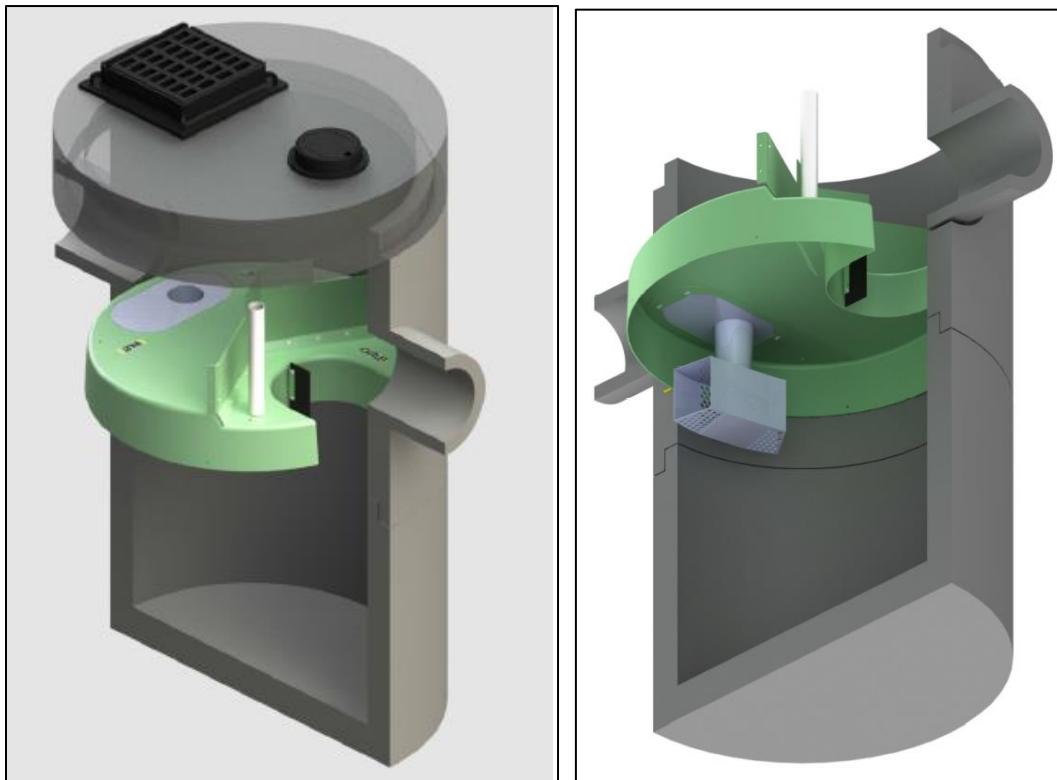



Figure 1. Graphic of typical inline Stormceptor® unit and core components.

Stormwater and snowmelt runoff enters the Stormceptor® EF/EFO's upper chamber through the inlet pipe(s) or a surface inlet grate. An insert divides the unit into lower and upper chambers and incorporates a weir to reduce influent velocity and separate influent (untreated) from effluent (treated) flows. Influent water ponds upstream of the insert's weir providing driving head for the water flowing downwards into the drop pipe where a vortex pulls the water into the lower chamber. The water diffuses at lower velocities in multiple directions through the drop pipe outlet openings. Oil and other floatables rise up and are trapped beneath the insert, while sediments undergo gravitational settling to the sump's bottom. Water from the sump can exit by flowing upward to the outlet riser onto the top side of the insert and downstream of the weir, where it discharges through the outlet pipe.

Maximum flow rate into the lower chamber is a function of weir height and drop pipe orifice diameter. The Stormceptor® EF and EFO are designed to allow a surface loading rate of 1135 L/min/m<sup>2</sup> (27.9 gal/min/ft<sup>2</sup>) and 535 L/min/m<sup>2</sup> (13.1 gal/min/ft<sup>2</sup>) into the lower chamber, respectively. When prescribed surface loading rates are exceeded, ponding water can overtop the weir height and bypass the lower treatment chamber, exiting directly through the outlet pipe. Hydraulic testing and scour testing demonstrate that the internal bypass effectively prevents scour at all bypass flow rates. Increasing the bypass flow rate does not increase the orifice-controlled flow rate into the lower treatment chamber where sediment is stored. This internal bypass feature allows for in-line installation, avoiding the cost of

additional bypass structures. During bypass, treatment continues in the lower chamber at the maximum flow rate. The Stormceptor® EFO's lower design surface loading rate is favorable for minimizing re-entrainment and washout of captured light liquids. Inspection of Stormceptor® EF and EFO devices is performed from grade by inserting a sediment probe through the outlet riser and an oil dipstick through the oil inspection pipe. The unit can be maintained by using a vacuum hose through the outlet riser.

## Performance conditions

The data and results published in this Technology Fact Sheet were obtained from the testing program conducted on the Imbrium Systems Inc.'s Stormceptor® EF4 and EFO4 Oil-Grit Separators, in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014). The Procedure was prepared by the Toronto and Region Conservation Authority (TRCA) for Environment Canada's Environmental Technology Verification (ETV) Program. A copy of the Procedure may be accessed on the Canadian ETV website at [www.etvcanada.ca](http://www.etvcanada.ca).

## Performance claim(s)

### Capture test<sup>a</sup>:

During the capture test, the Stormceptor® EF4 OGS device, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L, removes 70, 64, 54, 48, 46, 44, and 49 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m<sup>2</sup>, respectively.

Stormceptor® EFO4, with a false floor set to 50% of the manufacturer's recommended maximum sediment storage depth and a constant influent test sediment concentration of 200 mg/L, removes 70, 64, 54, 48, 42, 40, and 34 percent of influent sediment by mass at surface loading rates of 40, 80, 200, 400, 600, 1000, and 1400 L/min/m<sup>2</sup>, respectively.

### Scour test<sup>a</sup>:

During the scour test, the Stormceptor® EF4 and Stormceptor® EFO4 OGS devices, with 10.2 cm (4 inches) of test sediment pre-loaded onto a false floor reaching 50% of the manufacturer's recommended maximum sediment storage depth, generate corrected effluent concentrations of 4.6, 0.7, 0, 0.2, and 0.4 mg/L at 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m<sup>2</sup>, respectively.

### Light liquid re-entrainment test<sup>a</sup>:

During the light liquid re-entrainment test, the Stormceptor® EFO4 OGS device with surrogate low-density polyethylene beads preloaded within the lower chamber oil collection zone, representing a floating light liquid volume equal to a depth of 50.8 mm over the sedimentation area, retained 100, 99.5, 99.8, 99.8, and 99.9 percent of loaded beads by mass during the 5-minute duration surface loading rates of 200, 800, 1400, 2000, and 2600 L/min/m<sup>2</sup>.

<sup>a</sup> The claim can be applied to other units smaller or larger than the tested unit as long as the untested units meet the scaling rule specified in the Procedure for Laboratory of Testing of Oil Grit Separators (Version 3.0, June 2014)

## Performance results

The test sediment consisted of ground silica (1 – 1000 micron) with a specific gravity of 2.65, uniformly mixed to meet the particle size distribution specified in the testing procedure. The *Procedure for Laboratory Testing of Oil Grit Separators* requires that the three sample average of the test sediment particle size distribution (PSD) meet the specified PSD percent less than values within a boundary threshold of 6%. The comparison of the average test sediment PSD to the CETV specified PSD in Figure 2 indicates that the test sediment used for the capture and scour tests met this condition.

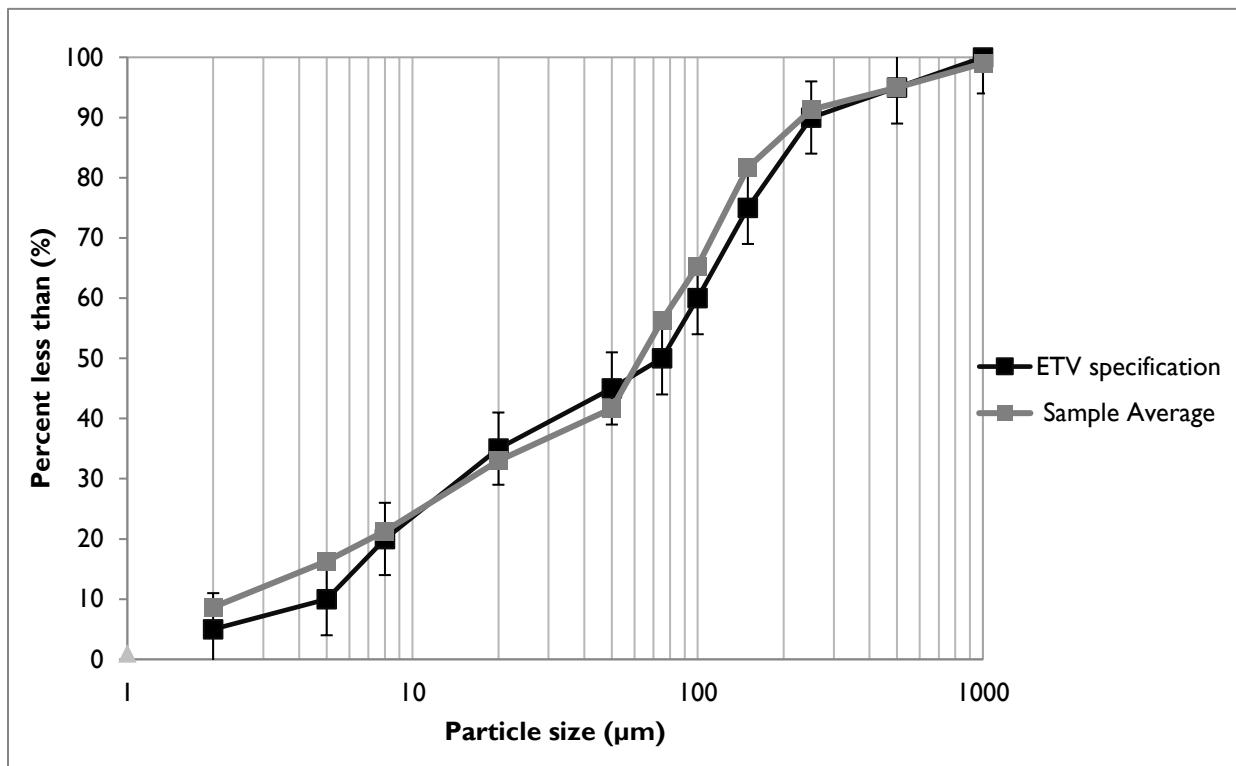



Figure 2. The three sample average particle size distribution (PSD) of the test sediment used for the capture and scour test compared to the specified PSD.

The capacity of the device to retain sediment was determined at seven surface loading rates using the modified mass balance method. This method involved measuring the mass and particle size distribution of the injected and retained sediment for each test run. Performance was evaluated with a false floor simulating the technology filled to 50% of the manufacturer's recommended maximum sediment storage depth. The test was carried out with clean water that maintained a sediment concentration below 20 mg/L. Based on these conditions, removal efficiencies for individual particle size classes and for the test sediment as a whole were determined for each of the tested surface loading rates (Table 1). Since the EF and EFO models are identical except for the weir height, which bypasses flows from the EFO model at a surface loading rate of 535 L/min/m<sup>2</sup> (13.1 gpm/ft<sup>2</sup>), sediment capture tests at surface loading rates from 40 to 400 L/min/m<sup>2</sup> were only performed on the EF unit. Surface loading rates of 600, 1000, and 1400 L/min/m<sup>2</sup> were tested on both units separately. Results for the EFO model at these higher flow rates are presented in Table 2.

In some instances, the removal efficiencies were above 100% for certain particle size fractions. These discrepancies are not unique to any one test laboratory and may be attributed to errors relating to the blending of sediment, collection of representative samples for laboratory submission, and laboratory

analysis of PSD. Due to these errors, caution should be exercised in applying the removal efficiencies by particle size fraction for the purposes of sizing the tested device (see [Bulletin # CETV 2016-11-0001](#)). The results for “all particle sizes by mass balance” (see Table 1 and 2) are based on measurements of the total injected and retained sediment mass, and are therefore not subject to blending, sampling or PSD analysis errors.

Table 1. Removal efficiencies (%) of the EF4 at specified surface loading rates

| Particle size fraction (µm)               | Surface loading rate (L/min/m <sup>2</sup> ) |             |             |             |             |             |             |
|-------------------------------------------|----------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                           | 40                                           | 80          | 200         | 400         | 600         | 1000        | 1400        |
| >500                                      | 90                                           | 58          | 58          | 100*        | 86          | 72          | 100*        |
| 250 - 500                                 | 100*                                         | 100*        | 100         | 100*        | 100*        | 100*        | 100*        |
| 150 - 250                                 | 90                                           | 82          | 26          | 100*        | 100*        | 67          | 90          |
| 105 - 150                                 | 100*                                         | 100*        | 100*        | 100*        | 100*        | 100*        | 100         |
| 75 - 105                                  | 100*                                         | 92          | 74          | 82          | 77          | 68          | 76          |
| 53 - 75                                   | Undefined <sup>a</sup>                       | 56          | 100*        | 72          | 69          | 50          | 80          |
| 20 - 53                                   | 54                                           | 100*        | 54          | 33          | 36          | 40          | 31          |
| 8 - 20                                    | 67                                           | 52          | 25          | 21          | 17          | 20          | 20          |
| 5 - 8                                     | 33                                           | 29          | 11          | 12          | 9           | 7           | 19          |
| <5                                        | 13                                           | 0           | 0           | 0           | 0           | 0           | 4           |
| <b>All particle sizes by mass balance</b> | <b>70.4</b>                                  | <b>63.8</b> | <b>53.9</b> | <b>47.5</b> | <b>46.0</b> | <b>43.7</b> | <b>49.0</b> |

<sup>a</sup> An outlier in the feed sample sieve data resulted in a negative removal efficiency for this size fraction.

\* Removal efficiencies were calculated to be above 100%. Calculated values ranged between 101 and 171% (average 128%).

See text and [Bulletin # CETV 2016-11-0001](#) for more information.

Table 2. Removal efficiencies (%) of the EFO4 at surface loading rates above the bypass rate of 535 L/min/m<sup>2</sup>

| Particle size fraction (µm)               | Surface loading rate (L/min/m <sup>2</sup> ) |             |             |
|-------------------------------------------|----------------------------------------------|-------------|-------------|
|                                           | 600                                          | 1000        | 1400        |
| >500                                      | 89                                           | 83          | 100*        |
| 250 - 500                                 | 90                                           | 100*        | 92          |
| 150 - 250                                 | 90                                           | 67          | 100*        |
| 105 - 150                                 | 85                                           | 92          | 77          |
| 75 - 105                                  | 80                                           | 71          | 65          |
| 53 - 75                                   | 60                                           | 31          | 36          |
| 20 - 53                                   | 33                                           | 43          | 23          |
| 8 - 20                                    | 17                                           | 23          | 15          |
| 5 - 8                                     | 10                                           | 3           | 3           |
| <5                                        | 0                                            | 0           | 0           |
| <b>All particle sizes by mass balance</b> | <b>41.7</b>                                  | <b>39.7</b> | <b>34.2</b> |

\* Removal efficiencies were calculated to be above 100%. Calculated values ranged between 103 and 111% (average 107%).

See text and [Bulletin # CETV 2016-11-0001](#) for more information.

Figure 3 compares the particle size distribution (PSD) of the three sample average of the test sediment to the PSD of the sediment retained by the EF4 at each of the tested surface loading rates. Figure 4 shows the same graph for the EFO4 unit at surface loading rates above the bypass rate of 535 L/min/m<sup>2</sup>.

As expected, the capture efficiency for fine particles in both units was generally found to decrease as surface loading rates increased.

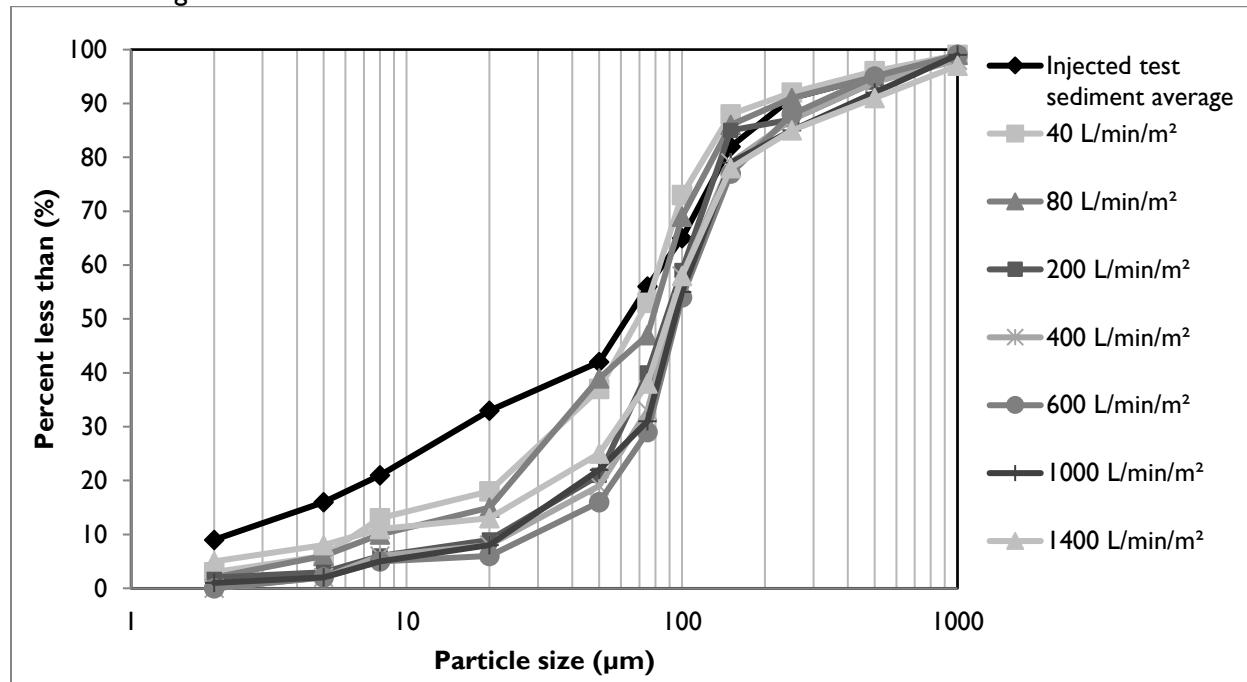



Figure 3. Particle size distribution of sediment retained in the EF4 in relation to the injected test sediment average.

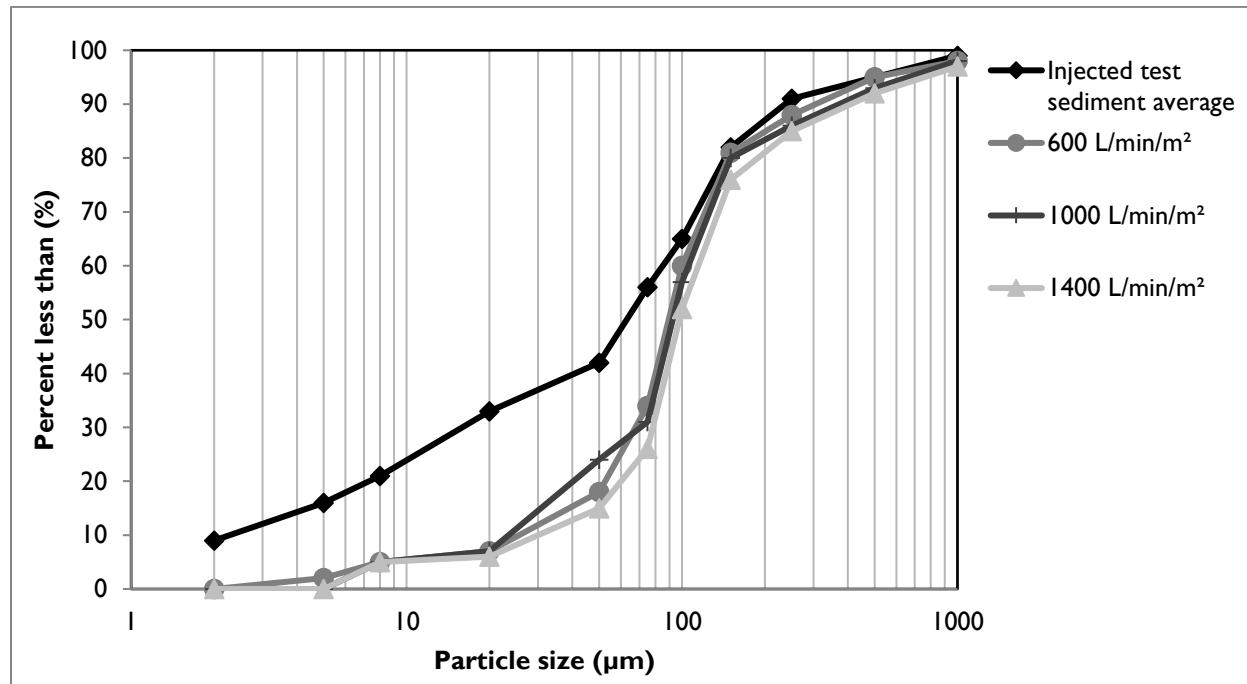



Figure 4. Particle size distribution of sediment retained in the EFO4 in relation to the injected test sediment average at surface loading rates above the bypass rate of 535 L/min/m<sup>2</sup>

Table 4 shows the results of the sediment scour and re-suspension test for the EF4 unit. The EFO4 was not tested as it was reasonably assumed that scour rates would be lower given that flow bypass occurs at a lower surface loading rate. The scour test involved preloading 10.2 cm of fresh test sediment into

the sedimentation sump of the device. The sediment was placed on a false floor to mimic a device filled to 50% of the maximum recommended sediment storage depth. Clean water was run through the device at five surface loading rates over a 30 minute period. Each flow rate was maintained for 5 minutes with a one minute transition time between flow rates. Effluent samples were collected at one minute sampling intervals and analyzed for Suspended Sediment Concentration (SSC) and PSD by recognized methods. The effluent samples were subsequently adjusted based on the background concentration of the influent water. Typically, the smallest 5% of particles captured during the 40 L/min/m<sup>2</sup> sediment capture test is also used to adjust the concentration, as per the method described in [Bulletin # CETV 2016-09-0001](#). However, since the composites of effluent concentrations were below the Reporting Detection Limit of the Laser Diffraction PSD methodology, this adjustment was not made. Results showed average adjusted effluent sediment concentrations below 5 mg/L at all tested surface loading rates.

It should be noted that the EF4 starts to internally bypass water at 1135 L/min/m<sup>2</sup>, potentially resulting in the dilution of effluent concentrations, which would not normally occur under typical field conditions because the field influent concentration would contain a much higher sediment concentration than during the lab test. Recalculation of effluent concentrations to account for dilution at surface loading rates above the bypass rate showed sediment effluent concentrations to be below 1.6 mg/L.

Table 4. Scour test adjusted effluent sediment concentration.

| Run | Surface loading rate (L/min/m <sup>2</sup> ) | Run time (min) | Background sample concentration (mg/L) | Adjusted effluent suspended sediment concentration (mg/L) <sup>a</sup> | Average (mg/L) |
|-----|----------------------------------------------|----------------|----------------------------------------|------------------------------------------------------------------------|----------------|
| 1   | 200                                          | 1:00           | <RDL                                   | 11.9                                                                   | 4.6            |
|     |                                              | 2:00           |                                        | 7.0                                                                    |                |
|     |                                              | 3:00           |                                        | 4.4                                                                    |                |
|     |                                              | 4:00           |                                        | 2.2                                                                    |                |
|     |                                              | 5:00           |                                        | 1.0                                                                    |                |
|     |                                              | 6:00           |                                        | 1.2                                                                    |                |
| 2   | 800                                          | 7:00           | <RDL                                   | 1.1                                                                    | 0.7            |
|     |                                              | 8:00           |                                        | 0.9                                                                    |                |
|     |                                              | 9:00           |                                        | 0.6                                                                    |                |
|     |                                              | 10:00          |                                        | 1.4                                                                    |                |
|     |                                              | 11:00          |                                        | 0.1                                                                    |                |
|     |                                              | 12:00          |                                        | 0                                                                      |                |
| 3   | 1400                                         | 13:00          | <RDL                                   | 0                                                                      | 0              |
|     |                                              | 14:00          |                                        | 0.1                                                                    |                |
|     |                                              | 15:00          |                                        | 0                                                                      |                |
|     |                                              | 16:00          |                                        | 0                                                                      |                |
|     |                                              | 17:00          |                                        | 0                                                                      |                |
|     |                                              | 18:00          |                                        | 0                                                                      |                |
| 4   | 2000                                         | 19:00          | 1.2                                    | 0.2                                                                    | 0.2            |
|     |                                              | 20:00          |                                        | 0                                                                      |                |
|     |                                              | 21:00          |                                        | 0                                                                      |                |
|     |                                              | 22:00          |                                        | 0.7                                                                    |                |
|     |                                              | 23:00          |                                        | 0                                                                      |                |
|     |                                              | 24:00          |                                        | 0.4                                                                    |                |

|   |      |       |     |     |     |
|---|------|-------|-----|-----|-----|
| 5 | 2600 | 25:00 | 1.6 | 0.3 | 0.4 |
|   |      | 26:00 |     | 0.4 |     |
|   |      | 27:00 |     | 0.7 |     |
|   |      | 28:00 |     | 0.4 |     |
|   |      | 29:00 |     | 0.2 |     |
|   |      | 30:00 |     | 0.4 |     |

<sup>a</sup> The adjusted effluent suspended sediment concentration represents the actual measured effluent concentration minus the background concentration. For more information see [Bulletin # CETV 2016-09-0001](#).

The results of the light liquid re-entrainment test used to evaluate the unit's capacity to prevent re-entrainment of light liquids are reported in Table 5. The test involved preloading 58.3 L (corresponding to a 5 cm depth over the collection sump area of 1.17m<sup>2</sup>) of surrogate low-density polyethylene beads within the oil collection skirt and running clean water through the device continuously at five surface loading rates (200, 800, 1400, 2000, and 2600 L/min/m<sup>2</sup>). Each flow rate was maintained for 5 minutes with approximately 1 minute transition time between flow rates. The effluent flow was screened to capture all re-entrained pellets throughout the test.

Table 5. Light liquid re-entrainment test results for the EFO4.

| Surface Loading Rate (L/min/m <sup>2</sup> ) | Time Stamp | Amount of Beads Re-entrained |                         |                                   |                               |
|----------------------------------------------|------------|------------------------------|-------------------------|-----------------------------------|-------------------------------|
|                                              |            | Mass (g)                     | Volume (L) <sup>a</sup> | % of Pre-loaded Mass Re-entrained | % of Pre-loaded Mass Retained |
| 200                                          | 62         | 0                            | 0                       | 0.00                              | 100                           |
| 800                                          | 247        | 168.45                       | 0.3                     | 0.52                              | 99.48                         |
| 1400                                         | 432        | 51.88                        | 0.09                    | 0.16                              | 99.83                         |
| 2000                                         | 617        | 55.54                        | 0.1                     | 0.17                              | 99.84                         |
| 2600                                         | 802        | 19.73                        | 0.035                   | 0.06                              | 99.94                         |
| Total Re-entrained                           |            | 295.60                       | 0.525                   | 0.91                              | --                            |
| Total Retained                               |            | 32403                        | 57.78                   | --                                | 99.09                         |
| Total Loaded                                 |            | 32699                        | 58.3                    | --                                | --                            |

<sup>a</sup> Determined from bead bulk density of 0.56074 g/cm<sup>3</sup>

## Variances from testing Procedure

The following minor deviations from the *Procedure for Laboratory Testing of Oil-Grit Separators* (Version 3.0, June 2014) have been noted:

- During the capture test, the 40 L/min/m<sup>2</sup> and 80 L/min/m<sup>2</sup> surface loading rates were evaluated over 3 and 2 days respectively due to the long duration needed to feed the required minimum of 11.3 kg of test sediment into the unit at these lower flow rates. Pumps were shut down at the end of each intermediate day, and turned on again the following morning. The target flow rate was re-established within 30 seconds of switching on the pump. This procedure may have allowed sediments to be captured that otherwise may have exited the unit if the test was continuous. On the basis of practical considerations, this variance was approved by the verifier prior to testing.

2. During the scour test, the coefficient of variation (COV) for the lowest flow rate tested (200 L/min/m<sup>2</sup>) was 0.07, which exceeded the specified limit of 0.04 target specified in the OGS Procedure. A pump capable of attaining the highest flow rate of 3036 L/min had difficulty maintaining the lowest flow of 234 L/min but still remained within +/- 10% of the target flow and is viewed as having very little impact on the observed results. Similarly, for the light liquid re-entrainment test the COV for the flow rate of the 200 L/min/m<sup>2</sup> run was 0.049, exceeding the limit of 0.04, but is believed to introduce negligible bias.
3. Due to pressure build up in the filters, the runs at 1000 L/min/m<sup>2</sup> for the Stormceptor® EF4 and 1000 and 1400 L/min/m<sup>2</sup> for the Stormceptor® EFO4 were slightly shorter than the target. The run times were 54, 59 and 43 minutes respectively, versus targets of 60 and 50 minutes. The final feed samples were timed to coincide with the end of the run. Since >25 lbs of sediment was fed, the shortened time did not invalidate the runs.

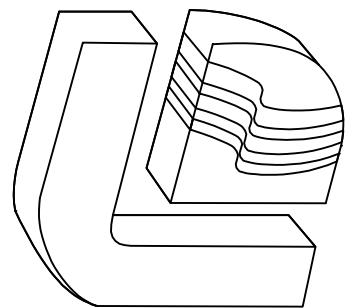
## **Verification**

The verification was completed by the Verification Expert, Toronto and Region Conservation Authority, contracted by GLOBE Performance Solutions, using the International Standard **ISO 14034:2016 Environmental management -- Environmental technology verification (ETV)**. Data and information provided by Imbrium Systems Inc. to support the performance claim included the following: Performance test report prepared by Good Harbour Laboratories, and dated September 8, 2017; the report is based on testing completed in accordance with the Procedure for Laboratory Testing of Oil-Grit Separators (Version 3.0, June 2014).

## **What is ISO 14034:2016 Environmental management – Environmental technology verification (ETV)?**

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV), and was developed and published by the *International Organization for Standardization (ISO)*. The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

**For more information on the Stormceptor® EF and EFO OGS please contact:**


Imbrium Systems, Inc.  
407 Fairview Drive  
Whitby, ON  
LIN 3A9, Canada  
Tel: 416-960-9900  
info@imbriumsystems.com

**For more information on ISO 14034:2016 / ETV please contact:**

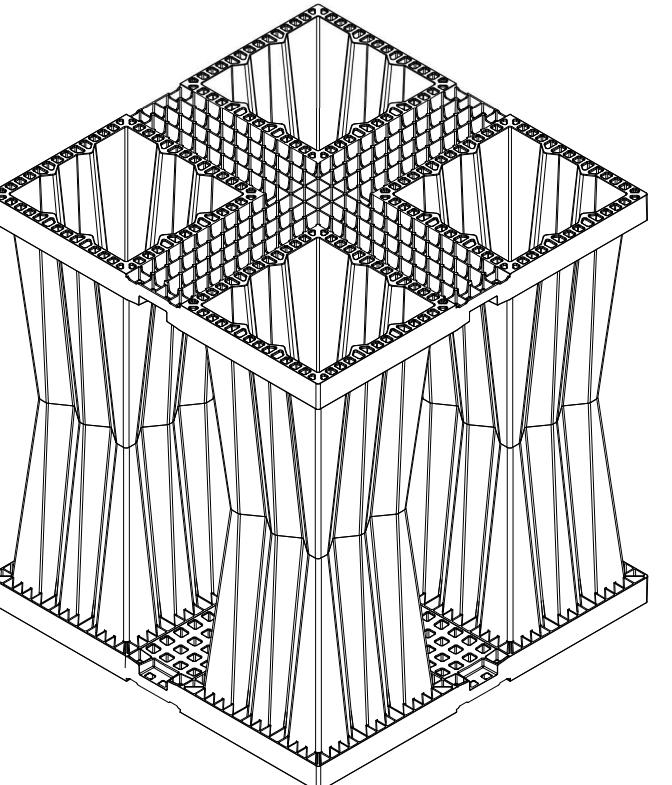
GLOBE Performance Solutions  
World Trade Centre  
404 – 999 Canada Place  
Vancouver, BC  
V6C 3E2 Canada  
Tel: 604-695-5018 / Toll Free: 1-855-695-5018  
etv@globeperformance.com

### **Limitation of verification - Registration: GPS-ETV\_VR2020-11-15\_Imbrium-SC**

GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.



# LAYFIELD


## AQUABOX MODULE LAYOUT DRAWINGS

39 PINE STREET N.  
Port Hope, ON

### Pages:

|                               |          |
|-------------------------------|----------|
| Cover Page                    | 01 OF 07 |
| Module Layout                 | 02 OF 07 |
| TYP. Construction Details     | 03 OF 07 |
| TYP. Pipe Penetration Details | 04 OF 07 |
| TYP. Isolator Row Details     | 05 OF 07 |
| Supplementary Notes           | 06 OF 07 |
| Supplementary Notes           | 07 OF 07 |

THIS DRAWING AND THE INFORMATION CONTAINED HEREIN  
ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT  
BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN  
AUTHORIZATION FROM LAYFIELD CANADA LTD.



REFER TO AQUABOX  
INSTALLATION INSTRUCTIONS



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
www.layfieldgroup.com

|                             |                       |                       |
|-----------------------------|-----------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |                       |
| Module Storage Volume       | 145.15 m <sup>3</sup> |                       |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |                       |
| System Footprint            | 108.13 m <sup>2</sup> |                       |
| Estimated Geotextile Fabric | NuBarrier             | 791 m <sup>2</sup>    |
| Estimated Geotextile Fabric | LP8                   | ---- m <sup>2</sup>   |
| Estimated Liner             |                       | ---- m <sup>2</sup>   |
| Estimated GeoGrid           |                       | ---- m <sup>2</sup>   |
| Estimated Stone Volume      |                       | 65.06 m <sup>3</sup>  |
| Excavation Required         |                       | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    |                       | 2.3 m                 |
| Stone Type                  |                       | 19mm Clear Stone      |
| Stone Void Space            |                       | 40%                   |
| Number of Module Layers     |                       | 2                     |
| Allowable Loading           |                       | HS-25                 |
| Surface                     | Paved Surface         | Vegetated/ Unpaved    |
| Minimum Top Cover           | 0.60 m                | 0.80 m                |
| Maximum Tank Depth          | 3.50 m                | 3.40 m                |

39 PINE STREET N.

Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number: ----

|              |                 |
|--------------|-----------------|
| Page Name:   | Cover Page      |
| Drawn by: PE | Checked by: JF  |
| Scale: NTS   | Date: 09APR2024 |

THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

Sheet:

**01 OF 07**

**1 NOTES**

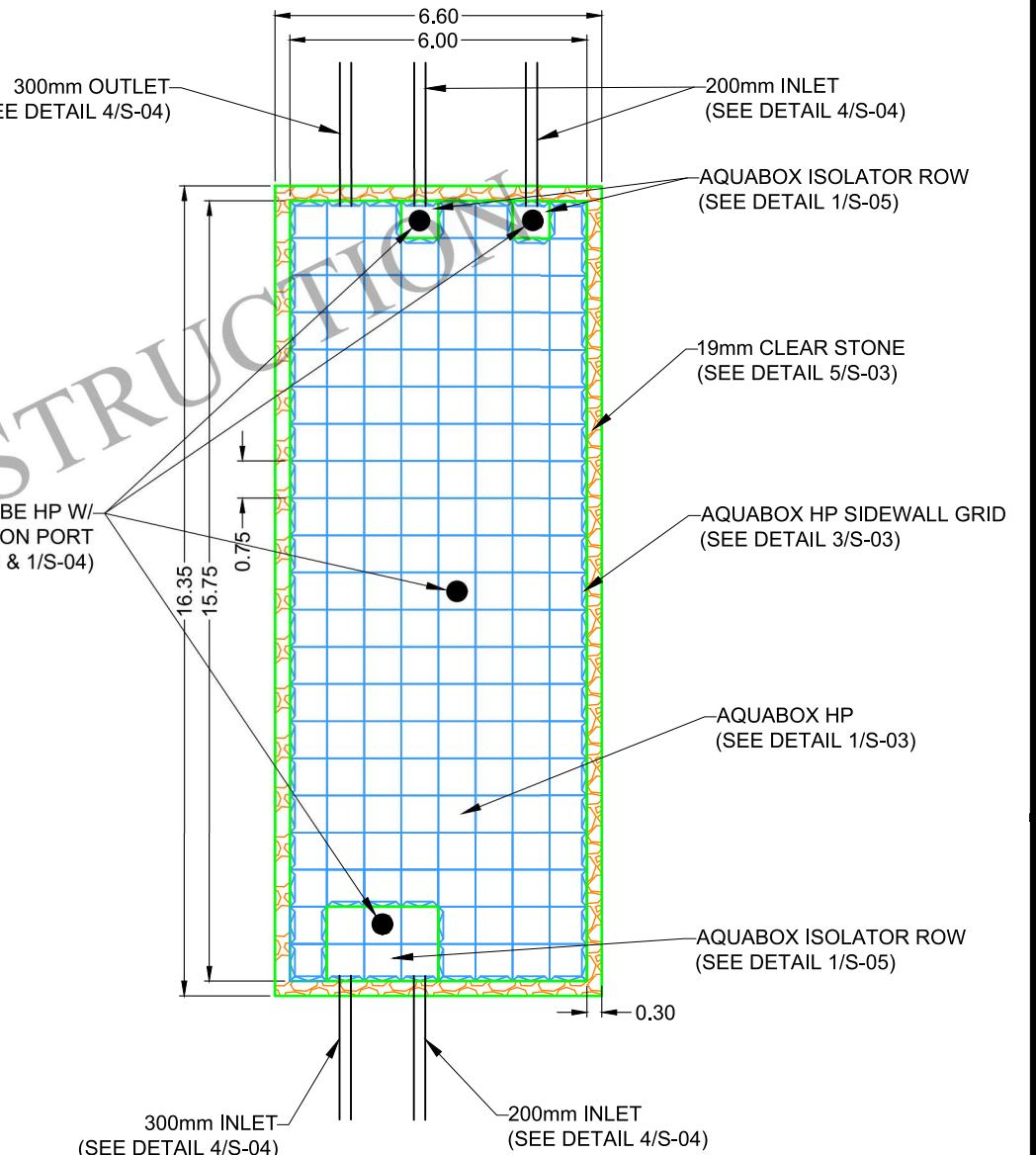
**S-02**

NOTES:

- a. All dimensions are measured in meters unless noted otherwise.
- b. Reference Aquabox standard drawings and notes for detailed information.
- c. Reference current Aquabox Module installation instructions for proper installation practices.  
<https://www.geoplastglobal.com/en/downloads/aquabox>
- d. Engineer of record to confirm conformance to manufacturer's allowable proximity to other structures and slopes.
- e. All inlet and pipe locations and designs by others.
- f. The sub-grade and side backfill needs to be compacted to 97%, unless noted otherwise.
- g. During and after installation, the AquaBox Module area should be clearly marked and roped off to prevent unauthorized construction and equipment trafficking over the modules.
- h. Top of Ground water is to be maintained 610 mm (2 ft) below the module to prevent buoyancy, unless otherwise noted by engineer.
- i. The quantities related to stone and geosynthetics are estimated values as the roll size, overlaps, waste, etc. may vary.
- j. Materials must be stored in a manner to prevent prolonged exposure to UV light.
- k. Extra care and caution must be taken when handling materials at temperatures below 0C.
- l. Storm tank system is not considered complete until all backfill is installed to the minimum depth shown on Detail 5 Typical System Cross-Section. The installer MUST insure that the project site remains dry and free of water (both surface and groundwater) until the installation is complete, including the backfill as noted, to avoid damage to the tank system due to buoyancy.

**Material Quantity (AQUABOX HP)**

|                  |     |
|------------------|-----|
| AquaBox HP       | 656 |
| Sidewall Grid HP | 125 |
| Top Cap HP       | 672 |
| Single Joint     | 614 |
| Double Joint     | 339 |


**Elevations**

|                                             |         |
|---------------------------------------------|---------|
| Leveling Stone Bottom                       | 99.191  |
| Bottom of Module                            | 99.291  |
| Module Invert                               | 99.341  |
| Top of Module                               | 100.891 |
| Top of Stone Backfill                       | 101.191 |
| Minimum Finished Grade                      | 101.491 |
| *Must consider frost line, varies by region |         |
| Maximum Finished Grade                      | 102.791 |

Contractor to confirm that quantities shipped to site match those listed above. Please report any discrepancy or damage to Layfield immediately.

**Material Quantity (AQUABOX CUBE HP)**

|                       |    |
|-----------------------|----|
| AquaBox Cube HP       | 32 |
| Sidewall Grid Cube HP | 8  |
| Circular Cap D400 HP  | 4  |
| Surface Grate         | 4  |



THIS DRAWING AND THE INFORMATION CONTAINED HEREIN ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN AUTHORIZATION FROM LAYFIELD CANADA LTD.

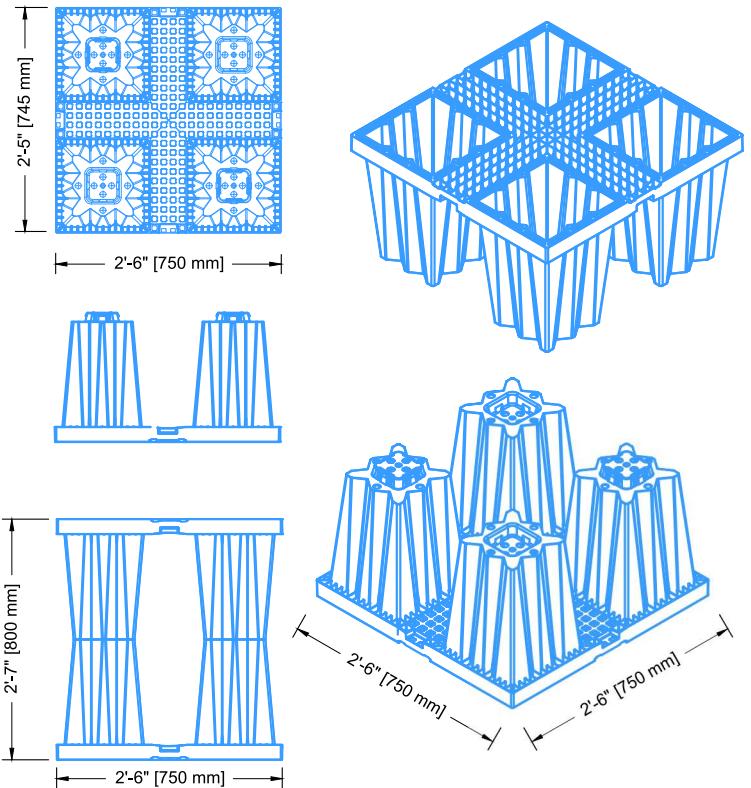
2  
S-02  
MODULE LAYOUT  
SCALE: NTS

**LAYFIELD**

117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
www.layfieldgroup.com

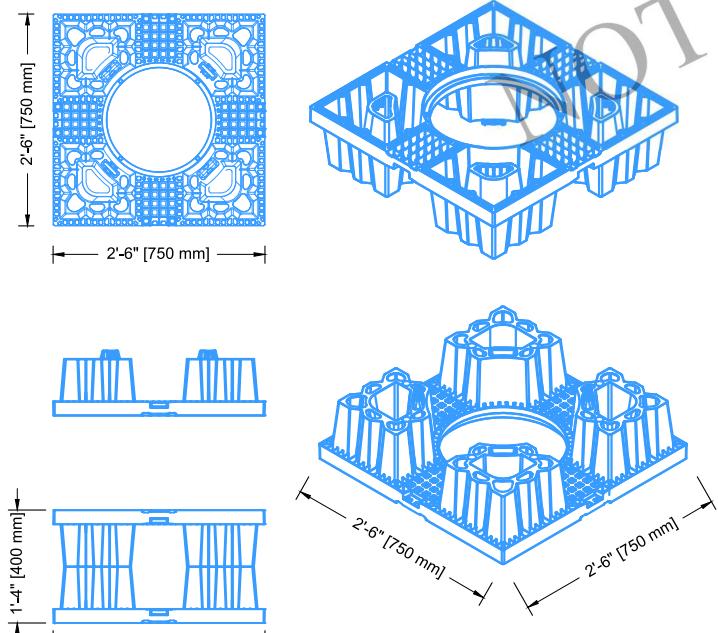
|                             |                              |                    |
|-----------------------------|------------------------------|--------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup>        |                    |
| Module Storage Volume       | 145.15 m <sup>3</sup>        |                    |
| Stone Storage Volume        | 26.02 m <sup>3</sup>         |                    |
| System Footprint            | 108.13 m <sup>2</sup>        |                    |
| Estimated Geotextile Fabric | NuBarrier 791 m <sup>2</sup> |                    |
| Estimated Geotextile Fabric | LP8 ---- m <sup>2</sup>      |                    |
| Estimated Liner             | ---- m <sup>2</sup>          |                    |
| Estimated GeoGrid           | ---- m <sup>2</sup>          |                    |
| Estimated Stone Volume      | 65.06 m <sup>3</sup>         |                    |
| Excavation Required         | 248.70 m <sup>3</sup>        |                    |
| Minimum Excavation Depth    | 2.3 m                        |                    |
| Stone Type                  | 19mm Clear Stone             |                    |
| Stone Void Space            | 40%                          |                    |
| Number of Module Layers     | 2                            |                    |
| Allowable Loading           | HS-25                        |                    |
| Surface                     | Paved Surface                | Vegetated/ Unpaved |
| Minimum Top Cover           | 0.60 m                       | 0.80 m             |
| Maximum Tank Depth          | 3.50 m                       | 3.40 m             |

39 PINE STREET N.


Port Hope, ON

| REV | Record of Changes        | Date            | By |
|-----|--------------------------|-----------------|----|
| △   | Preliminary Drawing      | 09APR2024       | PE |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     |                          |                 |    |
|     | Project Number: ----     |                 |    |
|     | Page Name: Module Layout |                 |    |
|     | Drawn by: PE             | Checked By: JF  |    |
|     | Scale: NTS               | Date: 09APR2024 |    |

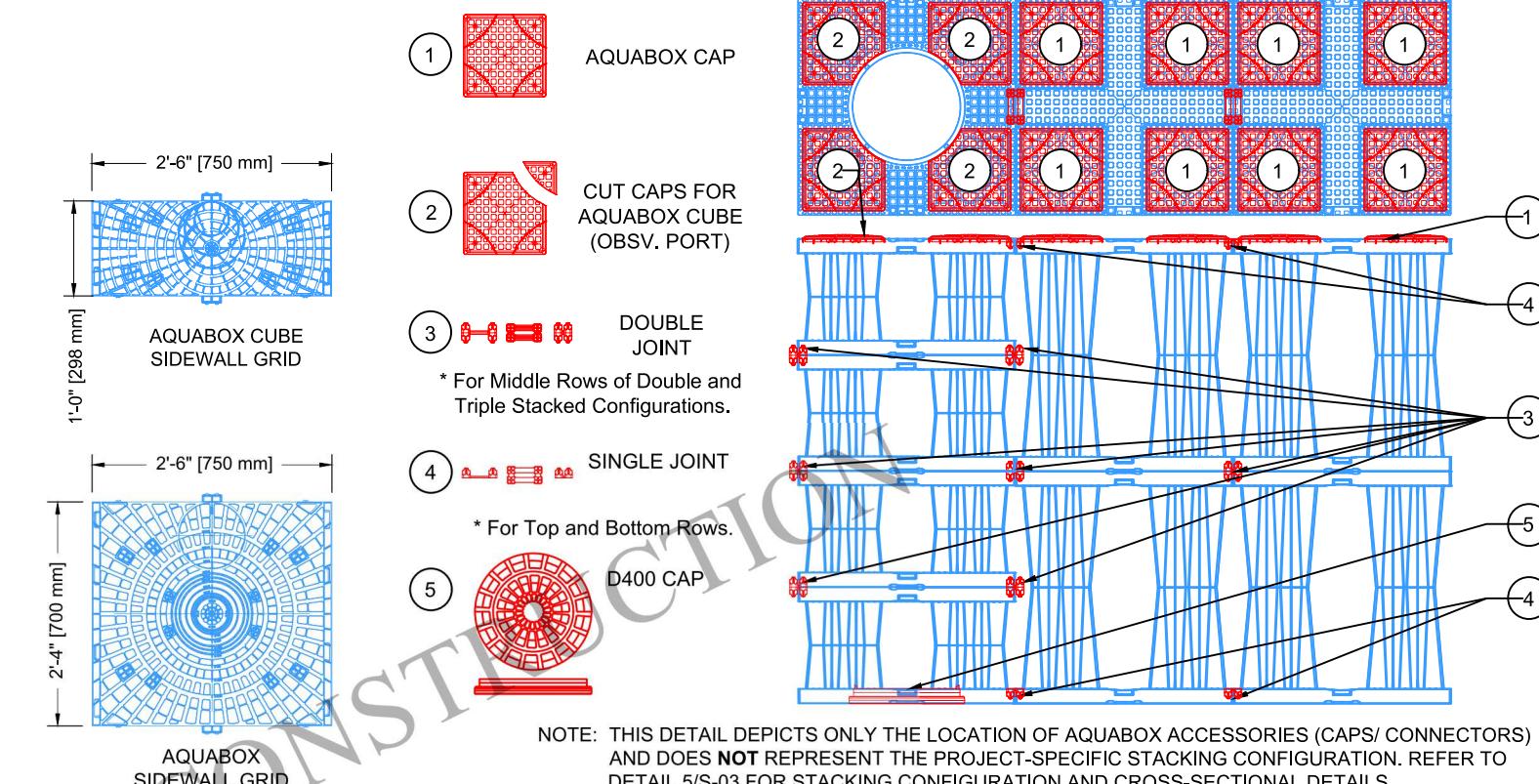
THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.


Sheet:

**02 OF 07**

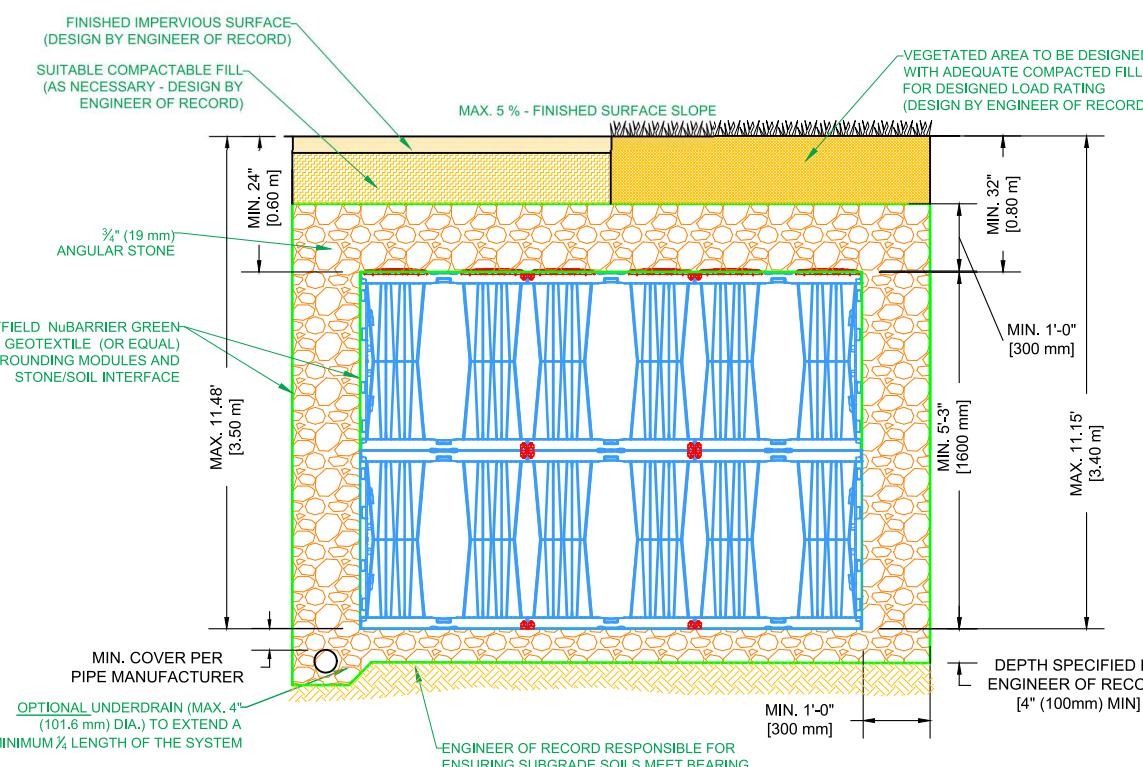


1 AQUABOX


S-03



## 2 AQUABOX CUBE


**S-03**

THIS DRAWING AND THE INFORMATION CONTAINED HEREIN  
ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT  
BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN  
AUTHORIZATION FROM LAYFIELD CANADA LTD.



### 3 AQUABOX SIDEWALL GRID

S-03



## **TYPICAL SYSTEM CROSS SECTION**

S-03



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
[www.layfieldgroup.com](http://www.layfieldgroup.com)

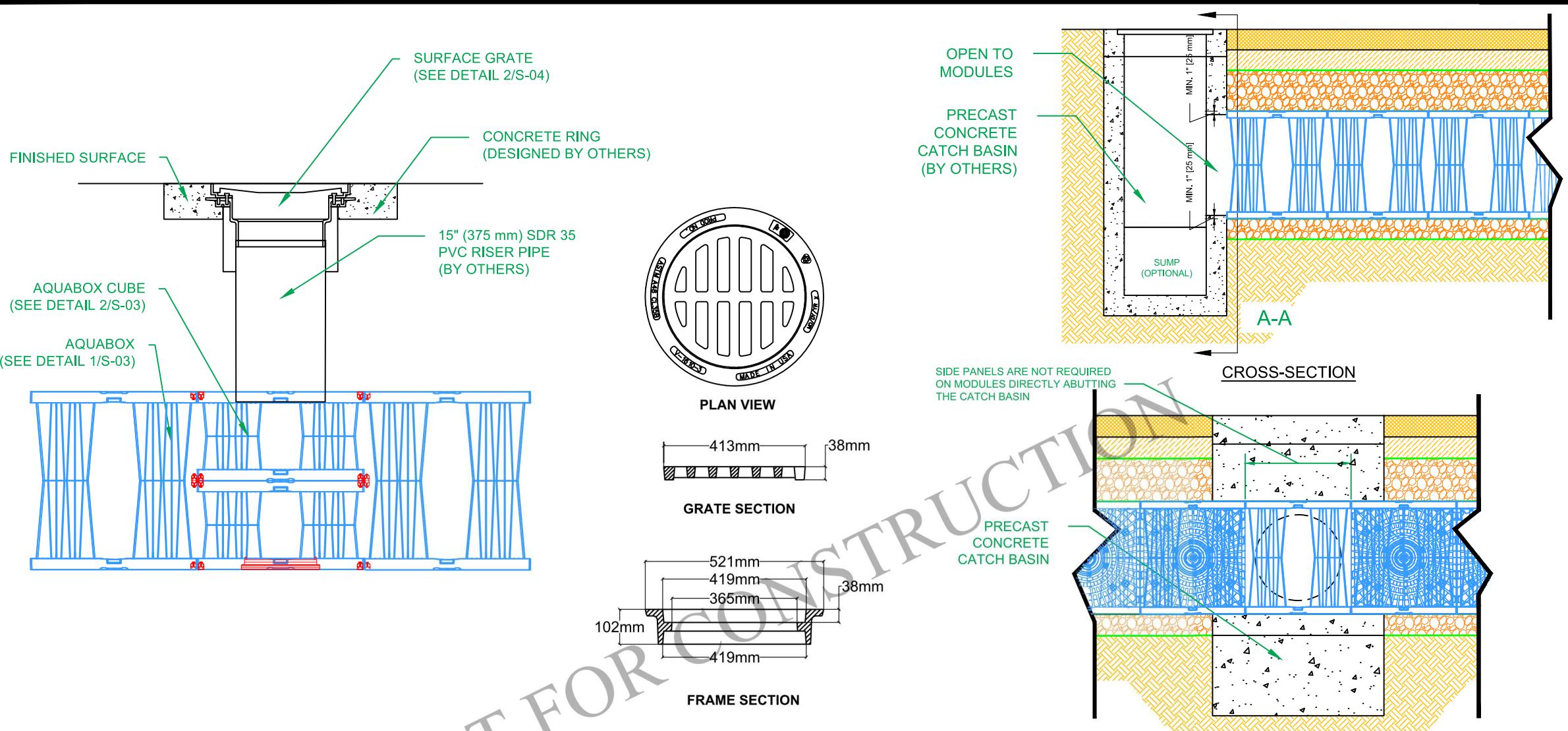
|                             |                       |                       |
|-----------------------------|-----------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |                       |
| Module Storage Volume       | 145.15 m <sup>3</sup> |                       |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |                       |
| System Footprint            | 108.13 m <sup>2</sup> |                       |
| Estimated Geotextile Fabric | NuBarrier             | 791 m <sup>2</sup>    |
| Estimated Geotextile Fabric | LP8                   | ---- m <sup>2</sup>   |
| Estimated Liner             |                       | ---- m <sup>2</sup>   |
| Estimated GeoGrid           |                       | ---- m <sup>2</sup>   |
| Estimated Stone Volume      |                       | 65.06 m <sup>3</sup>  |
| Excavation Required         |                       | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    |                       | 2.3 m                 |
| Stone Type                  | 19mm Clear Stone      |                       |
| Stone Void Space            | 40%                   |                       |
| Number of Module Layers     | 2                     |                       |
| Allowable Loading           | HS-25                 |                       |
| Surface                     | Paved Surface         | Vegetated/ Unpaved    |
| Minimum Top Cover           | 0.60 m                | 0.80 m                |
| Maximum Tank Depth          | 3.50 m                | 3.40 m                |

## 39 PINE STREET N.

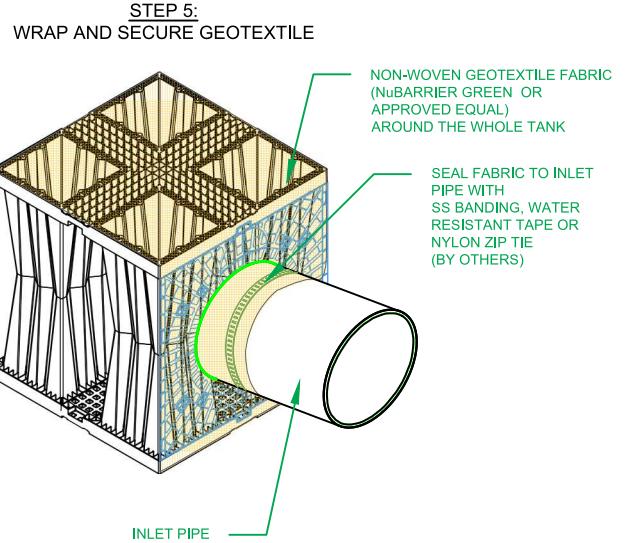
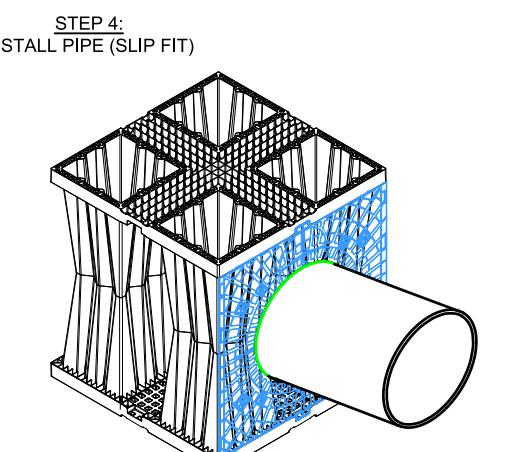
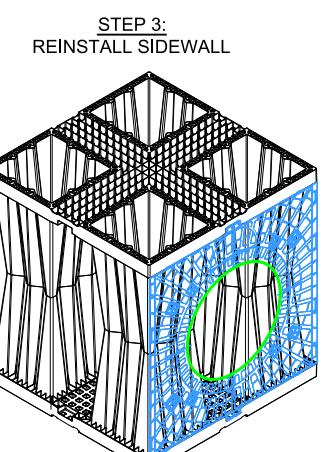
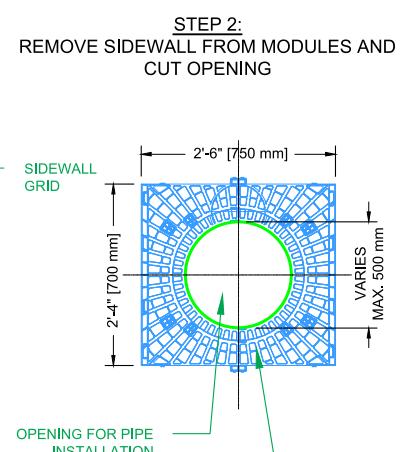
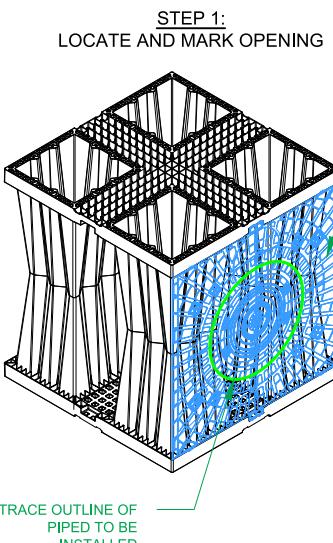
Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number:


Page Name: TVP Construction Details

Série NTC Data 09-APR-2012






THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

Sheet:

03 OF 07



#### 1 S-04 AQUABOX OBSERVATION PORT



#### 4 S-04 PIPE CONNECTION DETAIL

THIS DRAWING AND THE INFORMATION CONTAINED HEREIN  
ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT  
BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN  
AUTHORIZATION FROM LAYFIELD CANADA LTD.



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
www.layfieldgroup.com

|                             |                       |
|-----------------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |
| Module Storage Volume       | 145.15 m <sup>3</sup> |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |
| System Footprint            | 108.13 m <sup>2</sup> |
| Estimated Geotextile Fabric | NuBarrier             |
| Estimated Geotextile Fabric | LP8                   |
| Estimated Liner             | ----                  |
| Estimated GeoGrid           | ----                  |
| Estimated Stone Volume      | 65.06 m <sup>3</sup>  |
| Excavation Required         | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    | 2.3 m                 |
| Stone Type                  | 19mm Clear Stone      |
| Stone Void Space            | 40%                   |
| Number of Module Layers     | 2                     |
| Allowable Loading           | HS-25                 |
| Surface                     | Paved Surface         |
| Minimum Top Cover           | 0.60 m                |
| Maximum Tank Depth          | 3.50 m                |

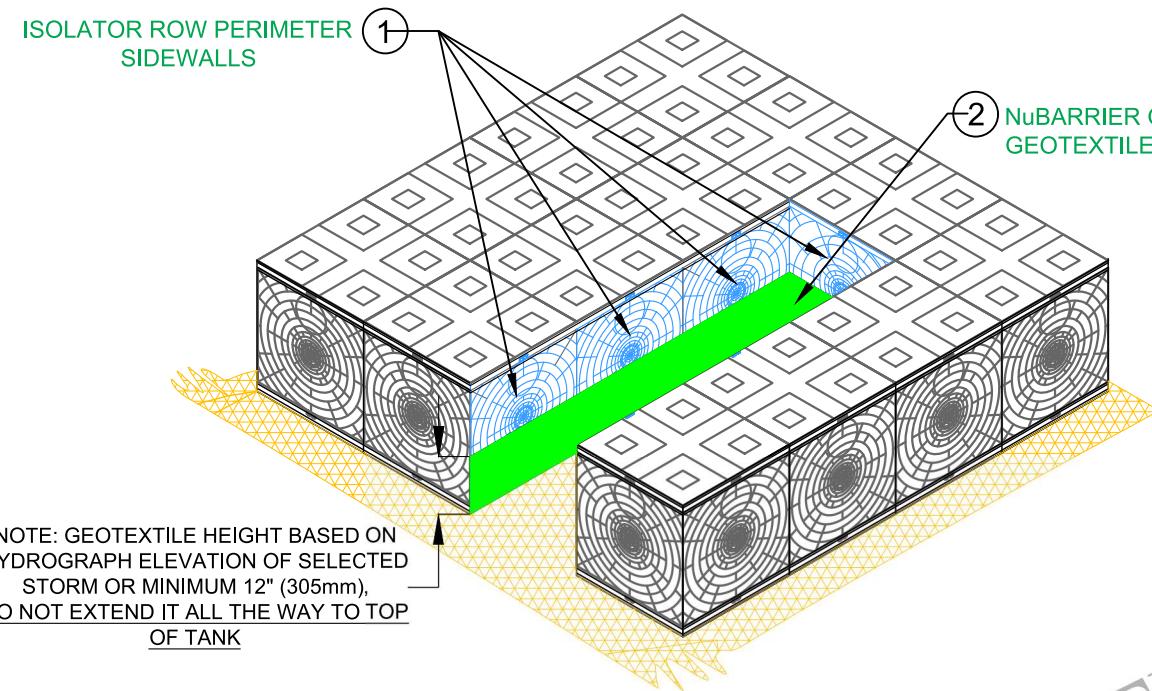
39 PINE STREET N.

Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number: ----

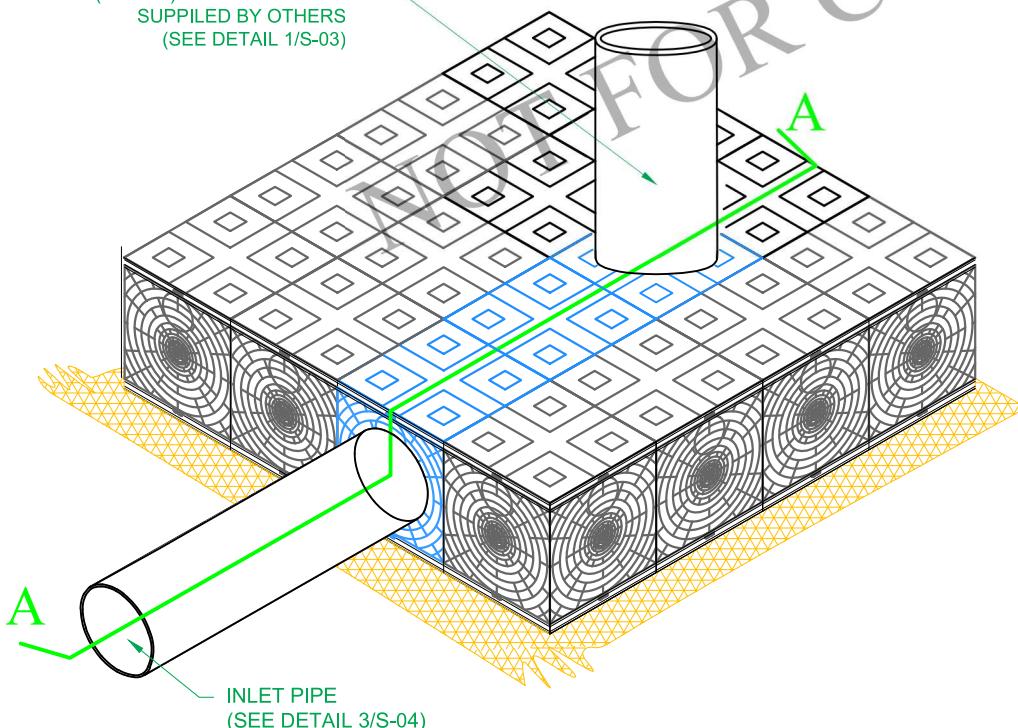
Page Name: TYP. Pipe Penetration Details


Drawn by: PE Checked By: JF

Scale: NTS Date: 09APR2024

THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

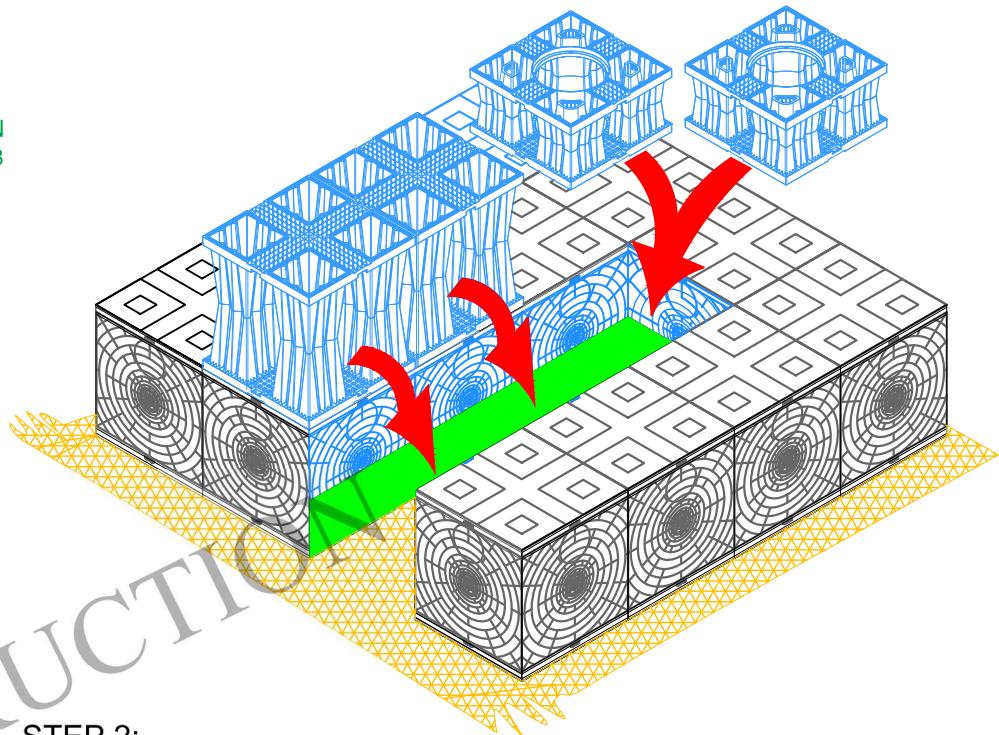
Sheet:


04 OF 07

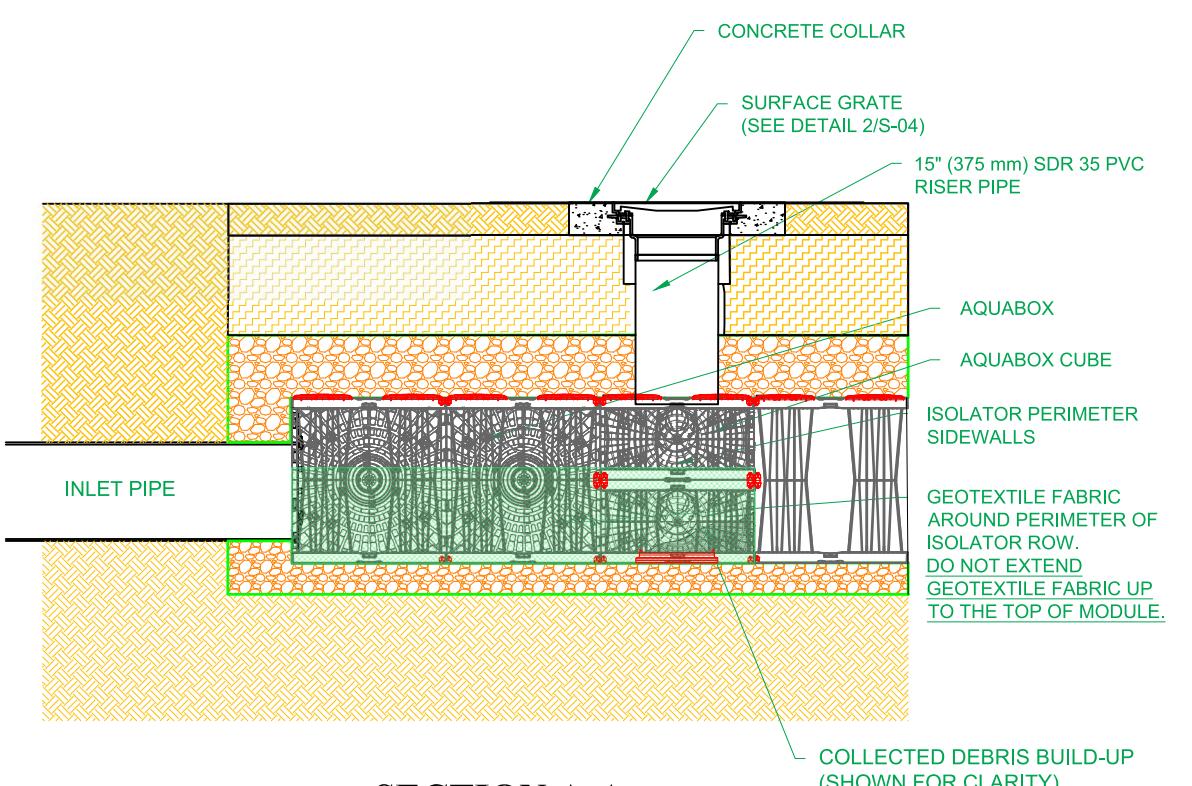


**NOTE: GEOTEXTILE HEIGHT BASED ON  
HYDROGRAPH ELEVATION OF SELECTED  
STORM OR MINIMUM 12" (305mm),  
DO NOT EXTEND IT ALL THE WAY TO TOP  
OF TANK**

**STEP 1:**  
INSTALL ISOLATER ROW PERIMETER SIDEWALLS AND ATTACH GEOTEXTILE TO THEM.


OBSERVATION PORT RISER PIPE  
15" (375 mm) SDR 35 PVC PIPE  
SUPPLIED BY OTHER  
(SEE DETAIL 1/S-03)




STEP 3: (SEE DETAIL 3/S-04)  
INSTALL INLET PIPE AS PER DETAIL 4/S-04 AND CONNECTOR  
PIPE FOR OBSERVATION PORT AS PER DETAIL 1/S-04

## 1 ISOLATOR ROW INSTALLATION DETAIL

---



## STEP 2: PLACE AQUABOX AND AQUABOX CUBE MODULES IN THE ISOLATER ROW AS PER MODULE LAYOUT 2/S-02



## SECTION A-A

THIS DRAWING AND THE INFORMATION CONTAINED HEREIN  
ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT  
BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN  
AUTHORIZATION FROM LAYFIELD CANADA LTD.



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
[www.layfieldgroup.com](http://www.layfieldgroup.com)

|                             |                       |                       |
|-----------------------------|-----------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |                       |
| Module Storage Volume       | 145.15 m <sup>3</sup> |                       |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |                       |
| System Footprint            | 108.13 m <sup>2</sup> |                       |
| Estimated Geotextile Fabric | NuBarrier             | 791 m <sup>2</sup>    |
| Estimated Geotextile Fabric | LP8                   | ---- m <sup>2</sup>   |
| Estimated Liner             |                       | ---- m <sup>2</sup>   |
| Estimated GeoGrid           |                       | ---- m <sup>2</sup>   |
| Estimated Stone Volume      |                       | 65.06 m <sup>3</sup>  |
| Excavation Required         |                       | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    |                       | 2.3 m                 |
| Stone Type                  | 19mm Clear Stone      |                       |
| Stone Void Space            | 40%                   |                       |
| Number of Module Layers     | 2                     |                       |
| Allowable Loading           | HS-25                 |                       |
| Surface                     | Paved Surface         | Vegetated/ Unpaved    |
| Minimum Top Cover           | 0.60 m                | 0.80 m                |
| Maximum Tank Depth          | 3.50 m                | 3.40 m                |

39 PINE STREET N.  
Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number: \_\_\_\_\_

Page Name: TYP\_Isolater Row Details

Scale: NTS Date: 09 APR 2023

THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

Sheet:

05 OF 07

#### General Conditions

- Review installation procedures and coordinate the installation with other construction activities, such as grading, excavation, utilities, construction access, erosion control, etc.
- Engineered Contract Drawings supersede all provided documentation, as the information furnished in this document is based on a typical installation.
- Coordinate the installation with the manufacturer's representative/distributor to be on-site to review start-up procedures and installation instructions.
- Components shall be unloaded, handled and stored in an area protected from traffic and in a manner to prevent damage.
- Assembled modules may be walked on, but vehicular traffic is prohibited until backfilled per the Manufacturer's requirements. Protect the installation against damage with highly visible construction tape, fencing, or other means until construction is complete.
- Ensure all construction occurs in accordance with Federal, Provincial and Local Laws, Ordinances, Regulations, and Safety Requirements.
- Extra care and caution should be taken when temperatures are at or below 0° C.

#### NOT FOR CONSTRUCTION

These drawings shall not be used for construction until they have been reviewed for all design aspects (structural, geotechnical, stormwater) and approved by the Engineer of Record for the Project.

It is the Buyer's responsibility to ensure that the design into which the Product will be used has been approved by the Engineer of Record (not Layfield) with a review that may include, but not be limited to, Inlet and outlet configurations including inverts and pipe connections, storage volume, system footprint, Aquabox elevations including cover soil requirements, buoyancy and groundwater conditions, and proximity to structures and slopes.

Site design/engineering elements may include but not be limited to the following:

- Review elevations and if necessary adjust grading to ensure the chamber cover requirements are met.
- Evaluating site-specific information on soil conditions and/or bearing capacity.
- Assessing the bearing resistance (allowable bearing capacity) of the subgrade soils and the depth of foundation stone with consideration for the range of expected soil moisture conditions.

#### 1.0 Basin Excavation

1. Stake out and excavate to elevations per approved plans. Excavation Requirements:
  - a. Sub-grade excavation must be a minimum of 4" (102 mm) below the designed AquaBox Module invert.
  - b. The excavation should extend a minimum of 12" (305 mm) beyond the AquaBox dimensions in each length and width (an additional 24" [610 mm] in total length and total width) to allow for adequate placement of side backfill material.
  - c. Remove objectionable material encountered within the excavation, including protruding material from the walls.
  - d. Furnish, install, monitor, and maintain excavation support (e.g., shoring, bracing, trench boxes, etc.) as required by Federal, Provincial and Local Laws, Ordinances, Regulations, and Safety Requirements.

#### 2.0 Sub-Grade Requirements

1. Sub-grade shall be unfrozen, level (plus or minus 1%), and free of lumps, or debris with no standing water, mud or muck. Do not use materials nor mix with materials that are frozen and/or coated with ice or frost.
2. Unstable, unsuitable, and/or compromised areas should be brought to the Engineer's attention and mitigating efforts determined prior to compacting the sub-grade.
3. Sub-grade must be compacted to 97% Standard Proctor Density or as approved by the Engineer of Record. If code requirements restrict subgrade compaction, it is the requirement of the geotechnical engineer to verify that the bearing capacity and settlement criteria for support of the system are met.

\* The Engineer of Record shall confirm minimum soil bearing capacity required based on Load Rating and top cover depth. Minimum soil bearing capacity is required so that settlements are less than 1" through the entire sub-grade and do not exceed long-term 1/2" differential settlement between any two adjacent units within the system. Sub-grade must be designed to ensure soil bearing capacity is maintained throughout all soil saturation levels.

#### 3.0 Leveling Bed Installation

1. Install geotextile fabric and/or liner material, as specified.
  - a. Geotextile fabric shall be placed per the manufacturer's recommendations.
  - b. Additional material to be utilized for wrapping above the system must be protected from damage until use.
2. After the geotextile is secured, place a minimum 4" (102 mm) Leveling Bed.
  - a. Material should be a 3/4" (19 mm) angular stone meeting AASTHO #56, 57, 67, 68 Material specifications.
  - b. Material should be raked free of voids, lumps, debris, sharp objects, and plate vibrated to a level with a maximum 1% slope.

3. Correct any unsatisfactory conditions.

#### 4.0 AquaBox Module Assembly and Placement

##### 1.0 AquaBox Assembly

AquaBox modules are delivered to the site as palletized components requiring simple assembly. No special equipment, tools or bonding agents are required; only a rubber mallet. The modules can be pre-assembled either inside or outside the trench. The pre-assembled modules must then be organized according to the design specifications.

##### ASSEMBLY INSTRUCTIONS:

1. Each AquaBox features plug and socket connections which makes assembling the modules quick and easy. Simply lay one element on the ground and join it to another by applying some pressure on the top.

##### GENERAL NOTES:

- Remove packaging material and check for any damage. Report any damaged components to an AquaBox Distributor or Layfield personnel.
- AquaBox components are backed by a 50 year warranty when installed per the manufacturer's recommendations.

#### 2.0 AquaBox Placement

1. Install geotextile fabric and/or liner material, as specified.
  - a. Geotextile fabric shall be placed per the manufacturer's recommendations.
  - b. Additional material to be utilized for wrapping above the system must be protected from damage until use.
2. Mark the footprint of the modules for placement.
  - a. Ensure module perimeter outline is square or similar prior to Module placement.
  - b. Care should be taken to note any connections, ports or other irregular units to be placed.
3. Install the individual modules by hand, as detailed below.
  - a. The modules should be installed as shown in the AquaBox submittal drawings. Place AquaBox Cubes at the location of observation ports.
  - b. Modules are connected horizontally to adjacent modules with Single or Double Joints.
  - c. Use Single Joints for Bottom and Top rows while Double Joints are used for middle rows in Double or Triple stacking configuration.
  - d. For double/ triple stack configurations:
    - i. Use the Single Joints for the first bottom row.
    - ii. Install Double Joints on all the middle rows.
    - iii. Place the upper module directly on top of the bottom module in the same direction.



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
www.layfieldgroup.com

|                             |                       |                       |
|-----------------------------|-----------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |                       |
| Module Storage Volume       | 145.15 m <sup>3</sup> |                       |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |                       |
| System Footprint            | 108.13 m <sup>2</sup> |                       |
| Estimated Geotextile Fabric | NuBarrier             | 791 m <sup>2</sup>    |
| Estimated Geotextile Fabric | LP8                   | ---- m <sup>2</sup>   |
| Estimated Liner             |                       | ---- m <sup>2</sup>   |
| Estimated GeoGrid           |                       | ---- m <sup>2</sup>   |
| Estimated Stone Volume      |                       | 65.06 m <sup>3</sup>  |
| Excavation Required         |                       | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    |                       | 2.3 m                 |
| Stone Type                  |                       | 19mm Clear Stone      |
| Stone Void Space            |                       | 40%                   |
| Number of Module Layers     |                       | 2                     |
| Allowable Loading           |                       | HS-25                 |
| Surface                     | Paved Surface         | Vegetated/ Unpaved    |
| Minimum Top Cover           | 0.60 m                | 0.80 m                |
| Maximum Tank Depth          | 3.50 m                | 3.40 m                |

39 PINE STREET N.

Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number: ----

Page Name: Supplementary Notes

Drawn by: PE Checked By: JF

Scale: NTS Date: 09APR2024

THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

Sheet:

06 OF 07

4. Install the modules to completion, taking care to avoid damage to the geotextile and/or liner material.
5. Once all the modules have been placed, Install SIDEWALLS on the perimeter and CAPS on the top.
6. Locate any ports or other penetration of the AquaBox.
  - a. Install ports/penetrations in accordance with the approved submittals, contract documents, and manufacturer's recommendations.
6. Upon completion of module installation, wrap the modules in geotextile fabric and/or liner.
  - a. Geotextile fabric shall be wrapped and secured per the manufacturer's recommendations.
  - b. Seal any ports/penetrations per the Manufacturer's requirements

Notes:

- If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations

#### 6.0 Side Backfill

1. Inspect all geotextiles, ensuring that no voids or damage exists; which will allow sediment into the AquaBox system.
2. Adjust the stone/soil interface geotextile along the side of the native soil to ensure the geotextile is taught to the native soil.
3. Once the geotextile is secured, begin to place the Side Backfill.
  - a. Material should be a 3/4" (19 mm) angular stone meeting AASTHO #56, 57, 67, 68 Material specifications.
  - b. Backfill sides "evenly" around the perimeter without exceeding single 12" (305 mm) lifts.
  - c. Place material utilizing an excavator, dozer, or conveyor boom.
  - d. Utilize a plate vibrator to settle the stone and provide uniform distribution.

Notes:

- Do not apply vehicular load to the modules during placement of side backfill. All material placement should occur with equipment located on the native soil surrounding the system.
- If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations

#### 7.0 Top Backfill (Stone)

1. Begin to place the Top Backfill.
  - a. Material should be a 3/4" (19 mm) angular stone meeting AASTHO #56, 57, 67, 68 Material

specifications.

- b. Place material utilizing an excavator, dozer, or conveyor boom and use a walk-behind plate vibrator to settle the stone and provide even distribution.

#### **DO NOT DRIVE ON THE MODULES WITHOUT REQUIRED MINIMUM COVER.**

2. Upon completion of Top Backfilling, wrap the system in geotextile fabric and/or liner per the manufacturer's recommendations.
3. Install metallic tape around the perimeter of the system to mark the area for future utility detection.

Notes:

- If damage occurs to the geotextile fabric or impermeable liner, repair the material in accordance with the geotextile/liner Manufacturer's recommendations.
- Only Low Ground Pressure tracked equipment can be used during construction with at least 300 mm suitably compacted covering created over the AquaBox System. Abrupt maneuvers such as steering should be avoided at this stage.
- The passage of heavy goods vehicles with a wheel load of more than 50 kN over the basin is possible if the thickness of the covering is adequately compacted and not less than 600 mm. When dumping the backfill material, the load per wheel shall not exceed 50 kN.

#### 8.0 Suitable Compactable Fill

Following Top Backfill placement and geotextile fabric wrapping; complete the installation as noted below.

##### Vegetated Area

1. Place fill onto the geotextile.
  - a. Maximum 12" (305 mm) lifts, compacted with a vibratory plate or walk behind roller to a minimum of 90% Standard Proctor Density.
  - b. The minimum top cover/backfill to finished grade must not be less than that shown on Detail 5 Typical System Cross Section, and the maximum depth from final grade to the bottom of the lowest module should not exceed that shown on Detail 5.

2. Finish to the surface and complete with vegetative cover.

##### Impervious Area

1. Place fill onto the geotextile.
  - a. Maximum 12" (305 mm) lifts, compacted with a vibratory plate or walk behind roller to a minimum of 90% Standard Proctor Density.
  - b. The minimum top cover/backfill to finished grade must not be less than that shown on Detail 5 Typical System Cross Section, and

the maximum depth from final grade to the bottom of the lowest module should not exceed that shown on Detail 5.

2. Finish to the surface and complete with asphalt, concrete, etc.

Notes:

- Adequate cover for frost protection must be considered, this will vary by Region.
- A vibratory roller may only be utilized after a minimum cover has been placed or for the installation of the asphalt wearing course.
- If damage occurs to the geotextile fabric, repair the material in accordance with the geotextile Manufacturer's recommendations.
- For most recent installation guidelines visit: <https://www.geoplastglobal.com/en/downloads/aquabox>

#### 9.0 Inspection and Maintenance

If the following inspections and maintenance procedures are not followed as specified below then the end-user is responsible for the performance of the modules. This maintenance procedure must be performed after termination of site operations, heavy rainfall, flooding, or any incident that will vary the flow of water drastically.

Inspection

1. Inspect all observation ports, inflow, and outflow connection and the discharge area
2. Identify and log any sediment and debris accumulation, system backup, or discharge rate changes.
3. If there is a sufficient need for a cleanout, contact a local cleaning company for assistance.
4. Inspect module for any damaged components, movement, or other irregularities and replace immediately.

Cleaning:

1. If a pre-treatment device is installed, follow manufacturer recommendations.
2. Using a vacuum pump truck, evacuate debris from the inflow and outflow points.
3. Flush the system with clean water, forcing debris from the system.
4. Repeat steps 2 and 3 until no debris is evident

Notes:

- For spray probe cleaning, the use of a 90° rotating nozzle with a 45° water jet is recommended. The nozzles used should have a pressure of 80 to 120 bar; higher pressures may damage the geotextile.

THIS DRAWING AND THE INFORMATION CONTAINED HEREIN ARE CONFIDENTIAL AND PROPRIETARY AND SHALL NOT BE COPIED NOR USED IN ANY MANNER WITHOUT WRITTEN AUTHORIZATION FROM LAYFIELD CANADA LTD.



117 Basaltic Rd,  
Concord, ON L4K 1G4 Canada  
Ph: (905) 761-9123  
www.layfieldgroup.com

|                             |                       |                       |
|-----------------------------|-----------------------|-----------------------|
| Total Storage Volume        | 171.18 m <sup>3</sup> |                       |
| Module Storage Volume       | 145.15 m <sup>3</sup> |                       |
| Stone Storage Volume        | 26.02 m <sup>3</sup>  |                       |
| System Footprint            | 108.13 m <sup>2</sup> |                       |
| Estimated Geotextile Fabric | NuBarrier             | 791 m <sup>2</sup>    |
| Estimated Geotextile Fabric | LP8                   | --- m <sup>2</sup>    |
| Estimated Liner             |                       | --- m <sup>2</sup>    |
| Estimated GeoGrid           |                       | --- m <sup>2</sup>    |
| Estimated Stone Volume      |                       | 65.06 m <sup>3</sup>  |
| Excavation Required         |                       | 248.70 m <sup>3</sup> |
| Minimum Excavation Depth    |                       | 2.3 m                 |
| Stone Type                  |                       | 19mm Clear Stone      |
| Stone Void Space            |                       | 40%                   |
| Number of Module Layers     |                       | 2                     |
| Allowable Loading           |                       | HS-25                 |
| Surface                     | Paved Surface         | Vegetated/ Unpaved    |
| Minimum Top Cover           | 0.60 m                | 0.80 m                |
| Maximum Tank Depth          | 3.50 m                | 3.40 m                |

39 PINE STREET N.

Port Hope, ON

| REV | Record of Changes   | Date      | By |
|-----|---------------------|-----------|----|
| △   | Preliminary Drawing | 09APR2024 | PE |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |
|     |                     |           |    |

Project Number: ----

Page Name: Supplementary Notes

Drawn by: PE Checked By: JF

Scale: NTS Date: 09APR2024

THIS LAYOUT DRAWING WAS PREPARED TO SUPPORT THE ENGINEER OF RECORD FOR THE PROPOSED SYSTEM. IT IS THE RESPONSIBILITY OF THE ENGINEER OF RECORD TO REVIEW THE INFORMATION AND ENSURE THAT THE LAYOUT AND DESIGN IS IN FULL COMPLIANCE WITH ALL APPLICABLE LAWS AND REGULATIONS AND THAT THE AQUABOX SYSTEM HAS BEEN DESIGNED IN ACCORDANCE WITH GEOPLAST'S REQUIREMENTS. LAYFIELD DOES NOT REVIEW OR APPROVE PLANS, SIZING OR DESIGNS.

Sheet:

07 OF 07

# Stage Storage Calculator

## Inputs:

Module Type= **AquaBox**  
Storage Invert = **99.191** m

## Input Heights to be included in stage storage:

Leveling Bed Depth = **0.1** m  
Module Height = **1.6** m  
Top Cover Depth = **0.3** m

## System Footprints:

Module Footprint = **94.50** m<sup>2</sup>  
Stone Footprint = **108.13** m<sup>2</sup>

## Void Space %:

Module Avg. Void = **96.00%** %

\* Note, this calculator works to a maximum storage height of 15' including stone leveling bed, module unit and top cover.

Increment Step **0.0508** m  
Outlet Elevation **99.491** m

| Height<br>(m) | Elevation<br>(m) | Dead Storage<br>(m <sup>3</sup> ) | Active Storage<br>(m <sup>3</sup> ) |
|---------------|------------------|-----------------------------------|-------------------------------------|
| 0.3           | 99.491           | 23.56                             | 147.62                              |

| Stage Storage Table |               |                                       |                                        |                                            |                                            |
|---------------------|---------------|---------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------|
| Height (m)          | Elevation (m) | Stone Stage Storage (m <sup>3</sup> ) | Module Stage Storage (m <sup>3</sup> ) | Cumulative Stage Storage (m <sup>3</sup> ) | Cumulative Total Storage (m <sup>3</sup> ) |
| 0.0000              | 99.1910       | 0.00                                  | 0.00                                   | 0.00                                       | 0.00                                       |
| 0.0508              | 99.2418       | 2.20                                  | 0.00                                   | 2.20                                       | 2.20                                       |
| 0.1000              | 99.2910       | 2.13                                  | 0.00                                   | 2.13                                       | 4.33                                       |
| 0.1016              | 99.2926       | 0.01                                  | 0.15                                   | 0.15                                       | 4.48                                       |
| 0.1524              | 99.3434       | 0.28                                  | 4.61                                   | 4.89                                       | 9.36                                       |
| 0.2032              | 99.3942       | 0.28                                  | 4.61                                   | 4.89                                       | 14.25                                      |
| 0.2540              | 99.4450       | 0.28                                  | 4.61                                   | 4.89                                       | 19.14                                      |
| 0.3000              | 99.4910       | 0.25                                  | 4.17                                   | 4.42                                       | 23.56                                      |
| 0.3048              | 99.4958       | 0.03                                  | 0.44                                   | 0.46                                       | 24.02                                      |
| 0.3556              | 99.5466       | 0.28                                  | 4.61                                   | 4.89                                       | 28.91                                      |
| 0.4064              | 99.5974       | 0.28                                  | 4.61                                   | 4.89                                       | 33.79                                      |
| 0.4572              | 99.6482       | 0.28                                  | 4.61                                   | 4.89                                       | 38.68                                      |
| 0.5080              | 99.6990       | 0.28                                  | 4.61                                   | 4.89                                       | 43.56                                      |
| 0.5588              | 99.7498       | 0.28                                  | 4.61                                   | 4.89                                       | 48.45                                      |
| 0.6096              | 99.8006       | 0.28                                  | 4.61                                   | 4.89                                       | 53.33                                      |
| 0.6604              | 99.8514       | 0.28                                  | 4.61                                   | 4.89                                       | 58.22                                      |
| 0.7112              | 99.9022       | 0.28                                  | 4.61                                   | 4.89                                       | 63.11                                      |
| 0.7620              | 99.9530       | 0.28                                  | 4.61                                   | 4.89                                       | 67.99                                      |
| 0.8128              | 100.0038      | 0.28                                  | 4.61                                   | 4.89                                       | 72.88                                      |
| 0.8636              | 100.0546      | 0.28                                  | 4.61                                   | 4.89                                       | 77.76                                      |
| 0.9144              | 100.1054      | 0.28                                  | 4.61                                   | 4.89                                       | 82.65                                      |
| 0.9652              | 100.1562      | 0.28                                  | 4.61                                   | 4.89                                       | 87.53                                      |
| 1.0160              | 100.2070      | 0.28                                  | 4.61                                   | 4.89                                       | 92.42                                      |
| 1.0668              | 100.2578      | 0.28                                  | 4.61                                   | 4.89                                       | 97.30                                      |
| 1.1176              | 100.3086      | 0.28                                  | 4.61                                   | 4.89                                       | 102.19                                     |
| 1.1684              | 100.3594      | 0.28                                  | 4.61                                   | 4.89                                       | 107.08                                     |
| 1.2192              | 100.4102      | 0.28                                  | 4.61                                   | 4.89                                       | 111.96                                     |
| 1.2700              | 100.4610      | 0.28                                  | 4.61                                   | 4.89                                       | 116.85                                     |
| 1.3208              | 100.5118      | 0.28                                  | 4.61                                   | 4.89                                       | 121.73                                     |
| 1.3716              | 100.5626      | 0.28                                  | 4.61                                   | 4.89                                       | 126.62                                     |
| 1.4224              | 100.6134      | 0.28                                  | 4.61                                   | 4.89                                       | 131.50                                     |

|        |          |       |        |        |        |
|--------|----------|-------|--------|--------|--------|
| 1.4732 | 100.6642 | 0.28  | 4.61   | 4.89   | 136.39 |
| 1.5240 | 100.7150 | 0.28  | 4.61   | 4.89   | 141.27 |
| 1.5748 | 100.7658 | 0.28  | 4.61   | 4.89   | 146.16 |
| 1.6256 | 100.8166 | 0.28  | 4.61   | 4.89   | 151.05 |
| 1.6764 | 100.8674 | 0.28  | 4.61   | 4.89   | 155.93 |
| 1.7000 | 100.8910 | 0.13  | 2.14   | 2.27   | 158.20 |
| 1.7272 | 100.9182 | 1.18  | 0.00   | 1.18   | 159.38 |
| 1.7780 | 100.9690 | 2.20  | 0.00   | 2.20   | 161.57 |
| 1.8288 | 101.0198 | 2.20  | 0.00   | 2.20   | 163.77 |
| 1.8796 | 101.0706 | 2.20  | 0.00   | 2.20   | 165.97 |
| 1.9304 | 101.1214 | 2.20  | 0.00   | 2.20   | 168.17 |
| 1.9812 | 101.1722 | 2.20  | 0.00   | 2.20   | 170.36 |
| 2.0000 | 101.1910 | 0.81  | 0.00   | 0.81   | 171.18 |
| 2.0320 | 101.2230 | 0.00  | 0.00   | 0.00   | 0.00   |
|        |          | 26.02 | 145.15 | 171.18 |        |

## **Appendix B**

### **Excerpts of Geotechnical Investigation**

ENGINEERING



Professional Engineers  
Ontario

## EXCERPT

### GEOTECHNICAL INVESTIGATION



### PROPOSED DORMITORY BUILDING, 39 PINE STREET NORTH, PORT HOPE, ONTARIO

Prepared for:

**2640573 Ontario Corp.**

400 Esna Park Drive, Unit 15  
Markham, ON  
L3R 3K2

Tel: (905) 475-7755  
Fax: (905) 475-7718  
[www.fishereng.com](http://www.fishereng.com)

Project No. FG 23-13246

September 29, 2023

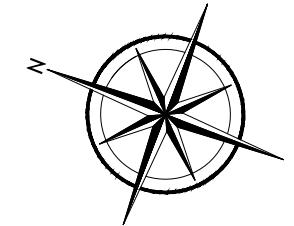
## BROWN SILT

A dense layer of brown silt was encountered below the brown sand/silty sand of BH3 extending to termination depth of 6.55m.

## 6. GROUNDWATER CONDITIONS

The boreholes were advanced using dry solid stem auguring and the boreholes were found to be generally dry on completion of the respective soil borings. Monitoring wells were installed in all boreholes to observe groundwater levels and for water sampling and testing.

Groundwater depths/elevations as measured on completion of boreholes and from the monitoring wells are summarized in Table 2.


**Table 2: Groundwater Depths and Elevations**

| Monitoring Well No. | Surface Elevation (m, asl) | Depth of Well, m bgs | Elevation at well base, m asl | In open borehole on Completion |               | 6-Sep-23        |               | 22-Sep-23       |               |
|---------------------|----------------------------|----------------------|-------------------------------|--------------------------------|---------------|-----------------|---------------|-----------------|---------------|
|                     |                            |                      |                               | GW level, m bgs                | GW Ele, m asl | GW level, m bgs | GW Ele, m asl | GW level, m bgs | GW Ele, m asl |
| BH1(MW)             | 102.69                     | 3.05                 | 99.64                         | dry                            |               | dry             |               | dry             |               |
| BH2(MW)             | 102.97                     | 4.59                 | 98.38                         | dry                            |               | 3.86            | 99.11         | 3.93            | 94.45         |
| BH3(MW)             | 102.80                     | 4.76                 | 98.04                         | dry                            |               | 3.67            | 99.13         | 3.73            | 94.31         |
| BH4(MW)             | 102.67                     | 6.21                 | 96.46                         | dry                            |               | 3.58            | 99.09         | 3.64            | 92.82         |
| BH5(MW)             | 102.70                     | 4.55                 | 98.15                         | dry                            |               | 3.41            | 99.29         | 3.48            | 94.67         |
| BH6(MW)             | 102.48                     | 4.76                 | 97.72                         | dry                            |               | 3.77            | 98.71         | 3.82            | 93.90         |

Based on the preceding information and visual examination of the soil samples, we consider that water bearing aquifer was encountered within the depths penetrated by boreholes and groundwater levels represent the local groundwater table. Groundwater may also be encountered from the wet seams/pockets/layers trapped inside the fill. This groundwater table may fluctuate with seasonal weather changes.



NORTH



LEGEND

- SITE BOUNDARY
- BUILDING FOOTPRINT
- BOREHOLE WITH MONITORING WELL LOCATION
- BOREHOLE LOCATION
- METHANE PROBE LOCATION

PROJECT NAME AND ADDRESS  
**GEOTECHNICAL AND HYDROGEOLOGICAL INVESTIGATION**  
39 Pine Street North,  
Port Hope, ON

FIGURE A2:  
**SITE PLAN WITH BOREHOLES / MONITORING WELL LOCATIONS**

| PROJECT NO.    | SHEET NO.         |
|----------------|-------------------|
| FE-23-13246/47 |                   |
| DATE           | 11 September 2023 |
| SCALE          | AS SHOWN          |



## **Appendix C**

### **Sanitary Flow Estimate**

|                                                                                                                                                                       |                                                                    |           |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|----------|
|  <p><b>WPE Engineering Ltd.</b><br/>Engineers, Planners<br/>and Project Managers</p> | <b>Sanitary Flow Rate Calculation</b><br><b>Proposed Condition</b> |           |          |
|                                                                                                                                                                       | Prepared:                                                          | A.L.      | Page No. |
|                                                                                                                                                                       | Checked:                                                           | M.D.      |          |
| Project: Prop. School Dormitory Building, 39<br>Pine St North, Port Hope                                                                                              | Proj. #                                                            | 2021      |          |
|                                                                                                                                                                       | Date:                                                              | 12/Apr/24 |          |

## PROPOSED CONDITION (5-STOREY DORMITORY)

### POPULATION CALCULATION

|                                   |                      |
|-----------------------------------|----------------------|
| Site Area                         | 5,258 m <sup>2</sup> |
| Occupant Load (Architectual Plan) | 80.0                 |

### For Sanitary Service Connection Design

|                                          |                   |
|------------------------------------------|-------------------|
| Average Daily Domestic Wastewater Flow   | 450 L/c/day       |
| Total Domestic Average Flow              | 0.42 L/sec        |
| Peaking Factor                           | 4.27              |
| Total Domestic Peak Flow                 | 1.78 L/sec        |
| Infiltration Allowance (@ 0.26 L/sec/ha) | 0.14 L/sec        |
| <b>Design Sanitary Flow</b>              | <b>1.92 L/sec</b> |

## **Appendix D**

### **Water Supply**

| <br><b>WPE Engineering Ltd.</b><br>Engineers, Planners and<br>Project Managers | <b>Fire Flow Calculation</b><br><b>Proposed Condition</b> |           |          |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|----------|------|
|                                                                                                                                                                 | Prepared:                                                 | A.L.      | Page No. | D-01 |
|                                                                                                                                                                 | Checked:                                                  | M.D.      |          |      |
| Project: Prop. School Dormitory Building, 39<br>Pine St North, Port Hope                                                                                        | Proj. #                                                   | 2021      |          |      |
|                                                                                                                                                                 | Date:                                                     | 12/Apr/24 |          |      |

## PROPOSED CONDITION

This calculation is following the "Water Supply for Public Fire Protection" by Fire Underwriters Survey.

Formula:  $F = 220C\sqrt{A}$   
where  $F$  = the required fire flow in litres per minute  
 $C$  = coefficient related to the type of construction.  
= 0.8 for non-combustible construction  
 $A$  = the total floor area in square metres (including all storeys,  
but excluding basements at least 50% below grade)

## Step 1:

|                               |                        |
|-------------------------------|------------------------|
| According the building stats, | Area (m <sup>2</sup> ) |
| 1st - 5th Floor               | 1545                   |
| 1st - 5th Floor               | 1545                   |

A 2317.5 m<sup>2</sup>

Therefore,  $F = 6000 \text{ l/min}$  (Rounded to the nearest 1000)

## Step 2: Occupancy reduction:

25% reduction is applied for non-combustible.

Therefore:  $F_1 = 4500 \text{ l/min}$

### **Step 3: Reduction for sprinkler protection:**

Using the NFPA sprinkler system, a reduction rate of 30% is used.

Therefore:  $F_2 = 1350 \text{ l/min}$

#### Step 4: Separation charge:

Charge for the separations on each side:

| Separation   | Charge   |
|--------------|----------|
| 10.1 to 20 m | 15% West |
| 30.1-45m     | 5% North |
| >45m         | 0% East  |
| >45m         | 0% South |

Total charge in % 20% (75% maximum)

Total charge F3 = 900 l/min

Required Fire Flow: 4000 l/min (Rounded to nearest 1000)  
or 66.67 l/s  
or 1057 US GPM

|                                                                                                                                                                       |                                                              |          |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|---------------|
|  <p><b>WPE Engineering Ltd.</b><br/>Engineers, Planners and<br/>Project Managers</p> | <b>Water Demand Calculation</b><br><b>Proposed Condition</b> |          |               |
|                                                                                                                                                                       | Prepared:                                                    | A.L.     | Page No. D-02 |
| Project: Prop. School Dormitory Building, 39 Pine St North, Port Hope                                                                                                 |                                                              | Checked: | M.D.          |
|                                                                                                                                                                       |                                                              | Proj. #  | 2021          |
|                                                                                                                                                                       |                                                              | Date:    | 12/Apr/24     |

## PROPOSED CONDITION

**Total Population** **80** (Refer to Site Statistics)

### Peak Domestic Water Demand Calculation:

|                                           |             |         |
|-------------------------------------------|-------------|---------|
| Institutional Per Capita Demand (school)* | 270         | L/cap/d |
| Peaking Factor (Max. Day)                 | 1.80        |         |
| <b>Peak Domestic Water Demand</b>         | <b>0.45</b> | L/sec   |

|                   |       |       |
|-------------------|-------|-------|
| <b>Fire Flow:</b> | 66.67 | L/sec |
|-------------------|-------|-------|

|                                        |              |       |
|----------------------------------------|--------------|-------|
| <b>Max. Day Demand plus Fire Flow:</b> | <b>67.12</b> | L/sec |
|----------------------------------------|--------------|-------|

|                            |               |        |
|----------------------------|---------------|--------|
| <b>Design Water Demand</b> | <b>67.12</b>  | L/sec  |
|                            | <b>1063.8</b> | US GPM |



C L A S S I C

FIRE +  
LIFE  
SAFETYFLOW TEST  
REPORT

Form SD-003B RevDate: Nov 29, 2021

## PROJECT INFORMATION

|                    |                             |                   |                     |
|--------------------|-----------------------------|-------------------|---------------------|
| Project Name:      | 39 Pine St. N Flow Test     | Const. Project #: | SMC-0011302         |
| Site Address:      | 39 Pine St. N. Port Hope ON | Design Project #: | 2024-CFLS-297       |
| City Contact:      | Municipality of Port Hope   | Phone #:          | 905-885-2431        |
| CFLS Contact:      | Oscar Munita                | Phone #:          | 647-572-4576        |
| Technical Contact: | <b>Andy Coghlin</b>         | Phone #:          | <b>519-476-0761</b> |

## SITE INFORMATION

## SITE MAP



Note: If the main is a dead end, the flowing hydrant shall be closest to the dead end

| ITEMS TO LABEL ON MAP                                                 | HYDRANTS USED                                       | MAIN SIZE       |
|-----------------------------------------------------------------------|-----------------------------------------------------|-----------------|
| <input checked="" type="checkbox"/> Static / Residual & Flow Hydrants | <input checked="" type="checkbox"/> City Hydrant(s) | City: 200mm CIP |
| <input type="checkbox"/> Flow Direction (if the main is dead end)     | <input type="checkbox"/> Site Hydrant(s)            | Site:           |

## SITE NOTES

The flowing hydrant is the only one directly off this section of main. The next closest hydrant would be North @ Pine N and Bedford. The hydrant on the east side of the Pine @ Bedford intersection.



C L A S S I C

FIRE +  
LIFE  
SAFETYFLOW TEST  
REPORT

Form SD-003B RevDate: Nov 29, 2021

| TEST INFORMATION                                           |                  |                                 |                                                                                |    |                       |
|------------------------------------------------------------|------------------|---------------------------------|--------------------------------------------------------------------------------|----|-----------------------|
| Minimum Required Flow:                                     |                  | NA                              |                                                                                |    | Min Ports: 2          |
| CFLS Personnel Present:                                    |                  | Oscar Munita and Kevin Kavalagh |                                                                                |    | Test Date: 2024-06-20 |
| City / External Company:                                   |                  | Municipality of Port Hope       |                                                                                |    | Test Time: 10:00am    |
| TEST EQUIPMENT                                             |                  |                                 |                                                                                |    |                       |
| <input type="checkbox"/> Hose Monsters with built in Pitot |                  |                                 | Hose length used:                                                              |    |                       |
| <input type="checkbox"/> Hand held pitot gauge             |                  |                                 | <input checked="" type="checkbox"/> Pollard diffuser elbow with built in Pitot |    |                       |
| <input type="checkbox"/> Other:                            |                  |                                 |                                                                                |    |                       |
| TEST RESULTS                                               |                  |                                 |                                                                                |    |                       |
| Number of Ports                                            | Outlet Size (IN) | Discharge Coefficient           | Pitot Reading (PSI)                                                            |    | Total Flow (GPM)      |
| 0 Ports                                                    |                  |                                 |                                                                                |    | 59                    |
| 1 Port                                                     | 2.5              | 0.9                             | 42                                                                             |    | 1,088                 |
| 2 Ports                                                    | 2.5              | 0.9                             | 12                                                                             | 15 | 1,232                 |
| 3 Ports                                                    | 2.5              | 0.9                             |                                                                                |    | 0                     |
| 4 Ports                                                    | 2.5              | 0.9                             |                                                                                |    | 0                     |
| 0 Ports                                                    | STATIC RE-CHECK  |                                 |                                                                                |    | 59                    |
| TEST NOTES                                                 |                  |                                 |                                                                                |    |                       |
|                                                            |                  |                                 |                                                                                |    |                       |
| HYDRAULIC ADJUSTMENTS (FOR OFFICE USE ONLY)                |                  |                                 |                                                                                |    |                       |
| ADJUSTMENTS FOR HYDRAULIC GRADE LINE (HGL)                 |                  |                                 |                                                                                |    |                       |
| Reservoir HGL (m):                                         |                  |                                 | Site Elevation (m):                                                            |    |                       |
| Theoretical Static Head (PSI):                             |                  | 0                               | PSI to subtract from test pressures:                                           |    | 59                    |
| OTHER HYDRAULIC ADJUSTMENTS                                |                  |                                 |                                                                                |    |                       |
| Other adjustment as required by the City / AHJ:            |                  |                                 |                                                                                |    |                       |

**Appendix E**  
**Records of Municipal Infrastructure**  
**Field Locates by Premier Locates**



Mike Du <mdu@wpeengineering.com>

---

## RECORD DRAWINGS OF MUNICIPAL SERVICES

---

**Matthew Belton** <MBelton@porthope.ca>  
To: Janice Wang <jwang@wpeengineering.com>  
Cc: Mike Du <mdu@wpeengineering.com>

Mon, Oct 2, 2023 at 3:44 PM

We really do have very limited answers for this but from what I can find.

South Street

Water 100mm Cast

Sani 200mm clay

Storm 375mm unknown

North Street

Water 25mm copper

Sani 250mm clay

Storm 600mm concrete

Pine Street

Water 300mm Cast and 200mm PVC

Sani 225mm Clay

Storm 300mm unknown

Brown Street

Water 200mm PVC

Sani 200mm PVC

375mm HDPE

Cavan Street

Water 150mm Cast

Sani 525mm clay and 300mm PVC

Storm 825mm Concrete

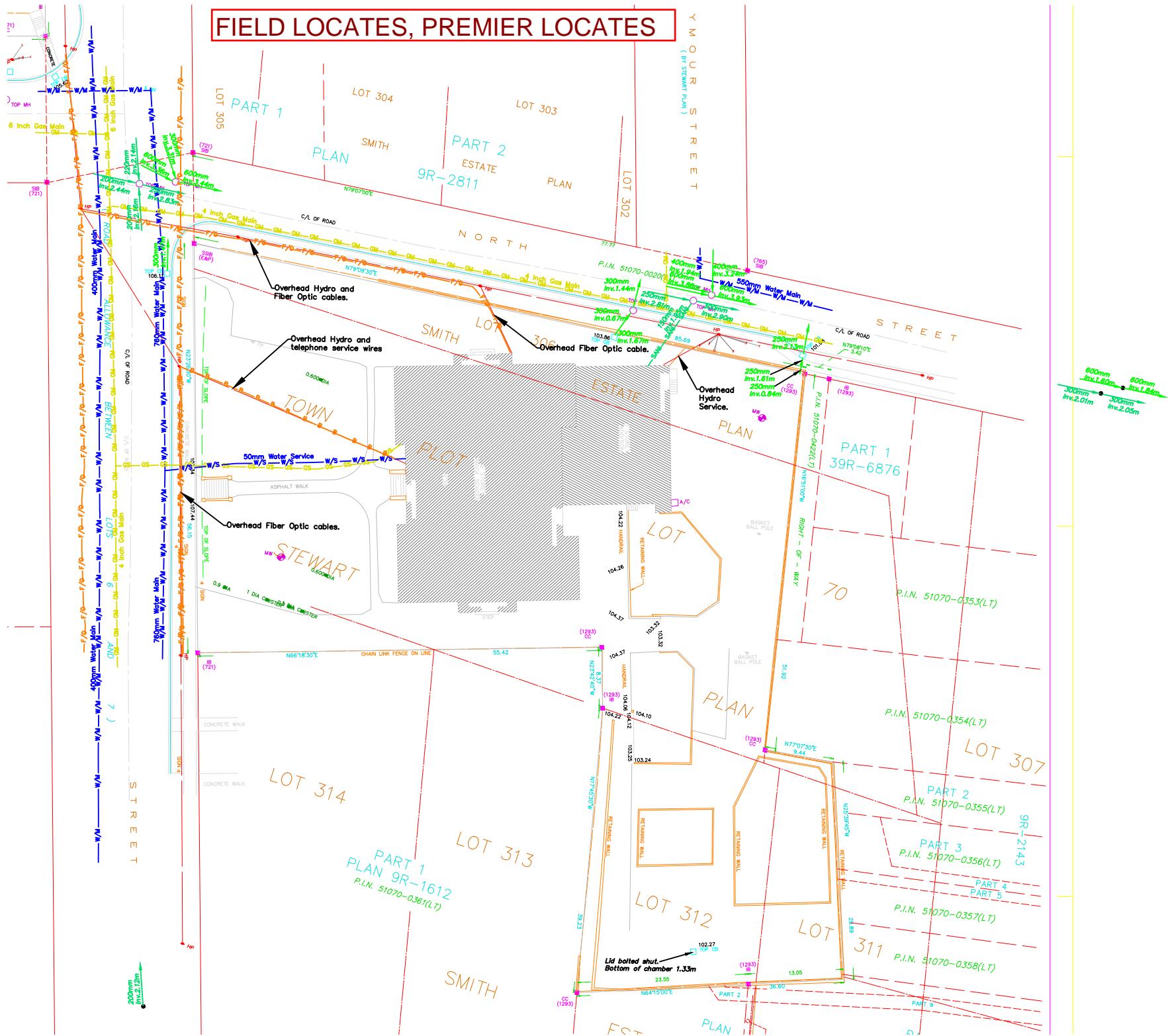
I don't have slope values on infrastructure this old, hope this helps

---

**From:** Janice Wang <[jwang@wpeengineering.com](mailto:jwang@wpeengineering.com)>

**Sent:** Monday, October 2, 2023 3:22 PM

**To:** Matthew Belton <[MBelton@porthope.ca](mailto:MBelton@porthope.ca)>


**Cc:** Mike Du <[mdu@wpeengineering.com](mailto:mdu@wpeengineering.com)>

**Subject:** RECORD DRAWINGS OF MUNICIPAL SERVICES

**CAUTION:** This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

[Quoted text hidden]

## FIELD LOCATES, PREMIER LOCATES





Mike Du <mdu@wpeengineering.com>

---

## Fwd: CAD File Deliverable for 39 Pines St. N. Port Hope

---

**William Piraine** <william.piraine@premierlocates.ca>

Thu, Mar 21, 2024 at 7:31 PM

To: Henry Wang <henry@wangarchitects.ca>, Dispatch Desk - Premier Locates

<locates@premierlocates.ca>

Cc: Mike Du <mdu@wpeengineering.com>, Janus Xu <janusxu@globeschool.com>

Hi Henry,

Please find the attached updated CAD file. If you have any other comments or concerns please don't hesitate to reach out.

Cheers,



**William Piraine**

Private Locate Ops Manager • Premier Locates Inc.

Direct: [647-955-1800](tel:6479551800)

[william.piraine@premierlocates.ca](mailto:william.piraine@premierlocates.ca)

[14845 Yonge Street, Suite 143,](https://www.premierlocates.ca)

Aurora, Ontario, L4G 6H8

[www.premierlocates.ca](https://www.premierlocates.ca)

[1-800-868-2196](tel:18008682196)



[Book a Locate](#)

---

The content of this transmission is intended only for use by the individual or entity to which it is addressed and may contain information that is privileged and confidential. If you have received this communication in error, please notify Premier Locates Inc. at [locates@premierlocates.ca](mailto:locates@premierlocates.ca) or by phone at 1(800) 868-2196. Redistribution or access of this transmission by an unauthorized individual or entity is prohibited.

[Quoted text hidden]

---

**2 attachments**

-  **23-19-200-00-TOPO\_PLI\_21Mar2024.pdf**  
198K
-  **23-19-200-00-TOPO\_PLI\_21Mar2024.dwg**  
621K

## **Appendix F**

### **Figures and Drawings**





PLAN SHOWING TOPOGRAPHIC DETAIL OF  
PART OF TOWN PLOT LOT 70 AND 73  
STEWART PLAN  
PART OF LOTS 306 AND 314 AND  
ALL OF LOTS 522, 523 AND 524  
SMITH ESTATE PLAN  
TOWN OF PORT HOPE  
MUNICIPALITY OF PORT HOPE  
COUNTY OF NORTHUMBERLAND

BENCHMARK NOTES:  
ELEVATIONS SHOWN HEREON ARE GEODETIC  
AND ARE REFERRED TO COSINE BENCHMARK  
0011910U172, BEING A BOLT IN SOUTH STONE  
FOUNDATION OF PORT HOPE TOWN HALL.  
25cm FROM SOUTHWEST CORNER, 48cm ABOVE  
SIDEWALK. ELEVATION=78.253(CGVD1928; 78)

## LEGEND

**PROPERTY LINE**  
 PROP. SWALE  
 EX. OVERHEAD WIRES  
 EX. STORM PIPE  
 EX. WATERMAIN  
 PROP. STORM PIPE  
 EX. CABLE TV PEDESTAL  
 EX. HYDRO POLE  
 EX. FLAG POLE  
 EX. MONITORING WELL  
 EX. CATCH BASIN  
 EX. MANHOLE  
 PROP. STORM MANHOLE  
 PROP. CATCH BASIN MANHOLE  
 PROP. CATCH BASIN  
 EX. TREE  
 PROP. TREE  
 PROP. DRAINAGE ARROW  
 PROP. HEAVY DUTY ASPHALT AREA  
 PROP. LANDSCAPE AREA

**CATCHMENT AREA ID**  
**CATCHMENT AREA IN HECTARE**  
 BINGO, OFFENDER

**CATH1**  
 AREA = 0.52591ha  
 0.52591

#### NOTES:

THE POSITION OF POLE LINES, CONDUITS, WATERMAINS, SEWERS AND UNDERGROUND AND ABOVE GROUND UTILITIES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING THE WORK THE CONTRACTOR SHALL CONFIRM OF THE EXACT LOCATION OF ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

THE CONTRACTOR MUST CHECK AND VERIFY ALL DIMENSIONS ON THE JOB AND REPORT ANY DISCREPANCY TO THE ARCHITECTS/ENGINEERS BEFORE PROCEEDING WITH THE WORKS.

ALL DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND THE PROPERTY OF THE ENGINEER WHICH MUST BE RETURNED AT THE COMPLETION OF WORK.

THIS DRAWINGS IS NOT TO BE SCALED. CONTRACTOR TO USE DIGITAL FILES FOR LAYOUT PROVIDED BY ENGINEER. THIS PLAN MUST NOT BE USED TO SITE THE PROPOSED BUILDINGS.

THE APPROVAL OF THIS PLAN DOES NOT EXEMPT THE OWNER'S CONTRACTOR FROM OBTAINING, BUT NOT LIMITED TO THE FOLLOWING PERMITS: ROAD CUT, SEWER PERMITS, RELOCATION OF SERVICES, ENCROACHMENT AGREEMENTS, APPROACH APPROVAL PERMITS, ETC.

EXISTING TOPOGRAPHICAL INFORMATION SUPPLIED BY  
ELLIOTT & PARR SURVEYORS LTD.  
DATED SEPTEMBER 19, 2023.



## KEYPLAN NTS

KEYPLAN N.S  
THE LOCATION OF ALL UNDER- / ABOVE-GROUND UTILITIES AND SERVICES IS APPROXIMATE ONLY AND WHERE SHOWN ON THE DRAWING(S) THE ACCURACY OF THE UTILITIES AND SERVICES IS NOT GUARANTEED. THE OWNER AND / OR HIS REPRESENTATIVE SHALL DETERMINE THE LOCATION OF ALL UTILITIES AND SERVICES BEFORE COMMENCING ANY CONSTRUCTION ACTIVITIES.

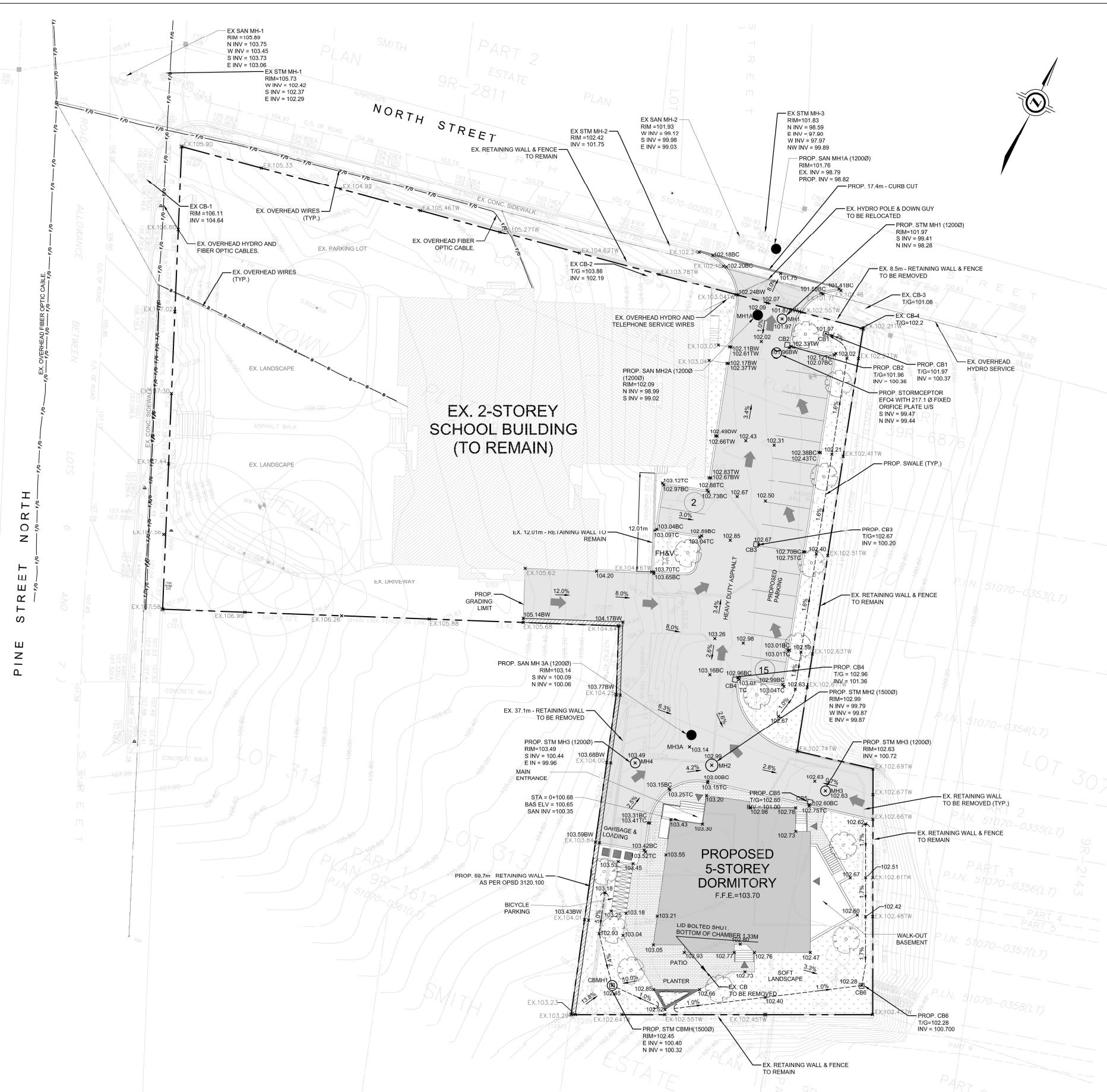
DO NOT SCALE DRAWINGS

CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION

 WPE

222 - 7250 KEELE STREET  
VAUGHAN, ON. L4K 1Z8  
T: 416 578 8682  
MDU@WPEENGINEERING.COM  
WWW.WPEENGINEERING.COM


# PROPOSED SCHOOL DORMITORY BUILDING

39 PINE ST N PORT HOPE, ON L1A 3G5

|                                   |    |                 |
|-----------------------------------|----|-----------------|
| Project Number                    |    | 2021            |
| Drawn                             | AL | Scale           |
| Checked                           | ZD | Date 2023-10-06 |
| PROP. STORM<br>DRAINAGE AREA PLAN |    |                 |

Drawing No.

FIG-03



PLAN SHOWING TOPOGRAPHIC DETAIL OF PART OF TOWN PLOT LOT 70 AND 73  
STEWART PLAN  
PART OF LOTS 306 AND 314 AND ALL OF LOTS 522, 523 AND 524  
SMITH ESTATE PLAN  
TOWN OF PORT HOPE  
MUNICIPALITY OF PORT HOPE  
COUNTY OF NORTHUMBERLAND

**BENCHMARK NOTES:**  
ELEVATIONS SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO COSINE BENCHMARK 0011910U172, BEING A BOLT IN SOUTH STONE FOUNDATION OF PORT HOPE TOWN HALL, 25cm FROM SOUTHWEST CORNER, 48cm ABOVE SIDEWALK. ELEVATION=78.253(CGVD)(1928:78)

#### LEGEND

|  |                                          |
|--|------------------------------------------|
|  | PROPERTY LINE                            |
|  | PROP. SWALE                              |
|  | EX. OVERHEAD WIRES                       |
|  | PROP. ELEVATION                          |
|  | PROP. TOP OF CURB ELEVATION              |
|  | PROP. BOTTOM OF CURB ELEVATION           |
|  | PROP. TOP OF RETAINING WALL ELEVATION    |
|  | PROP. BOTTOM OF RETAINING WALL ELEVATION |
|  | FX. ELEVATION                            |
|  | EX. TOP OF RETAINING WALL ELEVATION      |
|  | EX. BACK OF CURB ELEVATION               |
|  | EX. EDGE OF GUTTER ELEVATION             |
|  | EX. EDGE OF ASPHALT ELEVATION            |
|  | EX. CABLE TV PEDESTAL                    |
|  | EX. HYDRO POLE                           |
|  | EX. FLAG POLE                            |
|  | EX. FIRE HYDRANT TO BE REMAINED          |
|  | EX. WATER VALVE TO BE REMAINED           |
|  | EX. MONITORING WELL                      |
|  | EX. CATCH BASIN                          |
|  | EX. MANHOLE                              |
|  | PROP. SANITARY MANHOLE                   |
|  | PROP. STORM MANHOLE                      |
|  | PROP. CATCH BASIN MANHOLE                |
|  | PROP. CATCH BASIN                        |
|  | PROP. FIRE HYDRANT & VALVE               |
|  | PROP. WATER VALVE & BOX                  |
|  | EX. TREE                                 |
|  | PROP. TREE                               |
|  | DRAINAGE FLOW DIRECTION AND SLOPE        |
|  | OVERLAND FLOW ARROW                      |
|  | PROP. HEAVY DUTY ASPHALT AREA            |
|  | PROP. LANDSCAPE AREA                     |



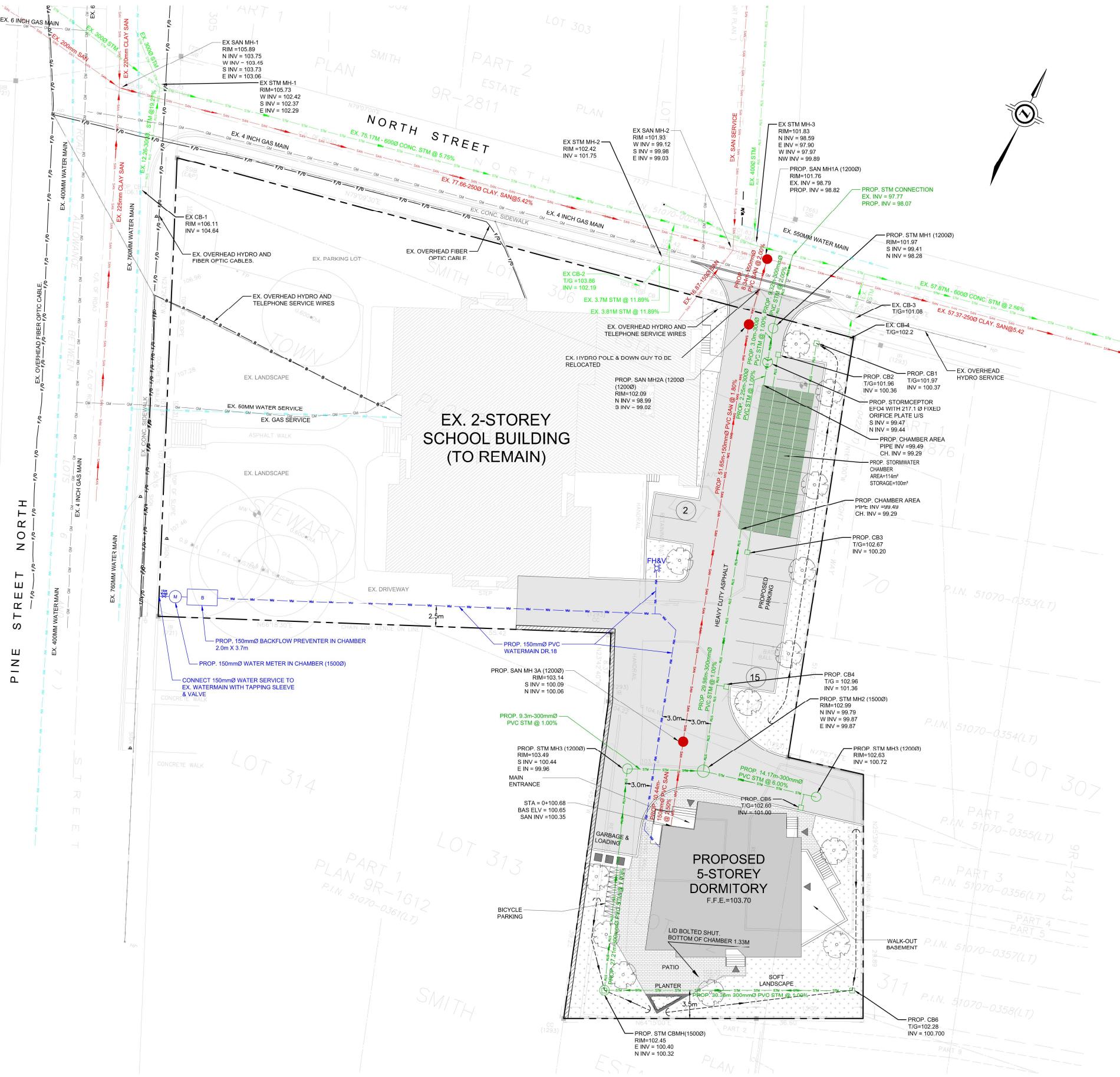
**KEYPLAN N.T.S.**  
THE LOCATION OF ALL UNDER- / ABOVE-GROUND UTILITIES AND SERVICES IS APPROXIMATE ONLY AND WHERE SHOWN ON THE DRAWING(S) THE ACCURACY OF THE UTILITIES AND SERVICES IS NOT GUARANTEED. THE OWNER AND / OR HIS REPRESENTATIVE SHALL DETERMINE THE LOCATION OF ALL UTILITIES AND SERVICES BEFORE COMMENCING ANY CONSTRUCTION ACTIVITIES.

DO NOT SCALE DRAWINGS.  
CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.  
THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION.

| No. | Issued         | Date       | By                                                                                    |
|-----|----------------|------------|---------------------------------------------------------------------------------------|
| 1   | ISSUED FOR SPA | 2024-04-12 |  |



222 - 7250 KEELE STREET  
VAUGHAN, ON, L4K 1Z8  
T: 416 578 8682  
EMAIL: MDU@WPEENGINEERING.COM  
WWW.WPEENGINEERING.COM


#### PROPOSED SCHOOL DORMITORY BUILDING

39 PINE ST N PORT HOPE, ON L1A 3G5

|                |            |
|----------------|------------|
| Project Number | 2021       |
| Drawn          | AL         |
| Scale          | 1:250      |
| Checked        | ZD         |
| Date           | 2023-10-04 |

#### GRADING PLAN

|             |      |
|-------------|------|
| Drawing No. | C-01 |
|-------------|------|



PLAN SHOWING TOPOGRAPHIC DETAIL OF PART OF TOWN PLOT LOT 70 AND 73 STEWART PLAN PART OF LOTS 306 AND 314 AND ALL OF LOTS 522, 523 AND 524 SMITH ESTATE PLAN TOWN OF PORT HOPE MUNICIPALITY OF PORT HOPE COUNTY OF NORTHUMBERLAND

BENCHMARK NOTES:  
ELEVATIONS SHOWN HEREON ARE GEODETIC AND ARE REFERRED TO COSINE BENCHMARK 0011910U172, BEING A BOLT IN SOUTH STONE FOUNDATION OF PORT HOPE TOWN HALL. 25cm FROM SOUTHWEST CORNER, 48cm ABOVE SIDEWALK. ELEVATION=78.253(CGVD)(1928:78)

#### LEGEND

|                               |                               |
|-------------------------------|-------------------------------|
| €-----                        | PROPERTY LINE                 |
| -----                         | PROP. SWALE                   |
| EX. OVERHEAD WIRES            | EX. OVERHEAD WIRES            |
| EX. SANITARY PIPE             | EX. SANITARY PIPE             |
| EX. STORM PIPE                | EX. STORM PIPE                |
| EX. WATERMAIN                 | EX. WATERMAIN                 |
| PROP. SANITARY PIPE           | PROP. SANITARY PIPE           |
| PROP. STORM PIPE              | PROP. STORM PIPE              |
| PROP. WATERMAIN               | PROP. WATERMAIN               |
| EX. CABLE TV PEDESTAL         | EX. CABLE TV PEDESTAL         |
| EX. HYDRO POLE                | EX. HYDRO POLE                |
| EX. FLAG POLE                 | EX. FLAG POLE                 |
| EX. FIRE HYDRANT TO REMAIN    | EX. FIRE HYDRANT TO REMAIN    |
| EX. WATER VALVE TO REMAIN     | EX. WATER VALVE TO REMAIN     |
| EX. MONITORING WELL           | EX. MONITORING WELL           |
| EX. CATCH BASIN               | EX. CATCH BASIN               |
| EX. MANHOLE                   | EX. MANHOLE                   |
| PROP. SANITARY MANHOLE        | PROP. SANITARY MANHOLE        |
| PROP. STORM MANHOLE           | PROP. STORM MANHOLE           |
| PROP. CATCH BASIN MANHOLE     | PROP. CATCH BASIN MANHOLE     |
| PROP. CATCH BASIN             | PROP. CATCH BASIN             |
| PROP. FIRE HYDRANT & VALVE    | PROP. FIRE HYDRANT & VALVE    |
| PROP. WATER VALVE & BOX       | PROP. WATER VALVE & BOX       |
| EX. TREE                      | EX. TREE                      |
| PROP. TREE                    | PROP. TREE                    |
| PROP. HEAVY DUTY ASPHALT AREA | PROP. HEAVY DUTY ASPHALT AREA |
| PROP. LANDSCAPE AREA          | PROP. LANDSCAPE AREA          |



KEYPLAN N.T.S.  
THE LOCATION OF ALL UNDER- / ABOVE-GROUND UTILITIES AND SERVICES IS APPROXIMATE ONLY AND WHERE SHOWN ON THE DRAWING(S) THE ACCURACY OF THE UTILITIES AND SERVICES IS NOT GUARANTEED. THE OWNER AND / OR HIS REPRESENTATIVE SHALL DETERMINE THE LOCATION OF ALL UTILITIES AND SERVICES BEFORE COMMENCING ANY CONSTRUCTION ACTIVITIES.

DO NOT SCALE DRAWINGS.  
CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.  
THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION.

| No. | Issued         | Date       | By |
|-----|----------------|------------|----|
| 1   | ISSUED FOR SPA | 2024-04-12 |    |


**WPE**  
 222 - 7250 KEELE STREET  
 VAUGHAN, ON, L4K 1Z8  
 T: 416 578 8682  
 EMAIL: MDU@WPEENGINEERING.COM  
 WWW.WPEENGINEERING.COM

#### PROPOSED SCHOOL DORMITORY BUILDING

39 PINE ST N PORT HOPE, ON L1A 3G5

|                |      |       |            |
|----------------|------|-------|------------|
| Project Number | 2021 |       |            |
| Drawn          | AL   | Scale | 1:250      |
| Checked        | ZD   | Date  | 2023-10-06 |

#### SERVICING PLAN

Drawing No. **C-02**

## NOTES

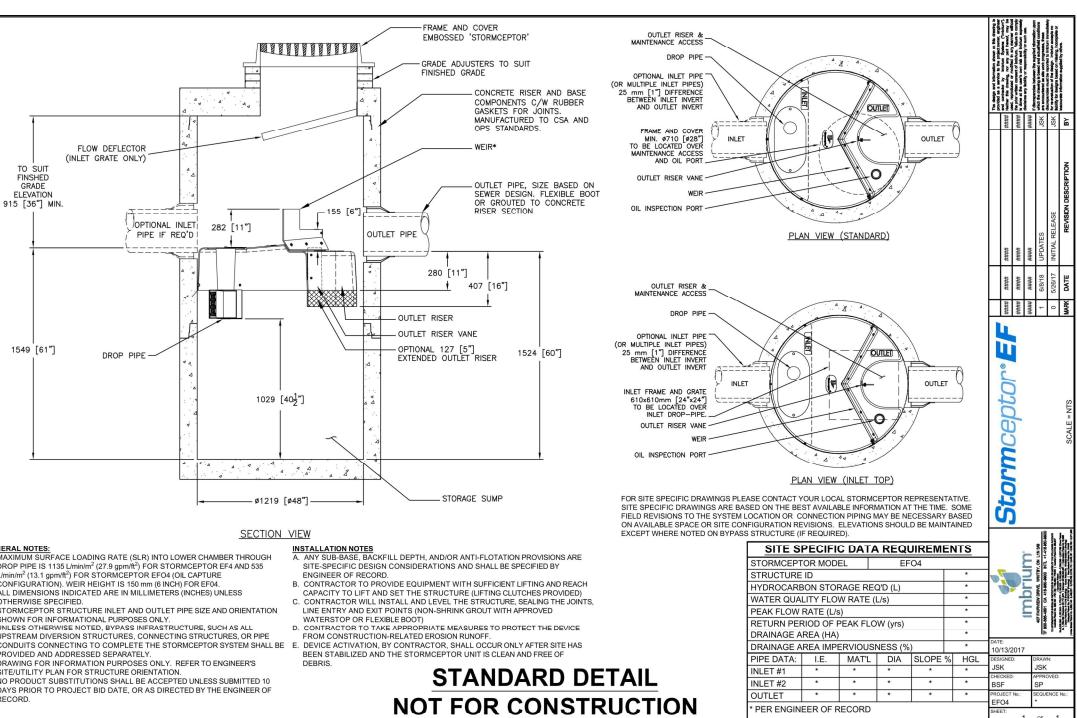
UNLESS OTHERWISE NOTED ON THE DRAWINGS, THE FOLLOWING REQUIREMENTS SHALL APPLY TO THIS PROJECT.

### GENERAL

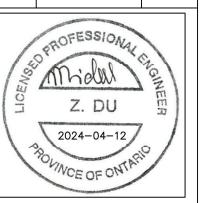
- ALL WORK WITHIN THE CITY RIGHT-OF-WAY SHALL BE CONSTRUCTED ACCORDING TO THE LATEST CITY OF TORONTO STANDARD DRAWINGS AND SPECIFICATIONS. ONTARIO PROVINCIAL STANDARD DRAWINGS AND SPECIFICATIONS MAY, SUBJECT TO THE APPROVAL OF THE CITY OF TORONTO, BE USED WHERE NO CITY STANDARD OR SPECIFICATION IS AVAILABLE.
- ALL SERVICES WITHIN R.O.W. TO BE REMOVED, ABANDONED AND INSTALLED BY CITY FORCES AT THE OWNER'S EXPENSE.
- ALL WORK SHALL BE COMPLETED ACCORDING TO THE CURRENT OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR CONSTRUCTION PROJECTS. THE GENERAL CONTRACTOR SHALL BE DEEMED TO BE THE CONSTRUCTOR AS DEFINED IN THE ACT.
- ALL TEMPORARY TRAFFIC CONTROL AND SIGNAGE DURING CONSTRUCTION SHALL BE ACCORDING TO THE CURRENT ONTARIO TRAFFIC MANUAL BOOK 7: TEMPORARY CONDITIONS FIELD EDITION.

### LOCATES AND LIABILITIES

- ALL AREAS DISTURBED DURING CONSTRUCTION WITHIN THE CITY'S RIGHT-OF-WAY SHALL BE RESTORED TO ORIGINAL OR BETTER CONDITION AND TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR. GRASS AREAS SHALL BE TREATED WITH 100mm OF TOPSOIL AND SHALL BE SODDED ACCORDING TO TS 5.00 AND TS 5.10.
- THE LOCATION OF ALL UNDER/ABOVE GROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN AND, WHERE SHOWN ON THE DRAWING(S), THE ACCURACY OF THE LOCATION OF SUCH UTILITIES ARE NOT GUARANTEED. THE CONTRACTOR SHALL DETERMINE THE LOCATION AND DIMENSION OF ALL SUCH UTILITIES AND STRUCTURES BY CONSULTING THE APPROPRIATE AUTHORITIES OR UTILITY COMPANIES CONCERNED. THE CONTRACTORS SHALL PROVE THE LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND SHALL ASSUME ALL LIABILITY FOR DAMAGE OR RESTORATION TO SAME.
- ALL DIMENSIONS TO BE CHECKED AND VERIFIED ON THE SITE PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER BEFORE PROCEEDING.
- ANY DISCREPANCIES BETWEEN SITE CONDITIONS AND CONSTRUCTION DRAWINGS MUST BE REPORTED TO THE CITY PRIOR TO COMMENCEMENT OF CONSTRUCTION AND APPROPRIATE ACTION TAKEN TO THE SATISFACTION OF THE CONTRACT ADMINISTRATION.
- ALL SURVEY STAKE LAYOUT POINTS SHALL BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DISCREPANCIES BETWEEN THE DRAWINGS AND THE LAYOUT SHALL BE IMMEDIATELY REPORTED TO THE CITY.
- ATTENTION IS DIRECTED TO THE POSSIBILITY OF EXISTING PRIVATE SPRINKLERS AND LIGHTING SYSTEMS WITHIN THE RIGHT-OF-WAY, WHICH ARE NOT SHOWN ON PLANS. LOCATING, WORKING AROUND AND PROTECTING THESE SYSTEMS SHALL BE COMPLETED AT NO EXTRA COST TO THE CITY.
- ALL DIMENSION ARE EXPRESSED IN METERS AND PIPE SIZES ARE EXPRESSED IN MILLIMETERS UNLESS OTHERWISE NOTED.
- ALL MATERIAL FOR SEWER, FORCEMAIN, WATERMAIN, HYDRANTS AND APPURTENANCES SHALL BE ACCORDING TO CITY OF TORONTO MATERIAL/MANUFACTURER SPECIFICATIONS AS REQUIRED BY CHAPTER 6, MATERIAL SPECIFICATIONS FROM DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL.
- UTILITY SEPARATION SHALL BE ACCORDING TO APPENDIX 'D' OF THE CITY OF TORONTO DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL.
- SERVICE CONNECTIONS AND UTILITY CUTS MADE IN ROAD PAVEMENTS SHALL BE BACKFILLED WITH UNSHRINKABLE FILL ACCORDING TO TS 4.60.
- AT ALL LOCATIONS WHERE THE PROPOSED WATERMAIN CROSSES UNDER OR ABOVE THE EXISTING SEWERS, OR UTILITIES, GRANULAR A BEDDING MATERIAL IS TO EXTEND FROM THE LOWER PIPE TO THE TOP OF THE UPPER PIPE. GRANULAR A TO BE COMPAKTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.
- CONTRACTOR TO PROVIDE ADEQUATE SUPPORT DURING CONSTRUCTION BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS. MAINTAIN 300mm MINIMUM VERTICAL CLEARANCES BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS LESS THAN 300mm IN DIAMETER. MAINTAIN 600mm MINIMUM VERTICAL CLEARANCES BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS EQUAL TO OR GREATER THAN 300mm IN DIAMETER.
- ALL EXISTING WATERMAINS AND SEWER PIPES LARGER THAN 300mm DIAMETER SHALL BE SUPPORTED ACCORDING TO DRAWING T-1007.01-4.
- ALL PROPOSED SERVICE CONNECTIONS WITHIN THE MUNICIPAL RIGHT-OF-WAY TO BE INSTALLED BY THE CITY AT THE OWNER'S COST.


### SANITARY AND STORM SEWERS

- ALL EXISTING SEWERS ARE TO BE CONFIRMED ON SITE PRIOR TO CONSTRUCTION, INCLUDING SEWER INVERTS, MATERIAL, AND SIZE. ANY DISCREPANCIES SHALL BE REPORTED TO THE ENGINEER.
- MAINLINE PVC PIPE SHALL BE DR 35.
- ALL SANITARY SEWER PIPES SMALLER THAN 300mm SHALL BE PVC AND HAVE SMOOTH INTERIOR AND EXTERIOR WALL AND CONFORM TO OPSS 1841 MATERIAL SPECIFICATION. ALL OTHER SIZE SANITARY PIPES SHALL BE COMPOSED OF REINFORCED CONCRETE AND COMPLY WITH OPSS 1820 MATERIAL SPECIFICATION.
- ALL STORM SEWER GREATER THAN 375mm SHALL BE STEEL REINFORCED CONCRETE AND SHALL CONFORM TO OPSS 1820 MATERIAL SPECIFICATION.
- SANITARY SERVICE CONNECTIONS SHALL BE SINGLE, 150mm DIAMETER MINIMUM, PVC DR 28 INSTALLED AT 2 PERCENT AND THE COLOUR SHALL BE GREEN, FOR SINGLE RESIDENTIAL DWELLINGS.
- STORM SERVICE CONNECTION PIPE SHALL BE PVC DR 28, CSA B182.2-06 CERTIFIED, AND ASTM D3034-04A.
- EMBEDMENT MATERIAL FOR FLEXIBLE PIPE SHALL BE ACCORDING TO OPSD 802.010 AND USING GRANULAR A NATIVE OR GRANULAR A RCN ACCORDING TO TS 1010 AND COMPAKTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.
- BEDDING FOR RIGID PIPE SHALL BE CLASS B BEDDING MATERIAL ACCORDING TO OPSD 802.031 AND USING GRANULAR A NATIVE OR GRANULAR A RCN BEDDING MATERIAL ACCORDING TO TS 1010 AND COMPAKTED TO A MINIMUM OF 98% OF MAXIMUM DRY DENSITY.
- ULTRA-RIG PIPE IS NOT PERMITTED WITHIN THE MUNICIPAL RIGHT-OF-WAY.
- MAINTENANCE HOLES SHALL BE ACCORDING TO T-701.010 (1200mm), T-701.011 (1500mm), T-701.012-1 (1800mm) OR T-701.013 (2400mm). FRAME AND COVER SHALL BE ACCORDING TO OPSD 401.010 TYPE A CLOSED (SANITARY AND STORM)
- MAINTENANCE HOLE CHAMBER OPENING MUST BE LOCATED ON THE UPSTREAM SIDE OF THE MAINTENANCE HOLE.
- BENCHING DETAILS SHALL BE ACCORDING TO T-701.021 OR AS SHOWN ON THE DRAWINGS.
- DROP STRUCTURES SHALL BE ACCORDING TO T-1003.01 (EXTERNAL) AND T-1003.01-2 (INTERNAL).
- SANITARY MAINTENANCE HOLES SHALL HAVE WATERTIGHT FRAMES AND COVERS IN PONDING AREA ACCORDING TO OPSD 401.030.
- REINFORCED CONCRETE PIPE SHALL BE MINIMUM 65-D. HEIGHT OF FILL TO BE VERIFIED USING OPSD TABLE 807.010 AND 807.030.
- NON-REINFORCED CONCRETE PIPE 150mm TO 250mm SHALL BE CLASS 3. HEIGHT OF FILL TO BE VERIFIED USING OPSD TABLE 807.040.
- SINGLE CATCHBASINS SHALL BE ACCORDING TO T-705.010 COMPLETE WITH GOSS TRAP, WHERE SPECIFIED. FRAME AND COVER SHALL BE ACCORDING TO OPSD 400.070.
- DOUBLE CATCHBASINS SHALL BE ACCORDING TO T-705.020 COMPLETE WITH GOSS TRAP, WHERE SPECIFIED.
- CATCHBASIN LEADS TO BE 250mm PVC DR 35 FOR SINGLE CATCHBASINS AND 300mm PVC DR 35 FOR DOUBLE CATCHBASINS.
- CONNECTION DETAIL FOR SEWER PIPE AT CATCHBASINS AND MAINTENANCE HOLES SHALL BE ACCORDING TO T708.020.
- STORM SERVICE CONNECTION PIPE SHALL BE PVC SDR-28, CSA B182.2-06 CERTIFIED, AND ASTM D3034-04A.
- FOR SERVICE CONNECTIONS ON EXISTING SEWERS, THE SEWER FLOW MUST BE MAINTAINED AT ALL TIMES. SEWER CONNECTIONS MUST BE CONNECTED TO THE MAIN SEWER BY MEANS OF A SADDLE, WHERE APPLICABLE. THE CONNECTION WILL TERMINATE AT THE PROPERTY LINE AND MUST BE PROPERLY PLUGGED. THE OPENING FOR THE SADDLE ON THE MAIN SEWER MUST BE MADE BY A CORE DRILL ONLY. THE DIAMETER OF THE CORE MUST NOT EXCEED THE OUTSIDE DIAMETER OF THE SADDLE BRANCH INSERT BY 25mm. WHERE CORE DRILLING IS NOT POSSIBLE, THE CONTRACTOR MUST CONNECT TO THE MAIN SEWER BY APPROPRIATE MEANS, APPROVED BY THE CITY. SEWER CONNECTIONS MUST BE LAID ON SOLID GROUND AND MUST HAVE A MINIMUM OF 75mm OF CLASS B BEDDING.


### ROAD CONSTRUCTION

#### WATERMAIN

- PVC WATERMAINS SHALL BE MINIMUM DR 18 CLASS 235 (AWWA) C900-07 OR MOLECULAR ORIENTED POLYVINYL CHLORIDE (PVC) PIPES RANGING IN SIZE FROM 100mm TO 300mm IN DIAMETER. PRESSURE CLASS 235 AWWA C909.09. PVC PIPES RANGING IN SIZE FROM 350mm THROUGH 600mm IN DIAMETER, SHALL BE PRESSURE RATING 235, DR 18, ACCORDING TO AWWA C905-10.
- EMBEDMENT MATERIAL FOR FLEXIBLE PIPE SHALL BE ACCORDING TO OPSD 802.010 AND USING GRANULAR A ACCORDING TO TS 1010 AND COMPAKTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.
- MINIMUM COVER ON WATERMAINS SHALL BE 1.8m.
- ALL HYDRANTS SHALL BE CONSTRUCTED ACCORDING TO T-1105.01.
- HYDRANT LEADS SHALL BE MINIMUM DR 18 CLASS 235 (AWWA) C900-07 OR PRESSURE CLASS 235 AWWA C909-09.
- ALL SERVICE CONNECTIONS SHALL BE CONSTRUCTED ACCORDING TO T-1104.01, T-1104.02-1, T-1104.02-3, T-1105.02-1 AND T-1105.02-2.
- SINGLE WATER SERVICE CONNECTIONS SHALL BE A MINIMUM OF 19mm Dia., TYPE 'K' SOFT COPPER ACCORDING TO T-1104.01. WHEN SERVICE LENGTH EXCEEDS 30m, THE DIAMETER SHALL BE 25mm Dia.
- ALL CURB AND VALVE BOXES TO BE LOCATED AT STREET LINE.
- MECHANICAL THRUST RESTRAINTS SHALL BE INSTALLED AT ALL FITTINGS, BENDS, TEES, CROSSES, REDUCERS AND VALVES FOR ALL WATERMAIN SIZES. MECHANICAL RESTRAINTS AT JOINTS SHALL BE INSTALLED AT EVER PIPE JOINT 6.1m OF EITHER SIDE OF THE VALVE FOR WATERMAINS 100mm DIAMETER OR LARGER.
- ALL TEES, PLUGS, HORIZONTAL, VERTICAL BENDS, REDUCERS AND HYDRANTS TO HAVE CONCRETE THRUST BLOCKS ACCORDING TO T-1103.01 AND T-1103.020.
- WATERMAINS MUST FOLLOW THE ONTARIO MINISTRY OF THE ENVIRONMENT PROCEDURE F-6-1 THAT GOVERN THE SEPARATION OF SEWERS AND WATERMAINS. A MINIMUM VERTICAL CLEARANCE OF 0.30m WHEN CROSSING OVER AND 0.5m WHEN CROSSING UNDER SEWERS AND ALL OTHER UTILITIES IS REQUIRED. MUST ALSO MAINTAIN 2.5m HORIZONTAL SEPARATION WITH SEWERS.
- ALL VALVES LESS THAN 400mm WILL BE IN A VALVE AND BOX ACCORDING TO T-1101.02-2. ALL VALVES 400mm AND LARGER SHALL BE A CHAMBER.
- SACRIFICAL ANODES SHALL BE INSTALLED ON ALL METALLIC PIPES AND APPURTENANCES, WATER SERVICES AND FITTINGS ACCORDING TO T-1106.04, T-1106.05, T-1106.06 AND TS 7.22.
- TRACER WIRE INSTALLATION SHALL BE ACCORDING TO TS 7.40.
- HYDROSTATIC PRESSURE TEST AND LEAKAGE TESTING OF THE WATERMAIN SHALL BE ACCORDING TO TS 4.41.
- THE NEW WATERMAIN SHALL BE ISOLATED ACCORDING TO T-1104.03-3 OR T-1104.03-4 UNTIL BACTERIOLOGICAL TESTS ARE SATISFACTORILY COMPLETED.
- PROVISIONS FOR FLUSHING THE WATERMAIN PRIOR TO TESTING AND SO FOR MUST BE PROVIDED WITH AT LEAST A 50mm OUTLET ON 100mm AND LARGER LINES ACCORDING TO T-1104.03-1. COPPER WATER SERVICES SHALL HAVE FLUSHING POINTS AT THE END, THE SAME SIZE AS THE LINE. ON FIRE LINES, FLUSHING OUTLET TO BE 50mm DIAMETER MINIMUM OR A HYDRANT.
- DISINFECTION OF THE WATERMAIN SHALL BE ACCORDING TO TS 7.30 AND SHALL INCLUDE ALL NEW WATER SERVICES 100mm Dia. AND LARGER.
- TORONTO WATER REQUIRES THAT THE NEW DISTRIBUTION SYSTEM REMAIN ISOLATED UNTIL SATISFACTORY BACTERIOLOGICAL SAMPLE RESULTS ARE RECEIVED. ECS CONTRACT ADMINISTRATOR SHALL NOTIFY TORONTO WATER WHEN SAMPLE RESULTS HAVE PASSED IN ORDER TO PROCEED WITH REMOVAL OF THE BLOW-OFF AND BACK FILLING OF THE ACCESS PIT.
- AFTER SATISFACTORY DISINFECTION OF THE NEW WATERMAIN IS ACHIEVED, PERMANENT CONNECTIONS TO THE EXISTING WATERMAIN(S) WITH A FILTER PIECE SHALL BE MADE ACCORDING TO TS 7.70.
- CITY OF SERVICE WATER VALVES, CURB STOPS, FIRE HYDRANTS CAN ONLY BE OPERATED BY CITY STAFF.
- ALL NEW WATERMAINS SHALL BE INSULATED WHERE THE COVER IS LESS THAN 1.65m ACCORDING TO T-708.01-4.
- BUILDING PERMIT ISSUANCE SHALL BE SUBJECT TO THE BUILDING PERMIT DRAWINGS NOT BEING IN CONTRAVENTION WITH THESE APPROVED PLANS AND DRAWINGS INCLUDING, BUT NOT LIMITED TO, THE EXTERIOR DESIGN OF THE BUILDING AND EXTERIOR BUILDING MATERIALS.



| No. | Issued         | Date       | By |
|-----|----------------|------------|----|
| 1   | ISSUED FOR SPA | 2024-04-12 |    |



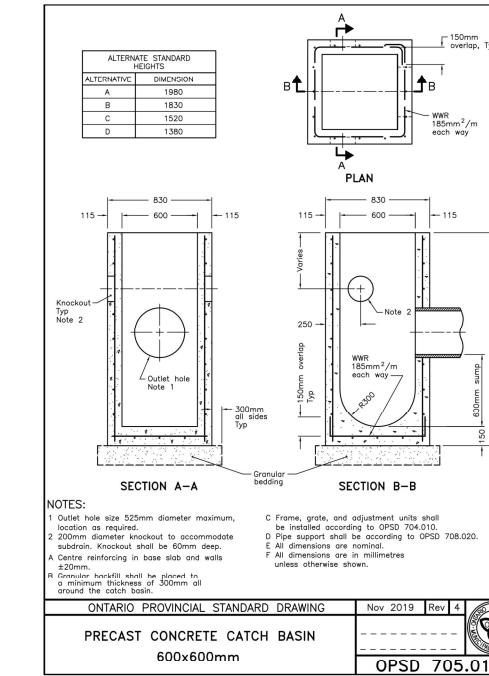
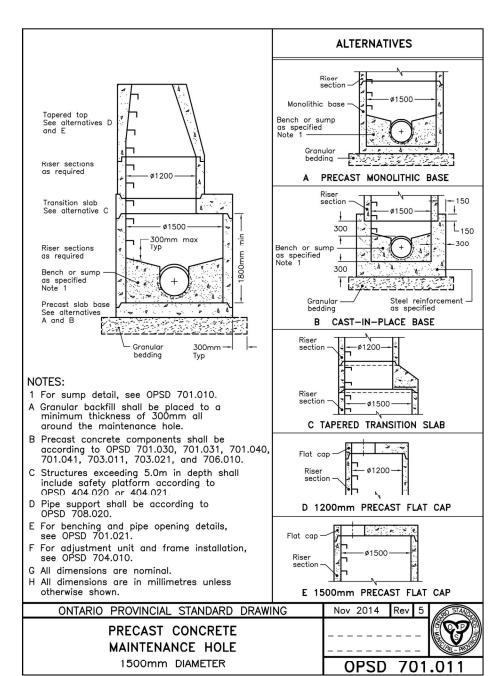
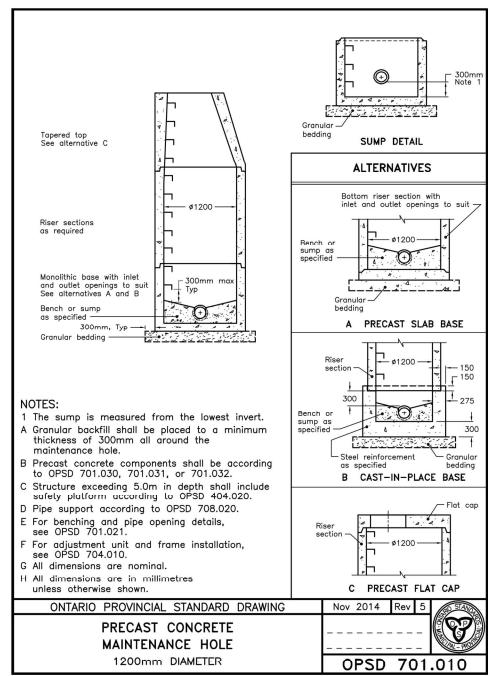
**WPE** **WPE**

222 - 7250 KEELE STREET  
VAUGHAN, ON, L4K 1Z8  
T: 416 578 8682

EMAIL: MDU@WPEENGINEERING.COM  
WWW.WPEENGINEERING.COM

### PROPOSED SCHOOL DORMITORY BUILDING

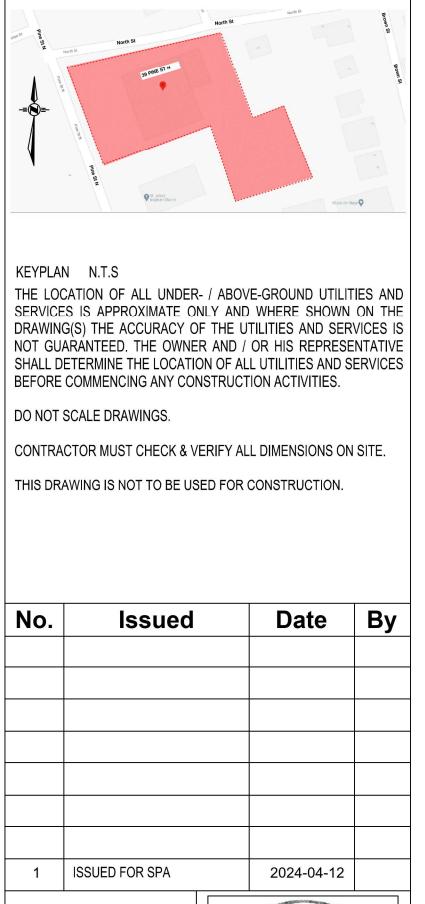
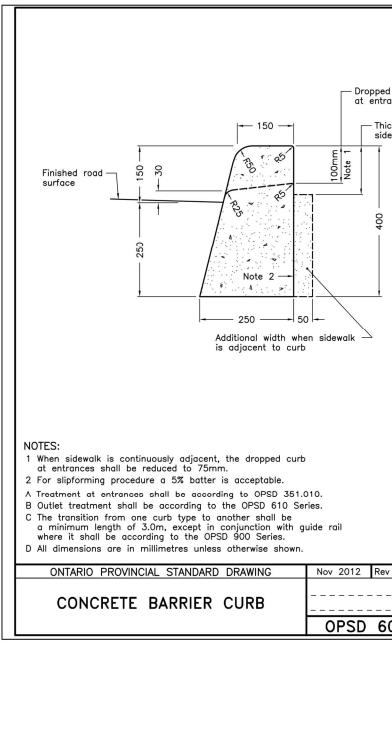
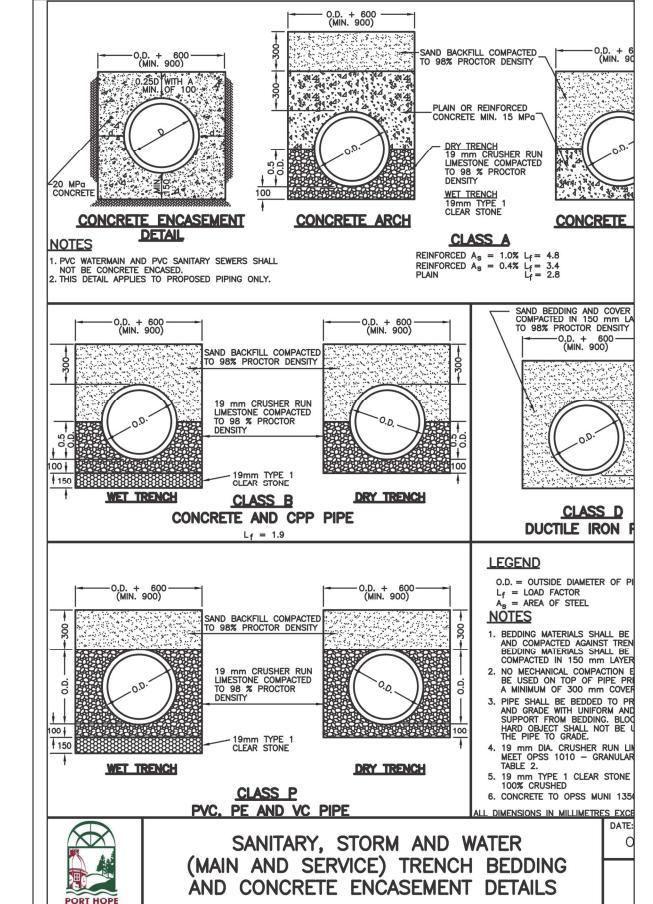
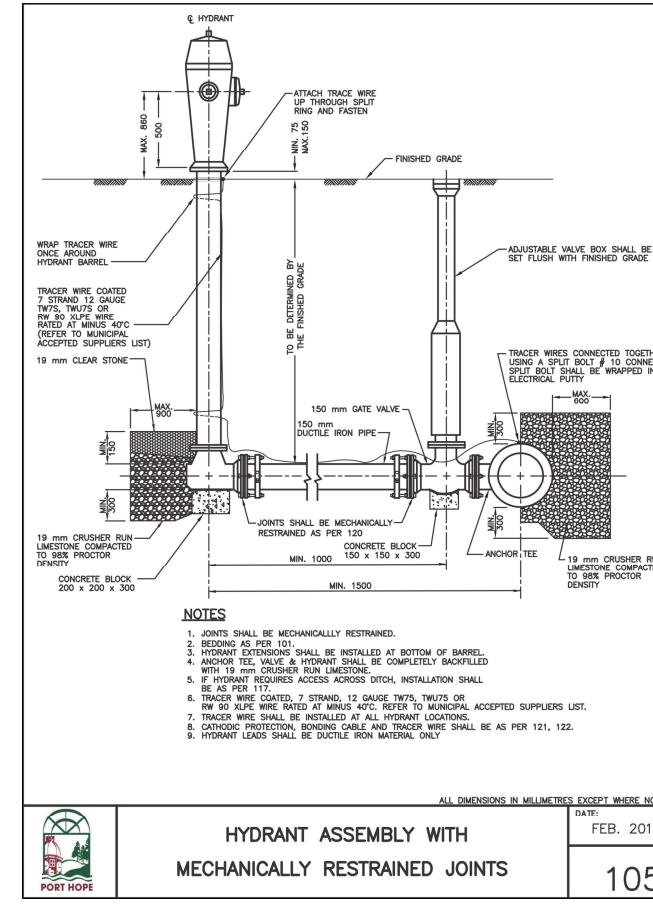
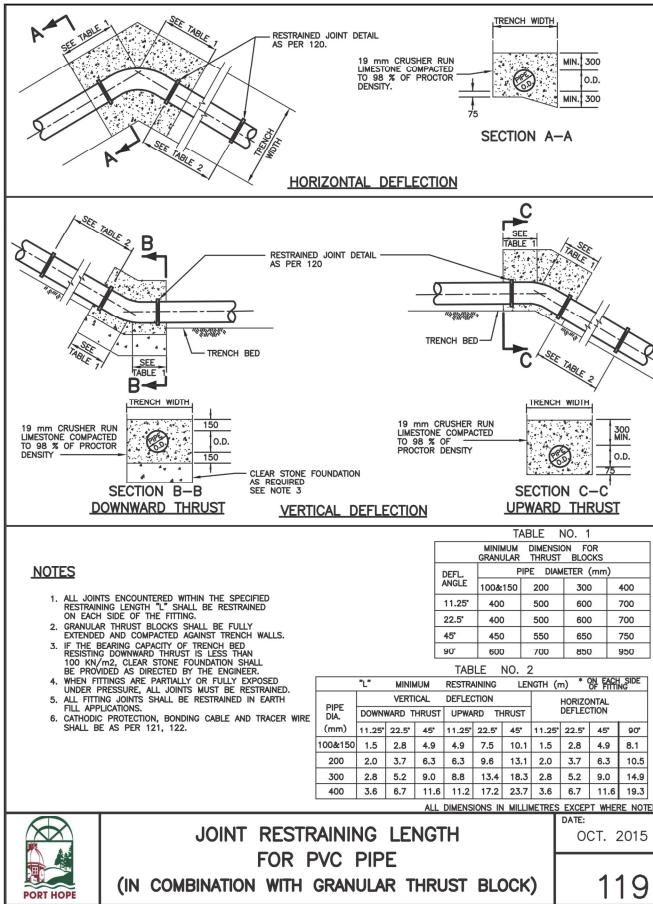
39 PINE ST N PORT HOPE, ON L1A 3G5




Project Number 2021

Drawn AL Scale NTS

Checked ZD Date 2023-10-06

### STANDARD DRAWING & DETAILS






Drawing No. C-03



KEYPLAN N.T.S.  
THE LOCATION OF ALL UNDER- / ABOVE-GROUND UTILITIES AND SERVICES IS APPROXIMATE ONLY AND WHERE SHOWN ON THE DRAWING(S) THE ACCURACY OF THE UTILITIES AND SERVICES IS NOT GUARANTEED. THE OWNER AND / OR HIS REPRESENTATIVE SHALL DETERMINE THE LOCATION OF ALL UTILITIES AND SERVICES BEFORE COMMENCING ANY CONSTRUCTION ACTIVITIES.

DO NOT SCALE DRAWINGS.  
CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.  
THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION.

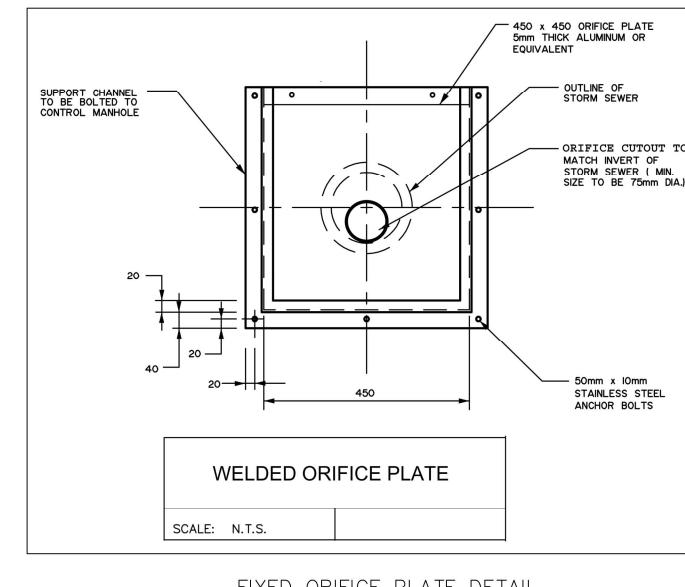
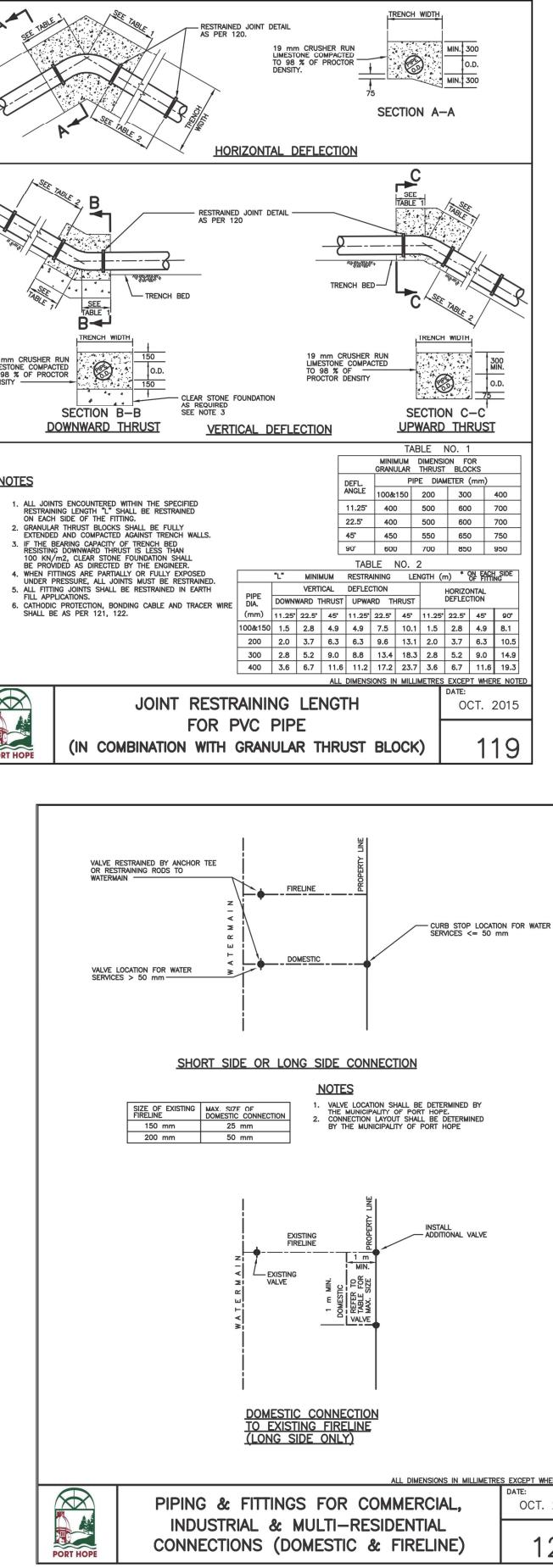
NOTES  
UNLESS OTHERWISE NOTED ON THE DRAWINGS, THE FOLLOWING REQUIREMENTS SHALL APPLY TO THIS PROJECT.  
GENERAL  
1. ALL WORK WITHIN THE CITY RIGHT-OF-WAY SHALL BE CONSTRUCTED ACCORDING TO THE LATEST CITY OF TORONTO STANDARD DRAWINGS AND SPECIFICATIONS. ONTARIO PROVINCIAL STANDARD DRAWINGS AND SPECIFICATIONS MAY, SUBJECT TO THE APPROVAL OF THE CITY OF TORONTO, BE USED WHERE NO CITY STANDARD OR SPECIFICATION IS AVAILABLE.  
2. ALL SERVICES WITHIN R.O.W. TO BE REMOVED, ABANDONED AND INSTALLED BY CITY FORCES AT THE OWNER'S EXPENSE.  
3. ALL WORK SHALL BE COMPLETED ACCORDING TO THE CURRENT OCCUPATIONAL HEALTH AND SAFETY ACT AND REGULATIONS FOR CONSTRUCTION PROJECTS. THE GENERAL CONTRACTOR SHALL BE DEEMED TO BE THE CONSTRUCTOR AS DEFINED IN THE ACT.  
4. ALL TEMPORARY TRAFFIC CONTROL AND SIGNAGE DURING CONSTRUCTION SHALL BE ACCORDING TO THE CURRENT ONTARIO TRAFFIC MANUAL BOOK 7: TEMPORARY CONDITIONS FIELD EDITION.  
LOCATES AND LIABILITIES  
1. ALL AREAS DISTURBED DURING CONSTRUCTION WITHIN THE CITY'S RIGHT-OF-WAY SHALL BE RESTORED TO ORIGINAL OR BETTER CONDITION AND TO THE SATISFACTION OF THE CONTRACT ADMINISTRATOR. GRASS AREAS SHALL BE TREATED WITH 100mm OF TOPSOIL AND SHALL BE SODDED ACCORDING TO TS 5.00 AND TS 5.10.  
2. THE LOCATION OF ALL UNDER/ABOVE GROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN AND, WHERE SHOWN ON THE DRAWING(S), THE ACCURACY OF THE LOCATION OF SUCH UTILITIES ARE NOT GUARANTEED. THE CONTRACTOR SHALL DETERMINE THE LOCATION AND DIMENSION OF ALL SUCH UTILITIES AND STRUCTURES BY CONSULTING THE APPROPRIATE AUTHORITIES OR UTILITY COMPANIES CONCERNED. THE CONTRACTORS SHALL PROVE THE LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND SHALL ASSUME ALL LIABILITY FOR DAMAGE OR RESTORATION TO SAME.  
3. ALL DIMENSIONS TO BE CHECKED AND VERIFIED ON THE SITE PRIOR TO ANY CONSTRUCTION. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ENGINEER BEFORE PROCEEDING.  
4. ANY DISCREPANCIES BETWEEN SITE CONDITIONS AND CONSTRUCTION DRAWINGS MUST BE REPORTED TO THE CITY PRIOR TO COMMENCEMENT OF CONSTRUCTION AND APPROPRIATE ACTION TAKEN TO THE SATISFACTION OF THE CONTRACT ADMINISTRATION.  
5. ALL SURVEY STAKE LAYOUT POINTS SHALL BE VERIFIED IN THE FIELD BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DISCREPANCIES BETWEEN THE DRAWINGS AND THE LAYOUT SHALL BE IMMEDIATELY REPORTED TO THE CITY.  
6. ATTENTION IS DIRECTED TO THE POSSIBILITY OF EXISTING PRIVATE SPRINKLERS AND LIGHTING SYSTEMS WITHIN THE RIGHT-OF-WAY, WHICH ARE NOT SHOWN ON PLANS. LOCATING, WORKING AROUND AND PROTECTING THESE SYSTEMS SHALL BE COMPLETED AT NO EXTRA COST TO THE CITY.  
7. ALL DIMENSION ARE EXPRESSED IN METERS AND PIPE SIZES ARE EXPRESSED IN MILLIMETERS UNLESS OTHERWISE NOTED.  
8. ALL MATERIAL FOR SEWER, FORCEMAIN, WATERMAIN, HYDRANTS AND APPURTENANCES SHALL BE ACCORDING TO CITY OF TORONTO MATERIAL/MANUFACTURER SPECIFICATIONS AS REQUIRED BY CHAPTER 6, MATERIAL SPECIFICATIONS FROM DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL.  
9. UTILITY SEPARATION SHALL BE ACCORDING TO APPENDIX 'D' OF THE CITY OF TORONTO DESIGN CRITERIA FOR SEWERS AND WATERMAINS MANUAL.  
10. SERVICE CONNECTIONS AND UTILITY CUTS MADE IN ROAD PAVEMENTS SHALL BE BACKFILLED WITH UNSHRINKABLE FILL ACCORDING TO TS 4.60.  
11. AT ALL LOCATIONS WHERE THE PROPOSED WATERMAIN CROSSES UNDER OR ABOVE THE EXISTING SEWERS, OR UTILITIES, GRANULAR A BEDDING MATERIAL IS TO EXTEND FROM THE LOWER PIPE TO THE TOP OF THE UPPER PIPE. GRANULAR A TO BE COMPAKTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.  
12. CONTRACTOR TO PROVIDE ADEQUATE SUPPORT DURING CONSTRUCTION BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS. MAINTAIN 300mm MINIMUM VERTICAL CLEARANCES BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS LESS THAN 300mm IN DIAMETER. MAINTAIN 600mm MINIMUM VERTICAL CLEARANCES BETWEEN THE NEW WATERMAIN AND EXISTING GAS MAINS EQUAL TO OR GREATER THAN 300mm IN DIAMETER.  
13. ALL EXISTING WATERMAINS AND SEWER PIPES LARGER THAN 300mm DIAMETER SHALL BE SUPPORTED ACCORDING TO DRAWING T-1007.01-4.  
14. ALL PROPOSED SERVICE CONNECTIONS WITHIN THE MUNICIPAL RIGHT-OF-WAY TO BE INSTALLED BY THE CITY AT THE OWNER'S COST.  
SANITARY AND STORM SEWERS  
1. ALL EXISTING SEWERS ARE TO BE CONFIRMED ON SITE PRIOR TO CONSTRUCTION, INCLUDING SEWER INVERTS, MATERIAL, AND SIZE. ANY DISCREPANCIES SHALL BE REPORTED TO THE ENGINEER.  
2. MAINLINE PVC PIPE SHALL BE DR 35.  
3. ALL SANITARY SEWER PIPES SMALLER THAN 300mm SHALL BE PVC AND HAVE SMOOTH INTERIOR AND EXTERIOR WALL AND CONFORM TO OPSS 1841 MATERIAL SPECIFICATION. ALL OTHER SIZE SANITARY PIPES SHALL BE COMPOSED OF REINFORCED CONCRETE AND COMPLY WITH OPSS 1820 MATERIAL SPECIFICATION.  
4. ALL STORM SEWER GREATER THAN 375mm SHALL BE STEEL REINFORCED CONCRETE AND SHALL CONFORM TO OPSS 1820 MATERIAL SPECIFICATION.  
5. SANITARY SERVICE CONNECTIONS SHALL BE SINGLE, 150mm DIAMETER MINIMUM, PVC DR 28 INSTALLED AT 2 PERCENT AND THE COLOUR SHALL BE GREEN, FOR SINGLE RESIDENTIAL DWELLINGS.  
6. STORM SERVICE CONNECTION PIPE SHALL BE PVC DR 28, CSA B182.2-06 CERTIFIED, AND ASTM D3034-04A.  
7. EMBEDMENT MATERIAL FOR FLEXIBLE PIPE SHALL BE ACCORDING TO OPSD 802.010 AND USING GRANULAR A NATIVE OR GRANULAR A RCN ACCORDING TO TS 1010 AND COMPAKTED TO MINIMUM 98% OF MAXIMUM DRY DENSITY.  
8. BEDDING FOR RIGID PIPE SHALL BE CLASS B BEDDING MATERIAL ACCORDING TO OPSD 802.031 AND USING GRANULAR A NATIVE OR GRANULAR A RCN BEDDING MATERIAL ACCORDING TO TS 1010 AND COMPAKTED TO A MINIMUM OF 98% OF MAXIMUM DRY DENSITY.  
9. ULTRA-RIG PIPE IS NOT PERMITTED WITHIN THE MUNICIPAL RIGHT-OF-WAY.  
10. MAINTENANCE HOLES SHALL BE ACCORDING TO T-701.010 (1200mm), T-701.011 (1500mm), T-701.012-1 (1800mm) OR T-701.013 (2400mm). FRAME AND COVER SHALL BE ACCORDING TO OPSD 401.010 TYPE A CLOSED (SANITARY AND STORM)  
11. MAINTENANCE HOLE CHAMBER OPENING MUST BE LOC

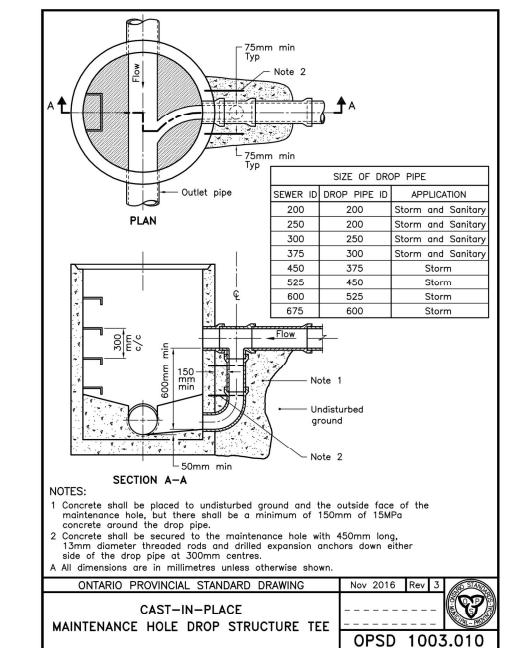
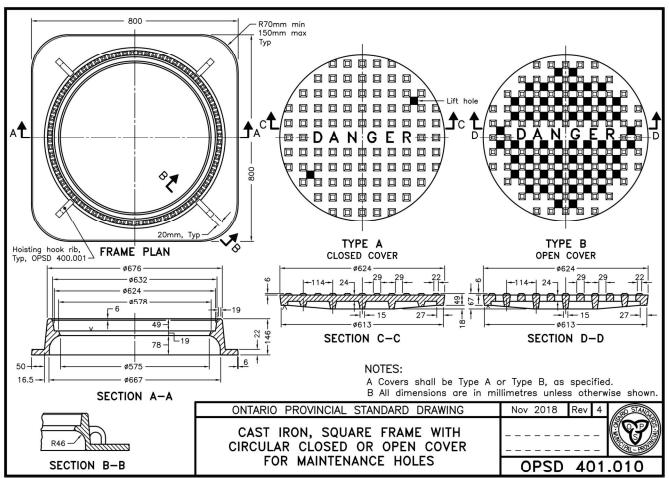
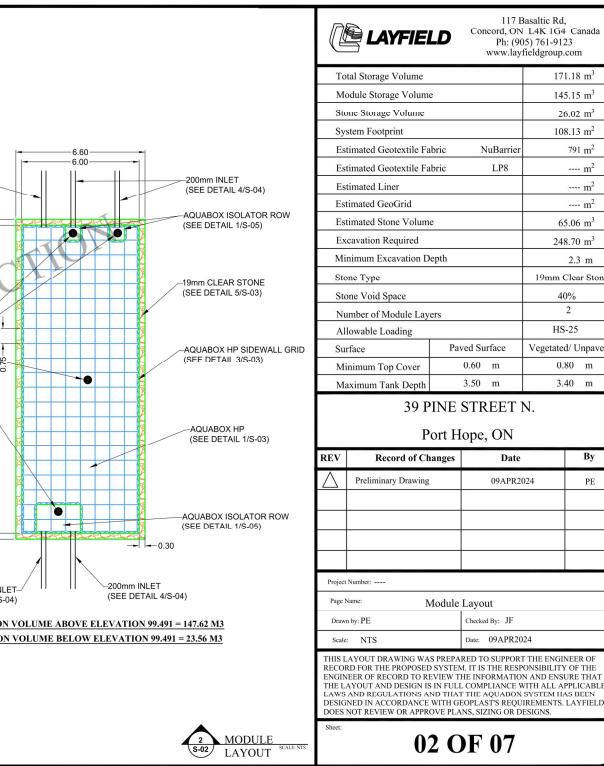


**WPE**

222 - 7250 KEELE STREET  
VAUGHAN, ON, L4K 1Z8  
T: 416 578 8602  
EMAIL: MDU@WPEENGINEERING.COM  
WWW.WPEENGINEERING.COM

**PROPOSED SCHOOL DORMITORY BUILDING**  
39 PINE ST N PORT HOPE, ON L1A 3G5



Project Number 2021




Drawn AL Scale NTS

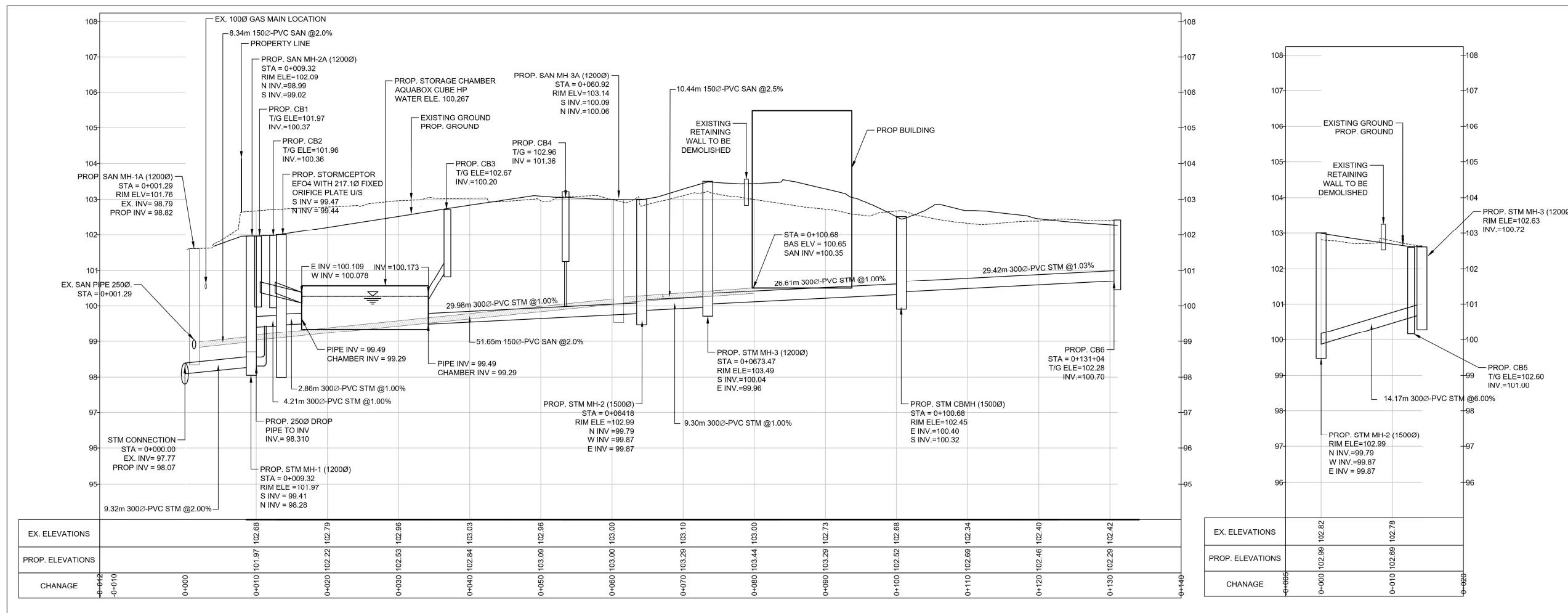
Checked ZD Date 2023-10-06

**STANDARD DRAWING & DETAILS**

Drawing No. **C-04**






KEYPLAN N.T.S

THE LOCATION OF ALL UNDER- / ABOVE-GROUND UTILITIES AND SERVICES IS APPROXIMATE ONLY AND WHERE SHOWN ON THE DRAWING(S) THE ACCURACY OF THE UTILITIES AND SERVICES IS NOT GUARANTEED. THE OWNER AND / OR HIS REPRESENTATIVE SHALL DETERMINE THE LOCATION OF ALL UTILITIES AND SERVICES BEFORE COMMENCING ANY CONSTRUCTION ACTIVITIES.

DO NOT SCALE DRAWINGS

CONTRACTOR MUST CHECK & VERIFY ALL DIMENSIONS ON SITE.

THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION.



# PROPOSED SCHOOL DORMITORY BUILDING

Project Number 2021

Drawn AL Scale 1:300

Checked ZD Date 2023-10-06

## SAN & STM PROFILE & STANDARD DETAILS

Drawing No. C-05