

Hydrogeological Study Report

Osaca Hillstreet Subdivision

County Road 65, Osaca, Ontario

D.M. Wills Project Number 22-11056

D.M. Wills Associates Limited Partners in Engineering, Planning and Environmental Services Peterborough

December 2022

Prepared for: Hillstreet Developments Ltd. c/o Larry MacDonell

Submissions Summary

Submission No.	Submission Title	Date of Release	Submissions Summary
1	Draft Hydrogeological Study Report	December 6, 2022	Draft Submission for Client Review
2	Final Hydrogeological Study Report	December 7, 2022	Final Submission to Client

This report has been formatted considering the requirements of the Accessibility for Ontarians with Disabilities Act.

Table of Contents

1.0	Introduction	1
2.0	Scope of Work	1
3.0	Subsurface Investigation	2
3.1	Soil Profile Summary	2
3.2	Bedrock	3
3.3	Groundwater	3
3	.3.1 Groundwater Flow Direction and Hydraulic Gradients	5
4.0	In-Situ Infiltration Testing	5
4.1	Permeability and Percolation Time	5
5.0	Groundwater Availability	7
5.1	MECP Water Well Record Survey	7
5.2	Historic Groundwater Supply Evaluation	8
6.0	Groundwater Impact Assessment	9
6.1	Predictive Assessment1	0
7.0	Conclusions and Recommendations1	1

Tables

Table 1 – Summary of Particle Size Distribution	3
Table 2 – Groundwater Level Summary	4
Table 3 – Permeability and Percolation Time Summary	6
Table 4 – Predictive Assessment of Nitrate Concentration1	0

Figures

Figure 1	I – Subject Property Plan
----------	---------------------------

- Figure 2 Subsurface Investigation Plan
- Figure 3 Subsurface Infiltration Plan

Appendices

- Appendix A Test Pit Logs
- Appendix B Certificates of Analysis Physical Soil Testing
- Appendix C Infiltration Graphs
- Appendix D MECP Well Record Survey
- Appendix E Preliminary Draft Plan
- Appendix F Certificates of Analysis Nitrates
- Appendix G Water Balance
- Appendix H Mass Balance Equation

1.0 Introduction

D.M. Wills Associates Limited (Wills) was retained by Hillstreet Developments Ltd. c/o Larry MacDonell (Client) to complete a Hydrogeological Study (Study) for the property located at Pt Lot 27 Concession 5, in the village of Osaca, Ontario (Subject Property). Wills understands the Subject Property is approximately 24.6 hectares (ha) and is proposed to be developed as a residential subdivision with 59 individual lots (Proposed Development). The location of the Subject Property is shown on **Figure 1**.

The Study was requested by the Municipality of Port Hope (Pre-Consultation – Planning Review dated May 25, 2022) to confirm sewage servicing capabilities in context of the Proposed Development, and to confirm that adequate water supply is available. Furthermore, infiltration rates of the subsurface soils and shallow groundwater conditions were evaluated as input to the design of proposed stormwater management features and sewage disposal systems on the Subject Property.

Wills' Hydrogeological Study Report includes a preliminary assessment of water supply for the purpose of the initial Draft Plan submission and relies on surrounding water well records and historic hydrogeological investigations for the neighboring property. Prior to the second Draft Plan submission, water supply wells will be installed and tested on the Subject Property to confirm Wills' findings.

2.0 Scope of Work

Wills' approved Scope of Work to complete the Study included the following:

- A review of available Ministry of Environment, Conservation, and Parks (MECP) well records within 500 meters (m) of the Subject Property to provide a preliminary characterization of the local hydrogeological conditions.
- Prior to initiating field investigations, public and private utility services locates were obtained and reviewed by Wills staff. A Site-Specific Health and Safety Plan and Field Work plan were prepared to ensure a safe and efficient fieldwork program.
- Steenburgh Sand and Gravel (Steenburgh) excavated 12 test pits on the Subject Property to a depth of 3.0 metres below ground (mbg) between September 23 and September 26, 2022.
- Eight single ring infiltrometers were installed on the Subject Property to determine representative infiltration rates for stormwater management and sewage disposal system design between September 26 and September 27, 2022.
- Retained soils samples were reviewed by Wills prior to submitting select samples to PRI Engineering (PRI), a Canadian Certified Independent Laboratory (CCIL) for analysis of Particle Size Distribution and percolation time estimation.
- Three groundwater samples were collected from on-site monitor wells on October 5, 2022 and analyzed by SGS to determine background nitrate concentrations.

- High-level assessment of groundwater availability was conducted on the basis of nearby MECP Well Records, encountered geological and hydrogeological conditions, and findings included in the report titled Groundwater Supply Assessment Report – Hope Concession 5, Part Lot 27 County Road No. 65, prepared by Ted Rannie M.Sc., P. Geo (September 2018) for the adjacent property to the south.
- Assessment of the Subject Property's capacity to support private on-site sewage disposal systems (Groundwater Impact Assessment) was conducted based on the Preliminary Draft Plan configuration and MECP Guideline D-5-4 Individual On-site Sewage Systems: Water Quality Impact Risk Assessment (Guideline D-5-4).
- Evaluation of Wills' desktop review and field investigations findings, and preparation of this Hydrogeological Study Report.

It should be noted that Wills' approved Scope of Work includes the construction and testing of three water supply wells on the Subject Property. The results of the pumping tests will be included as addendum to Wills' Study in 2023.

3.0 Subsurface Investigation

Test pit and infiltration test locations completed between September 23 and September 27 are shown on **Figure 2**.

Representative soil samples were submitted to PRI for analysis of Particle Size Distribution and percolation time estimation. Laboratory testing results were compared to the Ministry of Municipal Affairs and Housing, Building and Development Branch (MMAH) Supplementary Standard SB-6 – Percolation Time and Soil Descriptions Table 2 & Table 3 values (Ontario Building Code [OBC], 2012) (OBC Table 2 & OBC Table 3). Percolation times are discussed in **Section 4.0**.

Test pit logs detailing the encountered subsurface conditions are included in **Appendix A**. Boreholes advanced for the purpose of installing infiltrometers were completed using an excavator-mounted auger, and were positioned adjacent to existing test pits where possible as a means of confirming the underlying soils. These boreholes were not logged or sampled.

3.1 Soil Profile Summary

The Subject Property is located in the Physiographic Region of the Iroquois Plain (The Physiography of Southern Ontario, Chapman and Putnam, 1984), which is characterized by lacustrine deposits including sand plains and beaches associated the former Lake Iroquois. Ontario Geological Survey (OGS) mapping suggests that surficial geology on the Subject Property consists of alluvial deposits.

The results of the test pit program indicate the overburden is generally aligned with published mapping, and includes a surficial layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A generally north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property

at TP22-10, TP22-08, and TP22-11. This material was encountered at a depth ranging from approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.

Seven laboratory particle size distribution analyses were completed on the collected soil samples. The analytical results are summarized in **Table 1** on the basis of the Unified Soil Classification System (USCS). Certificates of Analysis for the physical soil analysis are included in **Appendix B**.

Test Pit ID	Sample No.	Sample Depth (mbg)	Soil Unit	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
TP22-01	GS-01	1.4	Sand	3	93	3	1
TP22-02	GS-02	2.9	Sand	3	94	3	0
TP22-03	GS-03	1.0	Sand	0	97	3	0
TP22-05	GS-01	1.7	Sand	2	78	18	2
TP22-08	GS-02	2.0	Silt & Clay	0	4	56	40
TP22-10	GS-02	1.9	Silt & Clay	0	3	62	35
TP22-11	GS-02	2.7	Silt & Clay	0	4	71	25

Table 1 – Summary of Particle Size Distribution

3.2 Bedrock

Bedrock was not encountered at any of the test pit locations, and a review of nearby MECP well records suggests that bedrock is in excess of 34 mbg in the vicinity of the Subject Property. OGS classifies the underlying bedrock geology to be from the Ottawa and Simcoe group, and may include dolostone, shale, arkose, and sandstone. Nearby MECP well records suggest the underlying bedrock consists of limestone material.

3.3 Groundwater

Groundwater level monitoring was conducted at the five drive point monitor well locations, as well as three on-site monitor wells installed by Cambium Inc. and detailed in their November 2022 report titled Geotechnical Investigation – Proposed Residential Development, 5868 County Road 65, Port Hope, ON (Geotechnical Report). Figure 2 shows the locations of the monitor wells included in Wills' Study. Table 2 summarizes the static water levels measured on the Subject Property by Wills. Groundwater elevations for select monitor wells were inferred using the relative elevations provided in the Geotechnical Report, and are referenced to a local (assumed) benchmark.

Monitor Well ID	Stick-Up (mag)	Date	Static Water Level (mbg)	Groundwater Elevation (masl)	
N 11 10 0 0 1	0.72	September 27, 2022	2.71	-	
MW22-01	0.73	October 5, 2022	Damaged	-	
N NN(22, 02	0.56	September 27, 2022	Dry	-	
MW22-02		October 5, 2022	Dry	-	
N 11 10 0 5	0.50	September 27, 2022	2.53	-	
MW 22-05	0.50	October 5, 2022	2.58	-	
MW22-08	0.48	September 27, 2022	2.59	-	
		October 5, 2022	2.63	-	
	0.73	September 27, 2022	2.30	-	
1010022-11		October 5, 2022	2.34	-	
BH101-22	0.88	September 27, 2022	-		
MW22-01)	0.00	October 5, 2022	2.66	197.24	
BH107-22	1.06	September 27, 2022	-	-	
(proximal to MW22-11)		October 5, 2022	2.54	197.86	
BH110-22	0.00	September 27, 2022	-	-	
MW22-05)	0.92	October 5, 2022	2.58	196.12	

Table 2 – Groundwater Level Summary

*mbg – metres below ground masl – metres above sea level, measured against an assumed datum (local benchmark)

3.3.1 Groundwater Flow Direction and Hydraulic Gradients

Shallow groundwater flow direction was calculated using Wills' field measurements and monitor well elevations provided in the Geotechnical Report. Based on this information, Wills infers the shallow groundwater flows direction to be to the southeast on the Subject Property. The steepest hydraulic gradient was calculated to be 0.0043 between BH107-22 and BH110-22, and shallower hydraulic gradients between BH101-22 to BH110-22 and from BH107-22 to BH101-22 were calculated to be 0.00195 and 0.00156 respectively. The inferred groundwater flow direction is shown on **Figure 2**.

4.0 In-Situ Infiltration Testing

In-situ Infiltration tests were conducted at select locations on the Subject Property to determine representative shallow infiltration rates for stormwater management and sewage disposal system design. Infiltration testing locations are shown on **Figure 2**.

The tests were conducted at depths ranging from 0.6 to 2.1 mbg and were completed using 51-millimetre open-end single ring infiltrometers. Water levels within the infiltrometer casings were manually monitored using a Solinst water level tape. The infiltration tests were conducted for a maximum of 96 minutes, with water levels measured at 30-second intervals for the first 5-minutes and increasing intervals as the test progressed. Detailed calculations and supporting infiltration graphs are provided in **Appendix C**.

4.1 Permeability and Percolation Time

Table 3 summarizes the permeability and percolation times of the tested soils on the basis of the in-situ testing, and laboratory results compared to OBC Table 2 & Table 3.

ID	Sample ID	In-situ Testing	Physical Soil Testing Results	Percolation Range (OBC Table 2 and 3)	Laboratory Estimated Percolation (T)	Permeability (Inferred Soil Envelope)
TP22-01 Proxy for INF-01	GS-01	T= 0.42 min/cm or 1429 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 6 min/cm	Medium
TP22-02 Proxy for INF-02	GS-02	T= 0.49 min/cm or 1224 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 7 min/cm	Medium
TP22-03 Proxy for INF-03	GS-01	T=0.35 min/cm or 1714 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	T = 6 min/cm	Medium
TP22-05 Proxy for INF-05	GS-01	T=0.22 min/cm or 2727 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	T = 12 min/cm	Medium to Low
INF-06	N/A	T=0.78 min/cm or 769 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low
INF-07	N/A	T=0.33 min/cm or 1818 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium
INF-08A	N/A	T=1.11 min/cm or 540 mm/hr	SP envelope	T = 2 – 8 min/cm or 75 – 300 mm/hr	N/A	Medium
TP22-08 Proxy for INF-08B	GS-02	T= 0 min/cm or 0 mm/hr	OH envelope	T = > 50 min/cm or >50 mm/hr	T = > 50 min/cm	Unacceptable
INF-11	N/A	T= 0.81 min/cm or 740 mm/hr	SM envelope	T = 8 – 20 min/cm or 30 – 75 mm/hr	N/A	Medium to Low

Notes: 1. SM envelope –silty sands, sand-silt mixtures SP envelope – poorly graded sands, gravelly sand, little or no fines OH envelope – Organic clays of medium to high plasticity, organic silts

Wills provides the following considerations as they related for the proposed stormwater management and sewage disposal system designs:

- The encountered soils are anticipated to generally fall within the SP and SM soils envelopes. Sewage disposal system and stormwater management feature design should take into account the silt and clay rich soils identified at TP22-08, TP22-10, and TP22-11 that were encountered between 1.3 to 3.0 mbg. Based on INF-08B, these soils do not have an acceptable permeability on the basis of the OBC.
- A Subsurface Infiltration Plan showing the inferred contact between these two distinct shallow soil units is included as **Figure 3**. Subsurface stratigraphy was inferred from the findings of Wills' test pit program and considers soil properties above a depth of 3.0 mbg.
- Wills recommends using the mid point of the T-time ranges provided in the OBC for stormwater management and sewage disposal system design on the Subject Property, as shown on **Figure 3**. Although these T-time values (mid range) are slower than that measured in the in-situ tests, Wills considers these conservative for the purpose of design, and should account for any lateral or vertical variation in infiltration rates.

5.0 Groundwater Availability

Wills' preliminary water supply assessment included a review of nearby MECP Well Records and historic hydraulic testing on the neighboring property to the south. Three water supply wells are proposed to be installed and tested on the Subject Property in 2023, to confirm that adequate groundwater supply and quality its available to the Proposed Development.

5.1 MECP Water Well Record Survey

Wills completed a database review and desktop evaluation of MECP Well Records to assist in characterizing the local hydrogeological conditions within 500 m of the Subject Property. The MECP Well Location Plan showing the relative locations of the MECP wells and their respective identifiers is included as **APP- D1** in **Appendix D**. Details for each MECP Well are summarized as **APP-D2** in **Appendix D**.

Nine well records were identified within the 500 m search radius and are summarized below.

- Seven wells were designated as domestic use and two of the wells had an unknown use.
 - One of the unknown uses had incomplete details on the well record, and the other was in relation to a clean-out of sand and gravel from the well bore.
- Five wells were installed in overburden material and four wells were installed in bedrock.

- Well depths ranged from approximately 7.6 to 46 mbg for the wells installed in overburden (25.5 mbg average), and from 34.1 to 44.8 mbg for those installed in bedrock (40.9 mbg average).
- Static water levels ranged from approximately 5.5 to 9.1 mbg for the wells that were installed in overburden (6.9 mbg average), and from 8.5 to 29 mbg for those installed in bedrock (18.3 mbg average).
- The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).

Based on Wills review, a viable aquifer is present on lands adjacent to the Subject Property. Several wells directly north of the Subject Property and directly west of the 500 m buffer (within the community of Osaca), are dug wells that are screened within a shallow sand layer. These wells are less useful for inferring available water supply as they are non-compliant with Ontario Regulation 903 with respect to the depth of construction.

The most useful information can be inferred from wells to the south and southeast of the Subject Property, which all intercept a productive aquifer directly above, or within the bedrock stratum. Overburden wells in this area are generally screened within a coarse sand and gravel layer, and have recommended pumping rates between approximately 15 and 30 L/min. Adjacent bedrock wells are noted as supplying fresh groundwater with recommended pumps rates that range from approximately 19 to 38 L/min. Based on the short-term pumping test results provided on the Well Records, all of these Wells satisfy the minimum yield requirement of 13.7 L/min (four bedroom dwelling) provided in the MECP Guideline D-5-5 Private Wells: Water Supply Assessment (Guideline D-5-5).

Based on the proximity of these wells to the Subject Property, it is likely that the hydrogeological/aquifer conditions extend north below the Subject Property, provided that the underlying bedrock structure and overburden deposits are similar in nature.

5.2 Historic Groundwater Supply Evaluation

Three of the water wells included in Wills' MECP records search were subject to longterm pumping tests and detailed in the report titled *Groundwater Supply* Assessment *Report – Hope Concession 5, Part Lot 27 County Road No. 65,* prepared by Ted Rannie M.Sc., P. Geo in September 2018 (2018 Report). This report was prepared to support the development of a 20 lot subdivision on lands directly south of the Subject Property. The wells included in this assessment were MECP Well ID 7314568 (overburden), 7314570 (bedrock), and 7314569 (overburden).

The 2018 Report concluded the following:

• The wells screened in overburden (coarse gravel layers) were confirmed to have high K (hydraulic conductivity) values (2x10⁻² m/s to 8x10⁻¹ m/s), quickly stabilizing drawdowns, and impressive recovery characteristics (94 - 95% recovery in 75 min and 60 min).

- The well screened in bedrock had a K value 3 orders of magnitude less than the overburden wells (2x10⁻⁵ m/s), however, also showed impressive recovery (88% recovery in 60 min).
- Groundwater testing results indicated relatively good overall chemical quality, which would require commercial water treatment for several aesthetic parameters.
- Off-site impacts to neighboring water users or surface water resources were not expected in view of the large available drawdown in the tested wells.
- Adequate groundwater supply was inferred for the 20 lot development on the basis of the long duration pumping test results at the three well locations.
- The permeable overburden gravel layers were determined to have the best potential for groundwater source on the property considered.

The results of the 2018 Report speak favorably to the prospect of adequate water supply and quality on the Subject Property. On-site testing will be required to confirm Wills' preliminary findings; however, our desktop review has concluded that coarser grained water-bearing layers are present surrounding the Subject Property, and both overburden and bedrock aquifers may provide viable options and/or alternatives for supplying the Proposed Development.

6.0 Groundwater Impact Assessment

A Groundwater Impact Assessment was conducted on the basis of the Guideline D-5-4 to determine the feasibility and potential for impacts to down-gradient water resources arising from the proposed sewage disposal systems. The Groundwater Impact Assessment considered the following:

- Based on the Preliminary Draft Plan prepared by D.G. Biddle & Associates Limited (**Appendix E**) the Proposed Development will include 59 residential lots.
 - Wills understands that each lot is proposed to be serviced with a private on-site sewage disposal system.
- At the time of preparing this report, actual dwelling sizes and anticipated sewage flows were not available, however, 1,000 L/day is considered to be an acceptable sewage effluent loading rate.
- Nitrate was used to assess the impact of sewage effluent on the groundwater environment. *Guideline D-5-4* requires that the effluent plume at the boundary of the Subject Property cannot exceed the ODWQS limit of 10 mg/L for nitrate to prevent off-site groundwater impacts.
- Wills' inputs to the mass balance equation used a standard nitrate loading of 40 mg/lot/day (Guideline D-5-4) for a conventional sewage disposal system.
- A background nitrate concentration of 0.53 mg/L was used for the Groundwater Impact Assessment and was based on the average of two groundwater samples collected from monitor wells BH107-22 and BH110-22.

- In determining a representative background nitrate concentration for the Subject Property, Wills' disregarded the nitrate concentration measured in shallow groundwater from MW22-08. This measured value was significantly higher (4.35 mg/L), and is expected to have been locally impacted by topsoil that was inadvertently backfilled into the test pit containing the drive-point well. It should be noted that the majority of the Subject Property has been used for agricultural purposes, and elevated levels of nitrate should be expected in the shallow soils/topsoil. Certificates of Analysis for the nitrate samples are included in Appendix F.
- Available post-development dilution/recharge water for the Subject Property was estimated through a water balance analysis. A summary of the water balance calculations, including the Groundwater Impact Assessment, is included in **Appendix G**. The water balance analysis considered the following elements:
 - Historical Climate Normals Oshawa WPCP (Climate ID 6155878).
 - The total monthly water surplus available for dilution was calculated accounting for evapotranspiration using the Thornthwaite method.
 - Infiltration factors for topography, soils, and cover were applied based on the MOEE document, Hydrogeological Technical Information Requirements For Land Development Applications, April 1995.
- The mass balance equation used in Wills' Groundwater Impact Assessment is included in **Appendix H**.

6.1 Predictive Assessment

The results from the Predictive Assessment are outlined below:

Parameter	Value
Number of Lots	59
Volume of Effluent (Qe)	59 lots x 1,000 L/day = 59,000 L/day
Effluent nitrate concentration	40 mg/L
Available dilution water	169,648 L/day
Dilution water nitrate concentration	0.053 mg/L
Total Volume	228,648 L/day
Total nitrate concentration at property boundary	10.7 mg/L

In view of the results presented in **Table 4**, Wills concludes that the current configuration of the Proposed Development would result in unacceptable levels of nitrate at the property boundary, unless advanced treatment is considered.

Wills provides the following mitigation options to ensure that acceptable nitrate concentrations are achieved at the boundary of the Subject Property:

- The sewage effluent should be treated to contain no more than **37 mg/L** nitrate when leaving the system if the Client wishes to maintain 59 residential lots.
- If the proposed number of lots is reduced to 53, conventional sewage disposal systems (nitrate loading of 40 mg/L) without advanced treatment would result in acceptable nitrate concentrations to the satisfaction of *Guideline D-5-4*.

7.0 Conclusions and Recommendations

The following conclusions and recommendations are provided with respect to Wills' Study.

- Shallow subsurface soils were generally consistent across the Subject Property and included a thin layer of silty sand topsoil underlain by sand with slight variations in gravel, silt, and clay content. A north-south trending band of silt and clay rich soils was observed on the western side of the Subject Property at TP22-10, TP22-08, and TP22-11 at a depth of approximately 1.3 to 1.7 mbg and extended to the test pit termination depths of approximately 3.0 mbg.
- Five drivepoint monitor wells were installed in the base of select test pits to monitor groundwater levels above a depth of 3 mbg. Static water levels were also monitored in 3 monitor wells installed by Cambium Inc. to support their geotechnical investigation.
- Static groundwater levels were generally consistent across the Subject Property and ranged from 2.34 mbg to 2.71 mbg on September, and from 2.34 mbg to 2.66 mbg on October 5, 2022.
 - $_{\odot}$ Monitor well MW22-05 was observed to be dry on both events.
- Groundwater seepage was encountered in all test pits at an approximate depth of 2.9 mbg to 3 mbg, with the exception of TP22-06, TP22-07, and TP22-10, which were found to be dry prior to backfilling.
- Three groundwater samples were submitted for total nitrogen analysis to support the Groundwater Impact Assessment.
- Seven laboratory particle size distribution analyses and laboratory percolation time estimates were completed on representative samples of the shallow subsurface soils.
- Eight in-situ infiltration tests were conducted between September 26 and September 27, 2022. T-Times were calculated to range from 0 min/cm to 0.81 min/cm, with an average of 0.46 min/cm across all eight tests.

- A review of the physical soil characteristics and comparison against OBC Table 2 and Table 3 suggests a percolation time (T-Time) that is generally between 2 to 12 min/cm for the shallow sand to silty sand soils, and > 50 min/cm for the clayey silt to silt material. Laboratory percolation estimates suggest the T-time ranges from 6 min/cm to 12 min/cm for the sand to silty sand material, and > 50 min/cm for the clayey silt to silt material.
- In view of the in-situ infiltration testing and physical soil testing results, Wills recommends using the middle of the T-time range for the individual soil units/soil envelopes (OBC Table 2 and Table 3) to be conservative. The individual shallow soil types and respective envelopes are shown **Figure 3**.
- Any proposed LID and sewage disposal system design should consider the shallow groundwater depths encountered on the Subject Property, which may impact the respective designs in the areas investigated by Wills.
- Infiltration rates and percolation times may vary across the Subject Property, as topography, moisture content, soil gradation and relative compactness will affect in-situ infiltration rates.
- A Groundwater Impact Assessment was conducted by Wills to determine the suitability of the Subject Property to accommodate private on-site sewage disposal systems.
- The Groundwater Impact Assessment considered 59 residential lots, and anticipated flows to the sewage disposal systems of 1,000 L/day with a nitrate loading of 40 mg/lot/day on the basis of *D-5-4*.
- The Groundwater Impact Assessment concludes that a groundwater nitrate concentration of 10.7 mg/L will be achieved at the property boundary, which exceeds the ODWS and does not satisfy the requirements of *D-5-4*. The following mitigation options are provided:
 - If the number of lots is maintained at 59, Each proposed sewage disposal system would require advanced treatment to ensure that effluent leaving the system does not contain more than 37 mg/L nitrogen.
 - Alternatively, If the number of lots is reduced to 53, conventional sewage disposal systems (nitrate loading of 40 mg/L) without advanced treatment would result in acceptable nitrate concentrations at the property boundaries.
- The following is provided with respect to Wills' interpretation of the MECP Well Records and historic groundwater investigations on neighboring properties:
 - Viable water supply aquifers have been identified within both coarse grained sand and gravel layers, as well as within the underlying bedrock stratum.
 - The recommended pumping rates ranged from approximately 7.6 to 30.2 litres per minute (L/min) for the nearby overburden wells (19.9 L/min average), and from 3.8 to 37.8 L/min for the bedrock wells (20.2 L/min average).

- Shallow aquifers were generally more high-producing north of the Subject Property, and deeper wells installed in overburden and bedrock south of the Subject Property were generally more high-performing.
- Detailed hydraulic assessment (2018 Ted Rannie Report) completed for the property directly south of the Subject Property, concluded that the underlying aquifer could support a 20 lot residential development without causing off-site impacts to neighbouring water users or surface resources.
- Based on Wills' desktop review of surrounding well performances and understanding of the local geological conditions, it is likely that these aquifer conditions may extend beneath the Subject Property and be available to the Proposed Development.
- The installation and testing of water supply wells on the Subject Property is scheduled for 2023, to ensure that adequate water supply and quality is available to the Proposed Development. The results of this testing will be included as an addendum to this Hydrogeological Study Report.

We trust that the information contained in and attached to this report meets your needs at this time. The following Statement of Limitations should be read carefully and is an integral part of this report. Do not hesitate to contact the undersigned if you have any questions or concerns.

Respectfully submitted,

Lynsey Tuters, B.A., C. Tech Environmental Project Technologist

Reviewed by:

Prepared by:

Ian Ames, M.Sc., P.Geo. Environmental Monitoring and Management Lead

LT/IA/mp

Statement of Limitations

This report is intended solely for Hillstreet Developments Ltd. c/o Larry MacDonell (Client) for the Proposed Development located on Pt Lot 27Concession 5, in the village of Osaca, Ontario, and is prohibited for use by others without D.M. Wills Associates Limited's (Wills) prior written consent. This report is considered Wills' professional work product and shall remain the sole property of Wills. Any unauthorized reuse, redistribution of or reliance on this report shall be at the Client and recipient's sole risk, without liability to Wills. The Client shall defend, indemnify and hold Wills harmless from any liability arising from or related to the Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include supporting drawings and appendices.

The recommendations made in this report are based on Wills' present understanding of the Project, the current and proposed site use, ground and subsurface conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with the level of care and skill ordinarily exercised by members of geoscience or engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the sole responsibility of such third parties.

The recommendations and comments made in this report are based on Wills' investigations and resulting understanding of the Project, as defined at the time of the assignment. Wills should be retained to review our recommendations when the final or any modified design drawings and specifications are complete. Without this review, Wills shall not be liable for any misunderstanding of our recommendations or their application and adaptation.

Soil, bedrock, and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations. Should any conditions at the Subject Property be encountered which differ from those found at the test locations, Wills must be notified immediately in order to permit a reassessment of our recommendations. If different conditions are identified, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by Wills is completed.

FIGURES

Appendix A

Test Pit Logs

Depth (mbg)	Soil Description			
0.0 – 0.2	Brown silty sand topsoil, moist.			
0.2 – 3.0 Brown to grey sand, trace gravel, trace silt, moist to satura				
	Grab Sample Summary			
GS-01 collected at approximately 1.4 mbg.	<u>GS-01 GSA:</u> 3% Gravel 93% Sand 3% Silt 1% clay			
	Groundwater			
Groundwater enco	ountered at 3.0 mbg.			
	Additional Notes			
 Test pit backfilled c stratigraphic loggir MW22-01 installed i 	 Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-01 installed in test pit prior to backfilling. 			
Test Pit Photos				
TP22-01 September 26, 2022 17T 705479 mE 4875999 mN				

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.		
0.2 – 3.0 Brown sand, trace gravel, trace silt, moist.			
	Grab Sample Summary		
GS-02 collected at approximately 2.9 mbg.	<u>GS-02 GSA:</u> 3% Gravel 94% Sand 3% Silt 0% Clay		
	Groundwater		
No groundwater er	ncountered.		
	Additional Notes		
 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-02 installed in test pit prior to backfillina. 			
	Test Pit Photos		
TP22-02 September 23, 2022 17T 705628 mE 4875766 mN			

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, moist.		
0.2 - 3.0	Brown to grey sand, trace gravel, moist to saturated.		
Grab Sample Summary			
GS-01 collected at approximately 1.0 mbg.	<u>GS-01 GSA:</u> 0% Gravel 97% Sand 3% Silt 0% Clay		
Groundwater			
Groundwater enco	ountered at 3.0 mbg.		
	Additional Notes		
 Test pit ferminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 			
TP22-03 September 23, 2022 17T 705389 mE 4875605 mN			

Test Pit Log – TP22-04

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, moist.		
0.2 - 0.5	Brown sand, some silt, moist.		
0.5 - 5.0	Groundwater		
- Croundwater enco	auntored at 2.0 mba		
	boniered di S.o mbg.		
	Additional Notes		
 Test pit terminated Test pit backfilled c stratigraphic loggin 	 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 		
	Test Pit Photos		
TP22-04 September 23, 2022 17T 705528 mE 4875523 mN			

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.	
0.2 - 2.4	Brown sand, some silt, trace gravel, trace clay, moist,	
2.4 - 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist	
	to saturated.	
	Grab sample summary	
GS-01	<u>GS-01 GSA:</u>	
collected at	2% Gravel	
approximately	78% Sand	
1.7 mbg.	18% Silt	
	2% Clay	
	Groundwater	
Groundwater enco	ountered at 2.9 mbg.	
	Additional Notes	
 Test pit backfilled c stratigraphic loggin MW22-05 installed i 	nd compacted using excavator following completion of ig and sampling. n test pit prior to backfilling.	
	Test Pit Photos	
TP22-05 September 23, 2022 17T 705743 mE 4875493 mN		

Depth (mbg)	Soil Description		
0.0 – 0.2	Brown silty sand topsoil, some rootlets, moist.		
0.2 - 3.0	Brown to grey sand, some silt, trace gravel, trace clay, moist.		
	Groundwater		
No groundwater er	ncountered.		
	Additional Notes		
 Test pit terminated Test pit backfilled c stratigraphic loggir 	 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 		
	Test Pit Photos		
TP22-06 September 23, 2022 17T 705682 mE 4875632 mN	TP22-06 September 23, 2022 17T 705682 mE 4875632 mN		

Depth (mbg)	Soil Description	
0.0 - 0.2	Brown silty sand topsoil, moist.	
0.2 - 3.0	Brown to grey sand, some silt, moist to wet.	
	Groundwater	
Groundwater not e	encountered.	
	Additional Notes	
 Test pit terminated at 3.0 mbg. Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 		
	Test Pit Photos	
TP22-07 September 23, 2022 17T 705514 mE 4875641 mN		

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, moist.	
0.2 - 1.3	Brown to grey sand, some silt, trace clay, moist.	
1.3 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit to	
	much wetter than plastic limit.	
	Grab Sample Summary	
<u> </u>	<u>GS-02 GSA:</u>	
collected at	0% Gravel	
approximately	4% Sand	
2.0 mbg.	56% Silt	
	40% Clay	
	Groundwater	
Groundwater enco	ountered at 3.0 mbg.	
	Additional Notes	
 Test pit backfilled c stratigraphic loggir MW22-08 installed i 	and compacted using excavator following completion of ng and sampling. n test pit prior to backfilling.	
	Test Pit Photos	
TP22-08 September 23, 2022 17T 705426 mE 4875745 mN		

Test Pit Log – TP22-09

Depth (mbg)	Soil Description	
0.0 – 0.2	Brown silty sand topsoil, rootlets, moist.	
0.2 - 2.4	Brown sand, trace silt, trace gravel, moist.	
2.4 - 3.0	Brown to grey silty sand, some clay, moist to saturated.	
	Groundwater	
Groundwater enco	ountered at 3.0 mbg.	
	Additional Notes	
• Test pit terminated	at 3.0 mbg	
 Test pit backfilled c stratigraphic loggir 	and compacted using excavator following completion of ng and sampling.	
	Test Pit Photos	
TP22-09 September 23, 2022 17T 705509 mE 4875797 mN		

Test Pit Log – TP22-10

Depth (mbg)	Soil Description		
0.0 - 0.2	Brown silty sand topsoil, moist.		
0.2 - 1.7	Brown silty sand, trace clay, moist		
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.		
	Grab Sample Summary		
GS-02 collected at approximately 1.9 mbg.	<u>GS-02 GSA:</u> 0% Gravel 3% Sand 62% Silt 35% Clay		
	Groundwater		
Groundwater not e	Groundwater not encountered.		
	Additional Notes		
 Test pit terminated at 3.0 mbg Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 			
	Test Pit Photos		
TP22-10 September 23, 2022 17T 705372 mE 4875876 mN			

Depth (mbg)	Soil Description		
0.0 - 0.2	Brown silty sand topsoil, moist.		
0.2 - 1.7	Brown silty sand, trace clay, moist.		
1.7 – 3.0	Brown to grey silt and clay, trace sand, about plastic limit.		
	Grab Sample Summary		
GS-03 collected at	<u>GS-03 GSA:</u> 0% Gravel 4% Sand		
$27 \mathrm{mbg}$	71% Silt		
2.7 mbg.	25% Clay		
	2076 Cidy		
	Groundwater		
Groundwater encc	Groundwater encountered at 3.0 mbg.		
	Additional Notes		
 Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. MW22-11 installed in test pit prior to backfilling. 			
 MW22-11 Installed in test pit prior to backfilling. TP22-11 September 23, 2022 17T 705435 mE 4875489 mN Image: Constraint of the set pit prior to backfilling. 			

Depth (mbg)	Soil Description		
0.0 – 0.1	Brown silty sand topsoil, moist.		
0.1 - 0.8	Brown sand, some silt, moist.		
0.8 - 2.6	Brown to grey sand, trace silt, trace gravel, moist to wet.		
2.6 - 2.8	Grey sana, some gravel, trace silt, saturatea.		
	Groundwater		
Groundwater encc	ountered at 2.6 mbg.		
	Additional Notes		
• Test pit terminated	at 2.8 mbg.		
 Test pit backfilled c stratigraphic loggin 	 Test pit backfilled and compacted using excavator following completion of stratigraphic logging and sampling. 		
Test Pit Photos			
TP22-12 September 23, 2022 17T 705636 mE 4875461 mN			

Appendix B

Certificates of Analysis – Physical Soil Testing

PRI ENGINEERING

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

Borehole/Test Pit ID.: TP22-01

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056)

Project No.: 22-154 Sample No./Depth: GS1 Sample Date: 26-Sep-22

LAB ID: 22HYD-224

Silt or Clay	Sand	Gravel
--------------	------	--------

_____ = ____ = ____ sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	97.2
9.5	97.2
4.750	97.1
2.000	97.0
0.850	94.5
0.425	59.2
0.250	28.4
0.075	4.3

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.051	2.2
0.036	1.7
0.023	1.7
0.013	1.1
0.009	1.1
0.007	1.1
0.003	1.1
0.001	1.1
♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 \bowtie info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-02 Sample No./Depth: GS2 LAB ID: 22HYD-225 -HYDROMETER -▶ | ◄ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 80 CUMULATIVE PERCENT PASSING 70 60 1 1 1 50 1 1 1 40 1 1 30 1 20 10 þ 0 0.001 0.01 10 100 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

_____ ___ ___ ___ ___ __ __ sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	98.8
4.750	97.1
2.000	97.0
0.850	95.9
0.425	86.0
0.250	49.9
0.075	3.2

Estimated T = 7 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.036	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 \bowtie info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-03 Sample No./Depth: GS1 LAB ID: 22HYD-226 -HYDROMETER -▶ | ◄ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 80 CUMULATIVE PERCENT PASSING 70 60 1 1 1 50 1 1 1 40 1 1 30 1 20 10 þ 0 0.001 0.01 10 100 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

_____ ___ ___ ___ ___ __ __ sp envelope T = 2 - 8 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.5
0.850	97.1
0.425	76.9
0.250	26.1
0.075	2.5

Estimated T = 6 min/cm

Hydrometer (mm)	% Passing
0.052	0.0
0.037	0.0
0.023	0.0
0.013	0.0
0.009	0.0
0.007	0.0
0.003	0.0
0.001	0.0

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

 \bowtie info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Project No.: 22-154 Sample Date: 23-Sep-22 Borehole/Test Pit ID.: TP22-05 Sample No./Depth: GS1 22HYD-227 LAB ID: -HYDROMETER -▶ | ◄ STANDARD SIEVE SIZES -270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1.5" 2" 3" 100 90 1 1 1 80 1 CUMULATIVE PERCENT PASSING 1 70 60 50 / 40 30 1 1 20 10 / 0 0.01 10 100 0.001 0.1 1 **GRAIN SIZE IN MILLIMETRES** Silt or Clay Sand Gravel

Estimated T = 12 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	99.0
9.5	99.0
4.750	98.3
2.000	98.3
0.850	97.7
0.425	96.1
0.250	89.7
0.075	30.8

Hydrometer (mm)	% Passing
0.048	15.7
0.035	10.1
0.023	5.6
0.013	4.5
0.009	3.9
0.007	3.4
0.003	2.2
0.001	2.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

Borehole/Test Pit ID.: TP22-08

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056) Pro

Project No.: 22-154

Sample No./Depth: GS2

Sample Date: 23-Sep-22 LAB ID: 22HYD-228

-HYDROMETER -STANDARD SIEVE SIZES -▶ ◄ 270 200 100 60 40 20 10 4 1/4" 3/8" 1/2" 3/4" 1" 1½" 2" 3" 100 90 80 CUMULATIVE PERCENT PASSING 70 1 60 1 50 40 30 1 20 10 0 0.01 10 100 0.001 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.6
2.000	99.6
0.850	99.4
0.425	98.9
0.250	98.1
0.075	95.2

- OH envelope T > 50 min/cm

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.037	89.7
0.026	87.0
0.017	82.6
0.010	77.2
0.007	70.0
0.005	64.6
0.003	48.5
0.001	28.7

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9
 ☎ (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

PARTICLE SIZE DISTRIBUTION LS - 702

 Project Name:
 Osaca (11056)
 Project No.: 22-154

Borehole/Test Pit ID.: TP22-10

Sample No./Depth: GS2

Sample Date: 23-Sep-22 LAB ID: 22HYD-229

Silt or Clay	Sand	Gravel
--------------	------	--------

	OH envelope T > 50 min/cm
--	---------------------------

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	100.0
2.000	99.9
0.850	99.9
0.425	99.5
0.250	98.9
0.075	96.8

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.033	87.2
0.024	84.4
0.015	80.1
0.009	72.9
0.007	65.8
0.005	57.2
0.003	41.5
0.001	27.2

♀ 205 St.George Street, Unit 2, Lindsay, ON, K9V 5Z9 **a** (705) 702-3921

⊠ info@priengineering.com

www.priengineering.com

Borehole/Test Pit ID.: TP22-11

PARTICLE SIZE DISTRIBUTION LS - 702

Project Name: Osaca (11056)

Project No.: 22-154

Sample Date: 23-Sep-22 LAB ID: 22HYD-230

-HYDROMETER --▶ ◄ STANDARD SIEVE SIZES -270 200 100 60 40 10 4 1/4" 3/8" 1/2" 3/4" 1" 1½" 2" 3" 20 100 90 80 CUMULATIVE PERCENT PASSING 70 1 60 1 50 40 30 1 20 10 0 0.01 10 100 0.001 0.1 1 **GRAIN SIZE IN MILLIMETRES**

Silt or Clay Sand Gravel

 OH envelope T > 50 min/cm

Sieve Size (mm)	% Passing
37.5	100.0
26.5	100.0
19.0	100.0
13.2	100.0
9.5	100.0
4.750	99.9
2.000	99.9
0.850	99.8
0.425	99.3
0.250	98.5
0.075	95.6

Estimated T > 50 min/cm

Hydrometer (mm)	% Passing
0.034	87.8
0.025	81.7
0.017	74.1
0.010	60.5
0.008	51.4
0.006	45.4
0.003	30.3
0.001	19.7

Sample No./Depth: GS3

Appendix C

Infiltration Graphs

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-01 PROJECT NO.: Date: Start Time: Test No.

: 11056 : 26-Sep-22 : 12:30 PM . 1

Depth of	Test Pit (m):	1.4	Pipe Stickup (I	m):	0.34	Total Pipe Length(m):	1.56	
						••••		
					Water Column			Cumulative
Time*	(Seconds)	Measurem Interval (s	ent Depth** (m ec))	Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Infiltration Rate (m/sec)
	0	-	0.600		0.960	-		
	30	30	0.640		0.92	0.040	1.333E-03	1.333E-03
	60	30	0.660		0.90	0.020	6.667E-04	1.000E-03
	120	30	0.720		0.84	0.025	8.333E-04	1.000E-03
	150	30	0.745		0.82	0.025	8.333E-04	9.667E-04
	180	30	0.765		0.80	0.020	6.667E-04	9.167E-04
	210	30	0.785		0.78	0.020	6.667E-04	8.810E-04
	240	30	0.805		0.76	0.020	6.667E-04	8.542E-04 8.333E-04
	300	30	0.840		0.72	0.015	5.000E-04	8.000E-04
	360	60	0.875		0.69	0.035	5.833E-04	7.639E-04
	420	60	0.910		0.65	0.035	5.833E-04	7.381E-04
	480	60	0.940		0.62	0.030	5.000E-04	7.083E-04
	600	60	0.965		0.60	0.025	4.167E-04	6 583E-04
	720	120	1.045		0.52	0.050	4.167E-04	6.181E-04
	840	120	1.090		0.47	0.045	3.750E-04	5.833E-04
	960	120	1.140		0.42	0.050	4.167E-04	5.625E-04
1	1,080	120	1.180		0.38	0.040	3.333E-04	5.370E-04
1	1,200	300	1.215		0.26	0.085	2.833E-04	4.667F-04
1	1,800	300	1.365		0.20	0.065	2.167E-04	4.250E-04
2	2,100	300	1.425		0.14	0.060	2.000E-04	3.929E-04
** Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec) (mm/sec) (mm/sec) Maximum Infiltration Rate Between Sampling Intervals - 1.33E-03 1.33E+00 4800 Minimum Infiltration Rate Between Sampling Intervals - 2.00E-04 2.00E-01 720 Median Infiltration Rate Between Sampling Intervals - 5.00E-04 5.00E-01 1800 Average Infiltration Rate Between Sampling Intervals - 5.70E-04 5.70E-01 2053 Cumulative Infiltration Rate for Entire Data Set - 3.93E-04 3.93E-01 1414 In-situ Infiltration Rate Measured in the Field (mm/sec): 0.39 In-situ Infiltration Rate Measured in the Field (mm/hour): 1414 Calculated Percolation Time (T) based on field infiltration (min/cm): 0.42							(mm/hour) 4800 720 1800 2053 1414	
1.200			INF-01 Wat	ter Colu	umn Height vs	Time		
1.000								
(III) 0.800	· · · · · · · · · · · · · · · · · · ·							
Column Hei			and the second second					
0.400					and the second sec			
					- Construction	_		
0.200					y = -0.0004x + 0	8579		
0.200					y = 0.0004x + 0.	and the second		
							The second s	
0.000							Contract of the second s	
	0	500	10	000	Time (sec)	1500	2000	2500

	Test 1 - Observed
Test Duration (seconds)	2,100
Total Drop Distance (mm)	825
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.39
Infiltration Rate (mm/hour) - Test Average	1414
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.42

Height vs Time Linear (Height vs Time)

APPENDIX C

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-02

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 10:40 AM 1

Depth of Test Pit (m):	1	Pipe Stickup (m):	1.245	Total Pipe Length(m):	2.41	
			Water Column			Cumulative
Time* (Seconds)	Measurement	Depth** (m)	Height (m)	Distance dropped	Infilitration Rate	Infiltration Rate
	Interval (sec)			per interval (m1)	per Interval (m/sec)	(m/sec)
0	-	1.025	1.380	-		
30	30	1.095	1.31	0.070	2.333E-03	2.333E-03
60	30	1.140	1.27	0.045	1.500E-03	1.917E-03
90	30	1.195	1.21	0.055	1.833E-03	1.889E-03
120	30	1.235	1.17	0.040	1.333E-03	1.750E-03
150	30	1.280	1.13	0.045	1.500E-03	1.700E-03
180	30	1.320	1.09	0.040	1.333E-03	1.639E-03
210	30	1.360	1.05	0.040	1.333E-03	1.595E-03
240	30	1.380	1.03	0.020	6.667E-04	1.479E-03
270	30	1.415	0.99	0.035	1.167E-03	1.444E-03
300	30	1.445	0.96	0.030	1.000E-03	1.400E-03
360	60	1.490	0.92	0.045	7.500E-04	1.292E-03
420	60	1.530	0.88	0.040	6.667E-04	1.202E-03
480	60	1.565	0.84	0.035	5.833E-04	1.125E-03
540	60	1.595	0.81	0.030	5.000E-04	1.056E-03
600	60	1.625	0.78	0.030	5.000E-04	1.000E-03
720	120	1.675	0.73	0.050	4.167E-04	9.028E-04
840	120	1.720	0.69	0.045	3.750E-04	8.274E-04
960	120	1.765	0.64	0.045	3.750E-04	7.708E-04
1,080	120	1.800	0.61	0.035	2.917E-04	7.176E-04
1,200	120	1.835	0.57	0.035	2.917E-04	6.750E-04
1,500	300	1.915	0.49	0.080	2.667E-04	5.933E-04
1,800	300	1.975	0.43	0.060	2.000E-04	5.278E-04
2,100	300	2.035	0.37	0.060	2.000E-04	4.810E-04
2,400	300	2.085	0.32	0.050	1.667E-04	4.417E-04
3,000	600	2.170	0.24	0.085	1.417E-04	3.817E-04
3,600	600	2.240	0.17	0.070	1.167E-04	3.375E-04
** Depth at time 0 indicate Not	es measurement belov : used for statistical an	v top of measuring pipe at th alysis	ne start of the test.			
				(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate B	etween Sampling Intervals -		2.33E-03	2.33E+00	8400
Minim	um Infiltration Rate B	etween Sampling Intervals -		1.17E-04	1.17E-01	420
Med	lian Infiltration Rate B	etween Sampling Intervals -		5.42E-04	5.42E-01	1950
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		7.63E-04	7.63E-01	2747
	Cumulative Infiltration	on Rate for Entire Data Set -		3.38E-04	3.38E-01	1215
		In-situ Infiltratio	n Rate Measured i	n the Field (mm/sec):	0.34	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1215	
	c	alculated Percolation Time	(T) based on field i	infiltration (min/cm):	0.49	
		INE-02 Water Co	olumn Height v	s Time		
1.600			Bitt v			

i.

	Test 1 - Observed
Test Duration (seconds)	3,600
Total Drop Distance (mm)	1215
Total Number of Measured Intervals	27
Infiltration Rate (mm/sec) - Test Average	0.34
Infiltration Rate (mm/hour) - Test Average	1215
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.49

Project: Site Location: Test ID:

ation: 5868

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-03 APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

NO.: 11056 ate: 27-Sep-22 ime: 1:44 PM No. 1

Depth of Test Pit (m):	0.9	Pipe Stickup (m):	1.17	Total Pipe Length(m):	2.27		
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)	
0	-	0.910	1.360	-			
30	30	1.000	1.27	0.090	3.000E-03	3.000E-03	
60	30	1.050	1.22	0.050	1.667E-03	2.333E-03	
90	30	1.100	1.17	0.050	1.667E-03	2.111E-03	
120	30	1.125	1.15	0.025	8.333E-04	1.792E-03	
150	30	1.160	1.11	0.035	1.167E-03	1.667E-03	
180	30	1.190	1.08	0.030	1.000E-03	1.556E-03	
210	30	1.215	1.06	0.025	8.333E-04	1.452E-03	
240	30	1.235	1.04	0.020	6.667E-04	1.354E-03	
270	30	1.260	1.01	0.025	8.333E-04	1.296E-03	
300	30	1.285	0.99	0.025	8.333E-04	1.250E-03	
360	60	1.330	0.94	0.045	7.500E-04	1.167E-03	
420	60	1.370	0.90	0.040	6.667E-04	1.095E-03	
480	60	1.415	0.86	0.045	7.500E-04	1.052E-03	
540	60	1.445	0.83	0.030	5.000E-04	9.907E-04	
600	60	1.480	0.79	0.035	5.833E-04	9.500E-04	
720	120	1.545	0.73	0.065	5.417E-04	8.819E-04	
840	120	1.600	0.67	0.055	4.583E-04	8.214E-04	
960	120	1.650	0.62	0.050	4.167E-04	7.708E-04	
1,080	120	1.700	0.57	0.050	4.167E-04	7.315E-04	
1,200	120	1.750	0.52	0.050	4.167E-04	7.000E-04	
1,500	300	1.840	0.43	0.090	3.000E-04	6.200E-04	
1,800	300	1.920	0.35	0.080	2.667E-04	5.611E-04	
2,100	300	1.985	0.29	0.065	2.167E-04	5.119E-04	
2,400	300	2.045	0.23	0.060	2.000E-04	4.729E-04	
** Depth at time 0 indicate Not	** Depth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis						
				(m/sec)	(mm/sec)	(mm/hour)	
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		3.00E-03	3.00E+00	10800	
Minim	um Infiltration Rate Be	etween Sampling Intervals -		2.00E-04	2.00E-01	720	
Med	lian Infiltration Rate Be	etween Sampling Intervals -		6.67E-04	6.67E-01	2400	
Averag	ge Infiltration Rate Be	tween Sampling Intervals -		7.91E-04	7.91E-01	2848	
	Cumulative Infiltration	on Rate for Entire Data Set -		4.73E-04	4.73E-01	1703	
		In-situ Infiltratio	n Rate Measured ir	n the Field (mm/sec):	0.47		
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1703		
	c	Calculated Percolation Time	(T) based on field i	nfiltration (min/cm):	0.35		

	Test 1 - Observed
Test Duration (seconds)	2,400
Total Drop Distance (mm)	1135
Total Number of Measured Intervals	25
Infiltration Rate (mm/sec) - Test Average	0.47
Infiltration Rate (mm/hour) - Test Average	1703
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.35

Project: Site Location: Test ID: Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-05 PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 8:02 AM 1

				-	-	
Depth of Test Pit (m):	1.14	Pipe Stickup (m):	1.37	Total Pipe Length(m):	2.38	
			Water Column			Cumulative
Time* (Seconds)	Measurement	Depth** (m)	Height (m)	Distance dropped	Infilitration Rate per	Infiltration Rate
	Interval (sec)		neight (iii)	per interval (m1)	Interval (m/sec)	(m/sec)
0	-	0.900	1.480	-		
30	30	0.950	1.43	0.050	1.667E-03	1.667E-03
60	30	1.090	1.29	0.140	4.66/E-03	3.16/E-03
90	30	1.145	1.24	0.055	1.833E-03	2./22E-03
120	30	1.130	1.15	0.045	1.500E-03	2.417E-03
180	30	1.260	1.12	0.035	1.167E-03	2.000E-03
210	30	1.300	1.08	0.040	1.333E-03	1.905E-03
240	30	1.330	1.05	0.030	1.000E-03	1.792E-03
270	30	1.365	1.02	0.035	1.167E-03	1.722E-03
300	30	1.395	0.99	0.030	1.000E-03	1.650E-03
360	60	1.460	0.92	0.065	1.083E-03	1.556E-03
420	60	1.515	0.87	0.055	9.167E-04	1.464E-03
480	60	1.565	0.82	0.050	8.333E-04	1.385E-03
540	60	1.615	0.77	0.050	8.333E-04	1.324E-03
600	60	1.660	0.72	0.045	7.500E-04	1.267E-03
720	120	1.755	0.63	0.095	7.917E-04	1.188E-03
840	120	1.830	0.55	0.075	6.250E-04	1.107E-03
960	120	1.900	0.48	0.070	5.833E-04	1.042E-03
1,080	120	1.965	0.42	0.065	5.41/E-04	9.861E-04
1,200	120	2.025	0.36	0.060	5.000E-04	9.3/5E-04
1,500	120	2.155	0.23	0.150	4.555E-04	7 99/E-04
1,020	120	2.135	0.15	0.040	3.333E-04	7.534E-04
** Depth at time 0 indicate Not	es measurement below used for statistical an	v top of measuring pipe a alysis	at the start of the tes	t. ((()	(
				(m/sec)	(mm/sec)	(mm/nour)
Maxim	um Infiltration Rate B	etween Sampling Interval	ls -	4.67E-03	4.67E+00	16800
Minim	um Infiltration Rate B	etween Sampling Interval	ls -	3.33E-04	3.33E-01	1200
Med	lian Infiltration Rate B	etween Sampling Interval	ls -	9.17E-04	9.17E-01	3300
Averag	ge Infiltration Rate Be	tween Sampling Interval	ls -	1.09E-03	1.09E+00	3922
	Cumulative Infiltration	on Rate for Entire Data Se	et -	7.67E-04	7.67E-01	2762
		In-situ Infiltra	ition Rate Measured	in the Field (mm/sec): h the Field (mm/hour):	0.77	
		in situ initiati			2702	
	(Calculated Percolation Ti	me (T) based on field	l infiltration (min/cm):	0.22	
		INF-05 Water	Column Height	vs Time		
1.600						
1.400						

	Test 1 - Observed
Test Duration (seconds)	1,740
Total Drop Distance (mm)	1335
Total Number of Measured Intervals	24
Infiltration Rate (mm/sec) - Test Average	0.77
Infiltration Rate (mm/hour) - Test Average	2762
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.22

APPENDIX C

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-06

PROJECT NO.: Date: Start Time:

11056 27-Sep-22 9:04 AM

epth of Test Pit (m):	1.1	Pipe Stickup (m):	1.165	Total Pipe Length(m):	2.27	
Time* (Seconds)	Measurement	Depth** (m)	Water Column Height (m)	Distance dropped	Infilitration Rate per	Cumulative Infiltration Rate
	Interval (sec)		Height (III)	per interval (m1)	Interval (m/sec)	(m/sec)
0	-	0.840	1.430	-		
30	30	0.855	1.42	0.015	5.000E-04	5.000E-04
60	30	0.875	1.40	0.020	0.00/E-04	5.833E-04
120	30	0.900	1.37	0.023	3.333E-04	5.833E-04
120	30	0.910	1.30	0.010	5.000E-04	5.667E-04
180	30	0.935	1.33	0.010	3 333E-04	5 278E-04
210	30	0.950	1.32	0.015	5.000E-04	5.238E-04
240	30	0.965	1.31	0.015	5.000E-04	5.208E-04
270	30	0.980	1.29	0.015	5.000E-04	5.185E-04
300	30	0.990	1.28	0.010	3.333E-04	5.000E-04
360	60	1.015	1.26	0.025	4.167E-04	4.861E-04
420	60	1.040	1.23	0.025	4.167E-04	4.762E-04
480	60	1.060	1.21	0.020	3.333E-04	4.583E-04
540	60	1.085	1.19	0.025	4.167E-04	4.537E-04
600	60	1.105	1.17	0.020	3.333E-04	4.417E-04
720	120	1.150	1.12	0.045	3.750E-04	4.306E-04
840	120	1.190	1.08	0.040	3.333E-04	4.167E-04
960	120	1.225	1.05	0.035	2.917E-04	4.010E-04
1,080	120	1.260	1.01	0.035	2.917E-04	3.889E-04
1,200	120	1.295	0.98	0.035	2.917E-04	3.792E-04
1,500	300	1.370	0.90	0.075	2.500E-04	3.533E-04
1,800	300	1.445	0.83	0.075	2.500E-04	3.361E-04
2,100	300	1.510	0.70	0.065	2.1076-04	3.1902-04
2,400	600	1.570	0.59	0.000	1.9225-04	3.042E-04
3,600	600	1.000	0.55	0.095	1.5535-04	2.800E-04
4.500	900	1.900	0.37	0.125	1.389E-04	2.356E-04
5,400	900	2.000	0.27	0.100	1.111E-04	2.148E-04
repth at time 0 indicates measurement below top of measuring pipe at the start of the test. Not used for statistical analysis (m/sec)					(mm/sec) 8.33E-01	(mm/hour) 3000
Minim	um Infiltration Pate Be	tween Sampling Intervals		1 115-04	1 115-01	400
Med	lian Infiltration Rate Be	etween Sampling Intervals		3.33E-04	3.33E-01	1200
Avera	ge Infiltration Rate Be	tween Sampling Intervals		3.57E-04	3.57F-01	1287
,	Cumulative Infiltratio	on Rate for Entire Data Set -		2.15E-04	2.15E-01	773
Cumulative Infiltration Rate for Entire Data Set - 2.15E-04 2.15E-01 773						
		In-situ Infiltratior	Rate Measured in	the Field (mm/hour):	773	
	c	alculated Percolation Time	e (T) based on field	infiltration (min/cm):	0.78	

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	1160
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.21
Infiltration Rate (mm/hour) - Test Average	773
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.78

APPENDIX C

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-07

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 4:07 PM 1

				Total Pipe		
Depth of Test Pit (m):	0.97	Pipe Stickup (m):	1.41	Length(m):	2.38	
			Water Column	D	1- 6 11:	Cumulative
Time* (Seconds)	Measurement	Depth** (m)	Height (m)	Distance dropped	Infilitration Rate	Infiltration Rate
0	intervar (sec)	0 700	1.680	per interval (M1)	per interval (m/sec)	(m/sec)
30	- 30	0.700	1.060	- 0 130	 4 333F-03	 4 333E-03
60	30	0.925	1.46	0.095	3.167E-03	3.750E-03
90	30	1.010	1.37	0.085	2.833E-03	3.444E-03
120	30	1.065	1.32	0.055	1.833E-03	3.042E-03
150	30	1.110	1.27	0.045	1.500E-03	2.733E-03
180	30	1.145	1.24	0.035	1.167E-03	2.472E-03
210	30	1.195	1.19	0.050	1.667E-03	2.357E-03
240	30	1.230	1.15	0.035	1.167E-03	2.208E-03
270	30	1.260	1.12	0.030	1.000E-03	2.074E-03
300	3U 60	1.290	1.09	0.030	1.000E-03	1.90/E-U3
420	60	1.400	0.98	0.070	6.667F-04	1.667F-03
480	60	1.445	0.94	0.045	7.500E-04	1.552E-03
540	60	1.490	0.89	0.045	7.500E-04	1.463E-03
600	60	1.530	0.85	0.040	6.667E-04	1.383E-03
720	120	1.600	0.78	0.070	5.833E-04	1.250E-03
840	120	1.670	0.71	0.070	5.833E-04	1.155E-03
960	120	1.735	0.65	0.065	5.417E-04	1.078E-03
1,080	120	1.775	0.61	0.040	3.333E-04	9.954E-04
1,200	120	1.820	0.56	0.045	3.750E-04	9.333E-04
1,500	300	1.920	0.46	0.100	3.333E-04	8.133E-04
2 100	300	2.000	0.38	0.080	2.007E-04 2.333E-04	6 524E-04
2,400	300	2,130	0.25	0,060	2.000F-04	5.958F-04
3,000	600	2.220	0.16	0.090	1.500E-04	5.067E-04
** Depth at time 0 indicate Not	es measurement below used for statistical ana	top of measuring pipe at t Ilysis	he start of the test.	(m/sec)	(mm/sec)	(mm/hour)
Maxim	um Infiltration Rate Be	tween Sampling Intervals -		4.33E-03	4.33E+00	15600
Minim	um Infiltration Rate Be	tween Sampling Intervals -		1.50E-04	1.50E-01	540
Med	lian Infiltration Rate Be	tween Sampling Intervals -		7.50E-04	7.50E-01	2700
Averag	e Infiltration Rate Bet	ween Sampling Intervals -		1.09E-03	1.09E+00	3926
Averag	Completing to film ::	n Data fas Estire Dete 2		E 075 04	E 075 01	1024
	cumulative Infiltratio	n Kate for Entire Data Set -		5.0/E-04	5.0/E-01	1824
		In-situ Infiltratio	on Rate Measured in	n the Field (mm/sec):	0.51	
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	1824	
	C	Iculated Percolation Time	: (T) based on field i	nfiltration (min/cm):	0.33	
				·····, (·····, dirij.		
		INF-07 Water C	olumn Height v	s Time		
1.800						
1.600						
1.000						
1.400						

	Test 1 - Observed
Test Duration (seconds)	3,000
Total Drop Distance (mm)	1520
Total Number of Measured Intervals	26
Infiltration Rate (mm/sec) - Test Average	0.51
Infiltration Rate (mm/hour) - Test Average	1824
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.33

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-08-A

11056 27-Sep-22 12:08 PM 1

PROJECT NO.: Date: Start Time: Test No.

Depth of Test Pit (m):	0.55	0.55 Pipe Stickup (m):		0.945 Total Pipe Length(m):				
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)		
0	-	0.070	1.490	-				
30	30	0.190	1.37	0.120	4.000E-03	4.000E-03		
60	30	0.220	1.34	0.030	1.000E-03	2.500E-03		
90	30	0.245	1.32	0.025	8.333E-04	1.944E-03		
120	30	0.265	1.30	0.020	6.667E-04	1.625E-03		
150	30	0.285	1.28	0.020	6.667E-04	1.433E-03		
180	30	0.300	1.26	0.015	5.000E-04	1.278E-03		
210	30	0.320	1.24	0.020	6.667E-04	1.190E-03		
240	30	0.330	1.23	0.010	3.333E-04	1.083E-03		
270	30	0.340	1.22	0.010	3.333E-04	1.000E-03		
300	30	0.350	1.21	0.010	3.333E-04	9.333E-04		
360	60	0.365	1.20	0.015	2.500E-04	8.194E-04		
420	60	0.380	1.18	0.015	2.500E-04	7.381E-04		
480	60	0.390	1.17	0.010	1.667E-04	6.667E-04		
540	60	0.405	1.16	0.015	2.500E-04	6.204E-04		
600	60	0.415	1.15	0.010	1.667E-04	5.750E-04		
720	120	0.440	1.12	0.025	2.083E-04	5.139E-04		
840	120	0.460	1.10	0.020	1.667E-04	4.643E-04		
960	120	0.475	1.09	0.015	1.250E-04	4.219E-04		
1,080	120	0.495	1.07	0.020	1.667E-04	3.935E-04		
1,200	120	0.510	1.05	0.015	1.250E-04	3.667E-04		
1,500	300	0.550	1.01	0.040	1.333E-04	3.200E-04		
1,800	300	0.585	0.98	0.035	1.167E-04	2.861E-04		
2,100	300	0.625	0.94	0.040	1.333E-04	2.643E-04		
2,400	300	0.655	0.91	0.030	1.000E-04	2.438E-04		
3,000	600	0.705	0.86	0.050	8.333E-05	2.117E-04		
3,600	600	0.755	0.81	0.050	8.333E-05	1.903E-04		
4,500	900	0.825	0.74	0.070	7.778E-05	1.678E-04		
5,400	900	0.880	0.68	0.055	6.111E-05	1.500E-04		
** Depth at time 0 indicate Not	es measurement below : used for statistical an	r top of measuring pipe at th alysis	ne start of the test.					
				(m/sec)	(mm/sec)	(mm/hour)		
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		4.00E-03	4.00E+00	14400		
Minim	um Infiltration Rate Be	etween Sampling Intervals -		6.11E-05	6.11E-02	220		
Med	lian Infiltration Rate Be	etween Sampling Intervals -		1.88E-04	1.88E-01	675		
Avera	ge Infiltration Rate Be	tween Sampling Intervals -		4.28E-04	4.28E-01	1543		
	Cumulative Infiltratio	on Rate for Entire Data Set -		1.50E-04	1.50E-01	540		
		In-situ Infiltratio	n Rate Measured i	n the Field (mm/sec):	0.15			
	In-situ Infiltration Rate Measured in the Field (mm/hour): 540							
	Calculated Percolation Time (T) based on field infiltration (min/cm): 1.11							

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	810
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.15
Infiltration Rate (mm/hour) - Test Average	540
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	1.11

APPENDIX C

_	Site Location: Test ID:	Osaca Hillstree 5868 County rc INF-08-B	t subdivision ad 65, Osaca, ON			PROJECT NO.: Date: Start Time: Test No.	11056 27-Sep-22 11:48 AM 1
epth of	Test Pit (m):	2.08	Pipe Stickup (m):	0.925	Total Pipe Length(m):	3.08	
Time*	(Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)
	0	-	1.650	1.430	-		
	50 60	30	1.650	1.45	0.000	0.000E+00	0.000E+00
	90	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	120	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	150	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	180	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	210	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	240	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	300	30	1.650	1.43	0.000	0.000E+00	0.000E+00
	360	60	1.650	1.43	0.000	0.000E+00	0.000E+00
	420	60	1.650	1.43	0.000	0.000E+00	0.000E+00
	480	60	1.650	1.43	0.000	0.000E+00	0.000E+00
	540	60	1.650	1.43	0.000	0.000E+00	0.000E+00
	600	60	1.650	1.43	0.000	0.000E+00	0.000E+00
	720	120	1.650	1.43	0.000	0.000E+00	0.000E+00
	960	120	1.650	1.45	0.000	0.000E+00	0.000E+00
1	.,080	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1	,200	120	1.650	1.43	0.000	0.000E+00	0.000E+00
1	,500	300	1.650	1.43	0.000	0.000E+00	0.000E+00
1	,800	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2	,100	300	1.650	1.43	0.000	0.000E+00	0.000E+00
2	2,400	300	1.650	1.43	0.000	0.000E+00	0.000E+00
3	600	600	1.650	1.43	0.000	0.000E+00	0.000E+00
4	.500	900	1.650	1.43	0.000	0.000E+00	0.000E+00
5	.400	900	1.650	1.43	0.000	0.000E+00	0.000E+00
	Maxim	um Infiltration Rate Be	tween Sampling Intervals		0.00E+00	0.00E+00	0
	Minim	um Infiltration Rate Be	tween Sampling Intervals		0.00E+00	0.00E+00	0
	Med	ian Infiltration Rate Be	tween Sampling Intervals		0.00E+00	0.00E+00	0
	Avera	ze Infiltration Rate Bet	ween Sampling Intervals		0.00E+00	0.00E+00	0
		Cumulative Infiltratio	n Rate for Entire Data Set .		0.005+00	0.00E+00	0
			In-situ Infiltratio	on Rate Measured in Nate Measured in	n the Field (mm/sec): the Field (mm/hour):	0.00	
				(-)	· · · · · · · · · · · · · · · · · · ·	//DN//01	
		C:	Ilculated Percolation Time	e (T) based on field Column Height	infiltration (min/cm): y=1.43 ys Time	#DIV/0!	
1.600		C:	Ilculated Percolation Time	e (T) based on field i	infiltration (min/cm): y= 1.43 vs Time	#DIV/0!	
1.600		C:	Iculated Percolation Time	e (T) based on field i	infiltration (min/cm): vs Time	#DIV/0!	-
1.600 1.400 1.200			INF-08-B Water	e (T) based on field i	infiltration (min/cm): vs Time	#DIV/0!	
1.600 1.400 1.200			INF-08-B Water	e (T) based on field i	vs Time	#DIV/01	-
1.600 1.400 1.200 1.000 0.800			INF-08-B Water	e (T) based on field i	vs Time	#DIV/0!	-
1.600 1.400 1.200 0.800 0.600			INF-08-B Water	e (T) based on field i	vs Time	#DIV/0!	-
1.600 1.400 1.200 1.200 0.800 0.800 0.400			INF-08-B Water	e (T) based on field i	vs Time	#DIV/0!	
1.600 1.400 1.200 1.200 0.800 0.600 0.400			INF-08-B Water	e (T) based on field i	vs Time	#DIV/0!	-

Height vs Time Linear (Height vs Time)

	Test 1 - Observed
Test Duration (seconds)	5,400
Total Drop Distance (mm)	0
Total Number of Measured Intervals	29
Infiltration Rate (mm/sec) - Test Average	0.00
Infiltration Rate (mm/hour) - Test Average	0
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	#DIV/0!

APPENDIX C

Project: Site Location: Test ID:

Osaca Hillstreet subdivision 5868 County road 65, Osaca, ON INF-11

APPENDIX C

PROJECT NO.: Date: Start Time: Test No.

11056 27-Sep-22 2:53 PM 1

Depth of Test Pit (m):	Depth of Test Pit (m): 1.13 Pipe Stickup (m):				2.30			
Time* (Seconds)	Measurement Interval (sec)	Depth** (m)	Water Column Height (m)	Distance dropped per interval (m1)	Infilitration Rate per Interval (m/sec)	Cumulative Infiltration Rate (m/sec)		
0	-	0.400	1.900	-				
30	30	0.475	1.83	0.075	2.500E-03	2.500E-03		
60	30	0.520	1.78	0.045	1.500E-03	2.000E-03		
90	30	0.565	1.74	0.045	1.500E-03	1.833E-03		
120	30	0.610	1.69	0.045	1.500E-03	1.750E-03		
150	30	0.635	1.67	0.025	8.333E-04	1.567E-03		
180	30	0.665	1.64	0.030	1.000E-03	1.472E-03		
210	30	0.685	1.62	0.020	6.667E-04	1.357E-03		
240	30	0.710	1.59	0.025	8.333E-04	1.292E-03		
270	30	0.720	1.58	0.010	3.333E-04	1.185E-03		
300	30	0.735	1.57	0.015	5.000E-04	1.117E-03		
360	60	0.760	1.54	0.025	4.167E-04	1.000E-03		
420	60	0.780	1.52	0.020	3.333E-04	9.048E-04		
460	60	0.795	1.51	0.015	2.500E-04	7 5025 04		
540	60	0.810	1.43	0.015	2.500E-04	7.093E-04		
720	120	0.825	1.48	0.015	2.000E-04	6.250E-04		
840	120	0.880	1.43	0.030	2.005E-04	5 714E-04		
960	120	0.910	1.42	0.030	2.500E-04	5.313E-04		
1.080	120	0.935	1.35	0.025	2.083E-04	4 954E-04		
1,000	120	0.960	1.37	0.025	2.083E-04	4.667E-04		
1,500	300	1.020	1.28	0.060	2.000E-04	4.133E-04		
1,800	300	1.080	1.22	0.060	2.000E-04	3.778E-04		
2.100	300	1.125	1.18	0.045	1.500E-04	3.452E-04		
2,400	300	1.180	1.12	0.055	1.833E-04	3.250E-04		
3,000	600	1.270	1.03	0.090	1.500E-04	2.900E-04		
3,600	600	1.355	0.95	0.085	1.417E-04	2.653E-04		
5,760	2,160	1.580	0.72	0.225	1.042E-04	2.049E-04		
** Depth at time 0 indicate Not	es measurement below used for statistical an	/ top of measuring pipe at th alysis	ne start of the test.					
				(m/sec)	(mm/sec)	(mm/hour)		
Maxim	um Infiltration Rate Be	etween Sampling Intervals -		2.50E-03	2.50E+00	9000		
Minim	um Infiltration Rate Be	etween Sampling Intervals -		1.04E-04	1.04E-01	375		
	l'an la filmation D : D			2.505.04	2.505.01			
Med	aian inflitration kate Be	etween sampling intervals -		2.50E-04	2.50E-01	900		
Averag	ge Infiltration Rate Be	tween Sampling Intervals -		5.53E-04	5.53E-01	1989		
	Cumulative Infiltration	on Rate for Entire Data Set -		2.05E-04	2.05E-01	738		
In-situ Infiltration Rate Measured in the Field (mm/sec): 0.20								
		In-situ Infiltration	Rate Measured in	the Field (mm/hour):	738			
Calculated Percolation Time (T) based on field infiltration (min/cm): 0.81								
2.000		INF-II water CC	numin neight vs	sinne				
2.000								

	Test 1 - Observed
Test Duration (seconds)	5,760
Total Drop Distance (mm)	1180
Total Number of Measured Intervals	28
Infiltration Rate (mm/sec) - Test Average	0.20
Infiltration Rate (mm/hour) - Test Average	738
Calculated Percolation Time (T) based on Field Infiltration (min/cm)	0.81

Appendix D

MECP Well Record Survey

APPENDIX D-2 - MECP WELL SUMMARY Well Record Summary - Bedrock Project No.: 11056

	LITAA	M.O.E.	Well	Wate	er Found	Statio	c Level	REC Pur	np Rate	Well	Depth	Depth	n to Bedrock	Commonte
LOT NO.	UIM	Well No.	Use	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres	Comments
Con. 05														
Lot 27	705556 4875265	7295687	Unknown	-	-	-	-	-	-	-	-	-	-	No information available
Lot 26	Unknown	4512995	Domestic	44	13.4	57	17.4	4.16	18.9	156	47.5	144	43.9	Fresh water observed from 44-156 ft. in limestone bedrock.
Lot 27	705637 4875147	7314570	Domestic	32	9.8	27.9	8.5	8.33	37.8	157	47.9	147	44.8	Fresh water observed at 32 ft. in limestone bedrock.
Con. 6														
Lot 27	Unknown	4505572	Domestic	130	39.6	95	29.0	0.83	3.8	135	41.1	112	34.1	Fresh water observed at 130 ft. in limestone bedrock.

Number of Wells = 4

	Water Found Feet Metres		Static Level Feet Metres		REC Pump Rate Igpm L/min		Well Depth Feet Metres		Depth to Bedroe Feet Metr	
AVERAGE	68.7	20.9	60.0	18.3	4.4	20.2	149.3	45.5	134.3	40.
MAXIMUM	130.0	39.6	95.0	29.0	8.3	37.8	157.0	47.9	147.0	44.
MINIMUM	32.0	9.8	27.9	8.5	0.8	3.8	135.0	41.1	112.0	34.

оск tres	
).9	
1.8	

APPENDIX D-2 - MECP WELL SUMMARY Well Record Summary - Overburden Project No.: 11056

Lot No.	UTM	M.O.E. Well No.	Well Use	Wate Feet	r Found Metres	Static Feet	: Level Metres	REC Pun Igpm	np Rate L/min	Well Feet	Depth Metres	Depti Feet	n to Bedrock Metres	Comments
Con. 5						•								
Lot 26	Unknown	4511834	Domestic	58	17.7	30	9.1	3.33	15.1	58	17.7	-	-	Fresh water observed at 58 ft. in brown sand
Lot 27	705815 4875162	7314569	Domestic	32	9.8	21.6	6.6	5.83	26.5	151	46.0	-	-	Fresh water observed at 32 ft. in coarse gravel
Lot 27	705746 4875275	7314568	Domestic	40	12.2	21	6.4	6.66	30.2	101	30.8	-	-	Fresh water observed at 40 ft. in coarse gravel
Lot 27	705527 4875703	1902083	Domestic	17	5.2	18	5.5	1.67	7.6	25	7.6	-	-	Fresh water observed at 17 ft. in clay material
Lot 27	-	4511022	-	-	-	-	-	10	45.4	13	4.0	-	-	No information - well record in relation to well cleanout of sand and aravel

Number of Wells = 5

	Wate	er Found	Static	: Level	0)	Well I	Depth	Depth	to Bedrock
	Feet	Metres	Feet	Metres	lgpm	L/min	Feet	Metres	Feet	Metres
AVERAGE	36.8	11.2	22.7	6.9	5.5	25.0	69.6	21.2	-	-
MAXIMUM	58.0	17.7	30.0	9.1	10.0	45.4	151.0	46.0	-	-
MINIMUM	17.0	5.2	18.0	5.5	1.7	7.6	13.0	4.0	-	-

Appendix E

Draft Plan

Y:\JOB FILES\122000\122049 5868 COUNTY RD 65\122049 DRAWINGS\122049 DRAWINGS CIVIL\122049 ENGINEERING DRAWINGS\122049-2D-LOT PLAN - 3.DW

Appendix F

Certificates of Analysis – Nitrates

CA12213-OCT22 R----

11056 - OSAC.A

Prepared for

D.M. Wills -Peterborough

First Page

CLIENT DETAILS	i	LABORATORY DETAIL	s
Client	D.M. Wills -Peterborough	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	150 Jameson Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Peterborough, ON		
	K9J 0B9. Canada		
Contact	Lynsey Tuters	Telephone	705-652-2143
Telephone	289-385-6230	Facsimile	705-652-6365
Facsimile	705-741-3568	Email	brad.moore@sgs.com
Email	ltuters@dmwills.com	SGS Reference	CA12213-OCT22
Project	11056 - OSAC.A	Received	10/05/2022
Order Number		Approved	10/18/2022
Samples	Ground Water (3)	Report Number	CA12213-OCT22 R
		Date Reported	10/18/2022

COMMENTS

Temperature of Sample upon Receipt: 20 degrees C

Cooling Agent Present: Yes

Custody Seal Present: Yes

Chain of Custody Number: 031488

SIGNATORIES

TABLE OF CONTENTS

First Page	. 1
Index	. 2
Results	3
Exceedance Summary	. 4
QC Summary	-6
Legend	7
Annexes	8

Client: D.M. Wills -Peterborough

Project: 11056 - OSAC.A

Project Manager: Lynsey Tuters

Samplers: L. Tuters

MA	TRIX: WATER			:	Sample Number	5	6	7
					Sample Name	11056 - MW22 -	11056 - MW05 -	11056 - MW11 -
						08	Geotech3	Geotech 2
L1 =	ODWS_MAC / WATER / Table 1,2 and 3 - Drinking Wa	ater - Reg O.169_03			Sample Matrix	Ground Water	Ground Water	Ground Water
					Sample Date	05/10/2022	05/10/2022	05/10/2022
F	Parameter	Units	RL	L1		Result	Result	Result
Me	tals and Inorganics							
1	Nitrite (as N)	as N mg/L	0.03	1		< 0.03	< 0.03	< 0.03
-	Nitrate (as N)	as N mg/L	0.06	10		4.35	0.39	0.68

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover (%	ry Limits 6)	Spike Recovery	Recover (%	y Limits 6)
						(70)	(%)	Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0214-OCT22	mg/L	0.03	<0.03	ND	20	93	90	110	95	75	125
Nitrate (as N)	DIO0214-OCT22	mg/L	0.06	<0.06	0	20	99	90	110	NV	75	125
Nitrate + Nitrite (as N)	DIO0229-OCT22	mg/L	0.06	<0.06	NA		NA			NA		
Nitrite (as N)	DIO0229-OCT22	mg/L	0.03	<0.03	0	20	94	90	110	84	75	125
Nitrate (as N)	DI00229-OCT22	mg/L	0.06	<0.06	0	20	100	90	110	96	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

teceived By: Sinclowi - Sa Heesh					01-4 ID-DID ID	10 1011110	-nun, 110	XPJ NONC	0-710-610	100							
teceived Time: 140:140 3/2022 (mm/dd/yy)	Ŀ	Received By Custody Seal Custody Seal	(signature): Present: Ye: Intact: Ye	No No	ratory Info	Temperatu	ection - lent Preser	- Lab us nt: Yes 5 eceipt (°C)	e only	Type	T T	ł				133	13-04
REPORT INFORMATION	N.	/OICE INFO	RMATION						and the second	A State			HAR HAR			San	
Company: D. H. Wills	Came as Re	port Informa	ition)		Quotation #			S Maria					o.0. #:	1056	~		
contact: L TURN Con	mpany:		10		Project #:	1656	20-	ACA	12		-		Site Location	/ID:			
udress: 150 tomeson DC. Con	ntact:									TURN	AROUNE	TIME (TA	T) REQUIRE	a			
relex boraush Ada	dress:	10.00	1		Ę	sgular TAT	(5-7days	(1				TA	l's are quoted	in business of	lays (exclude	e statutory	holidays & weekends).
hone: 289-385-6230			1080	T	RUSH TAT	(Addition	Il Charge	s May A	:(Kidc	Ò	Day [2 Days	3 Days	4 Days			(m m m m m m m m m m m m m m m m m m m
Phr.	one:		-		PLEASE C	ONFIRM R	USH FE/	SIBILITY	WITH S	GS REPI	RINKING	VTIVE PRIC	IR TO SUBI	NISSION	IMAN CON	CITOMIN	N MIST BE SUBMITTE
imail: INPOSOONUILSON Em	nail: ACCQ	ints od	moulls	(. Com	Specify Dut	Date:						MITH	SGS DRINKI	NG WATER O	CHAIN OF CI	USTODY	
C REGULA	TIONS								ANAL	YSIS.	REQU	ESTED				A STATE	
O.Reg 153/04 O.Reg 406/19	Other Regulat	ions:	Sewe	r By-Law:	M	<u>& I</u>	SVC	DC PC	H BH	0	OC P	est	Other (ple	ase specify)	SPLP	TCLP	
Table 1 Res/Park Soil Texture:	Reg 347/558	(3 Day min T/		Sanitary			1			14.00					Snacify	Snarifu	
Table 2 Ind/Com Coarse] MMER		Storm		'P¢		<u></u> ,							tests	tests	
	MISA	Jourer.	Mun	icipality:	(lios-	N۱ 8e,8.0		roclor						ka			
Soil Volume	DODWS Not F	eportable *Se	e note		сс	Ha, Ci	U	¥		and	1019		4	duc	Metals	DM&I	
RECORD OF SITE CONDITION (RSC)	VES	NO			Ma),ec	(Vino lio (Vino lio da Su	is,v.u,itt,					ly other		pitezi	pabna		COMMENTS:
		and the second	and and a		, b9 топ (н)а),н	s-SWF	.64.92,	eq3 ,	ТЕХ	Net all		spacil	1,		E Dozene		
SAMPLE IDENTIFICATION	DATE	TIME	# OF	MATRIX	n9tli 8 8 1 ^{4q pH} ,W	etals ^{H)B suig} Slbfe	ν.οΜ.α	aNBA ,a	18 +	۸	λιuo	No entre		:para			
		SAMPLED	BOILLES		Field F Stals Siervi, C	M IIN P metals M 4C	eHA	VOC Ind PAH	1-64	OCS BIEX	XET	AIN		ewer (] Isnene	Dignit.	
1 11656 - MIN22-08 00	\$5122	A	_	(n)y		91 31 4	9	B S	4		3	0		A S	อ		
1 10th Minner Contacha a	45177	AN	_	1.10					in the			2					
TOTAL COMPLETE	10100	AAA		2						1		5					
11006-MW11- GROLED Z	02250	MM	1	MO	100				7	A State		>			_		
					A VALUE A	12						100		_	_		
		0	1.00		201	15.		Selection of the select					1	_			
		See.	100					-				1 196					
					The state	100										1000	
			11.75	1.1	1							4-774 1930					
			4.9		No. No.							Parties and	0	с. "ъ			
0		e						100									
7			1									1		t			
2			1.0	4.00		dere .											
bservations/Comments/Special Instructions			-	1								i i i i i i i i i i i i i i i i i i i					
ampled By (NAME): U TOLONS	6	- Wile	Signature:	きよ	IN	-			1	100	Date:	4 10	5120	5 (mm	(vv)pp		ink Copy - Client
elinquished by (NAME): (TUPK		1	Signature:	120	Non	e			1		Date:Q	× 10'	1011	رم mm	(vv)pp	Ĺ	ellow & White Copy - So
Vision # 1.6 Note: Submission of samples to SCS is not						ľ	and a second										

Appendix G

Water Balance

		Monthl	y Water Bud	dget Calcula	ations			Sheet 1 of 4
	s			P Designed	Project No: roject Name: /Checked By: Date:	11056 Osaca LT/IA 21-Nov-22		
		CANADIAN C	LIMATE NORM	MALS FOR 'O	shawa WPCP'	(1971-2000)		
	Climate ID = Latitude = Longitude =	6155878 0 0						
	Thornthwaite	(1948) Inputs			Monthly	Water Budget	Analysis	
Month	Mean Temperature (°C) ¹	Total Precipitation (mm) ¹	Heat Index	PET (mm)	Daylight Correction Factor	Adjusted PET (mm)	Surplus (mm)	Deficit (mm)
January	-5.3	71.0	0.00	0.0	1.01	0.0	71.0	0.0
February	-4.4	52.7	0.00	0.0	1.01	0.0	52.7	0.0
March	0.1	62.3	0.00	0.3	1.01	0.3	62.0	0.0
April	6.3	73.1	1.42	28.6	1.01	28.8	44.5	0.0
May	12.3	74.7	3.91	60.9	1.01	61.5	13.8	0.0
June	17.2	80.6	6.49	84.7	1.01	85.6	0.0	5.0
July	20.3	67.3	8.34	104.7	1.01	105.8	0.0	38.5
August	19.6	83.3	7.91	100.8	1.01	101.8	0.0	18.5
September	15.5	87.9	5.55	75.7	1.01	76.4	12.2	0.0
October	9.2	66.3	2.52	44.5	1.01	44.9	21.8	0.0
November	4.0	79.9	0.71	17.5	1.01	17.7	62.4	0.0
December	-2.0	78.7	0.00	0.0	1.01	0.0	78.7	0.0
Totals		877.8	36.85			522.7	419.1	61.9
	Thornthwaite	Coefficient (a)	1.082			Total Water	Surplus (mm)	355.1

Notes:

1. Temperature and Precipitation are taken from Canadian Climate Normals 1981-2010

2. Water budget adjusted for latitude and length of daylight

3. Potential Evapotranspiration (PET) is calculated based on the Thornthwaite 1948 equation

4. Total Water Surplus (Thornthwaite, 1948) is calculated as total precipitation minus adjusted evapotranspiration

	Water Balan	ce Calculation	s for Existing	Conditio	าร			Sheet 2 of 4
WILLS				Desiç	Proje Project N Ined/Check	ct No: Name: ed By: Date:	11056 Osaca LT/IA 21-Nov-22	
Catchment Parameters	Ex.							Total
Drainage Area (m ²)	244000							244000
Pervious Area (m ²)	244000							244000
Impervious Area (m ²)	0							0
Evapotranspiration Factors								
Pervious PET Ratio	0.60							0.60
Impervious Evapotranspiration ³	0.20							0.00
Infiltration Factors		J J	I					
Topography Infiltration Factor	0.25							0.25
Soil Infiltration Factor	0.40							0.40
Land Cover Infiltration Factor	0.13							0.13
MOE Infiltration Factor	0.78							0.78
Actual Infiltration Factor	0.78							0.78
Run-Off Coefficient	0.22							0.22
Runoff from Impervious Surfaces	0.80							
Inputs (mm/yr)								
Precipitation	877.8							877.8
Run-On Other Innute	0.0							0.0
Total Inputs	0.0 877.8							877.8
Outputs (mm/vr)	011.0							077.0
Precipitation Surplus	355.1							355.1
Net Surplus	355.1							355.1
Evapotranspiration	522.7							522.7
Infiltration	275.6							275.6
Infiltration Features ⁴	0.0							0.0
Total Infiltration	275.6							275.6
Runoff Pervious Areas	79.5							79.5
Runoff Impervious Areas	0.0							0.0
Total Unadjusted Runoff	79.5							79.5
Total Adjusted Runoff [®]	79.5							79.5
Total Outputs	877.8							 877.8
Inputs (m [°] /yr)				1				
Precipitation	214,183							214,183
Run-On	0							0
Other Inputs	0							U 214 492
	214,103							214,105
Precipitation Surplus	86.633							 86 633
Net Surplus	86.633							86.633
Evapotranspiration	127,550							127,550
Infiltration	67,247							67,247
Infiltration Features ⁴	0							0
Total Infiltration	67,247							67,247
Runoff Pervious Areas	19,386							19,386
Runoff Impervious Areas	0							0
Total Unadjusted Runoff	19,386							19,386
Total Adjusted Runoff⁵	19,386							19,386

Notes:

Total Adjusted Runoff⁵ **Total Outputs**

1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments (June 2013)

214,183

2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculations

3. Evaporation from impervious areas was assumed to be 0% of Precipitation

214,183

4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to contribute with no infiltration occuring during months with a negative average temperature.

5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) - (Infiltration Features)

Wate	r Balanc	e Calcula	ations	for Prop	osed Co	ndition	IS				Sheet 3 of 4
WILLS					D	Plesigned	Projec roject N /Check	ct No: lame: ed By: Date:	11056 Osaca LT/IA 21-Nov-	-22	
Catchment Parameters	Pr.										Total
Drainage Area (m²)	244000										244000
Pervious Area (m ²)	224000										224000
Impervious Area (m ²)	20000										20000
Evapotranspiration Factors											
Pervious PET Ratio	0.60										0.60
Impervious Evapotranspiration ³	0.20										0.20
Infiltration Factors											
Topography Infiltration Factor	0.25										0.25
Soil Infiltration Factor	0.40										0.40
Land Cover Infiltration Factor	0.13										0.13
MOE Infiltration Factor	0.78										0.78
Actual Infiltration Factor	0.78										0.78
Run-Off Coefficient	0.22										0.22
Runoff from Impervious Surfaces	0.80										0.80
Inputs (mm/yr)	077.0										
Precipitation	877.8										877.8
Other Inputs	0.0										0.0
Total Inputs	877.8										877.8
Outputs (mm/yr)	011.0										
Precipitation Surplus	383.5										383.5
Net Surplus	383.5										383.5
Evapotranspiration	494.3										494.3
Infiltration	253.8										253.8
Infiltration Features ⁴	0.0										0.0
Total Infiltration	253.8										253.8
Runoff Pervious Areas	78.6										78.6
Runoff Impervious Areas	702.2										702.2
Total Unadjusted Runoff	129.7										129.7
Total Adjusted Runoff ^⁵	129.7										129.7
Total Outputs	877.8										877.8
Inputs (m³/yr)											
Precipitation	214,183										214,183
Run-On	0										0
Other Inputs	0										0
Total Inputs	214,183										214,183
Outputs (m³/yr)											
Precipitation Surplus	93,577										93,577
	93,577										93,577
Infiltration	61 922										61 922
Infiltration Features ⁴	0										0
Total Infiltration	61 922										61,922
Runoff Pervious Areas	17.611										17.611
Runoff Impervious Areas	14,045										14,045
Total Unadjusted Runoff	31,656										31,656
Total Adjusted Runoff⁵	31,656										31,656
Total Outputs	214,183										214,183

Notes: 1. Water Balance Calculations area in based on methodology described in the Conservation Authority Guidelines for Hydrogeological Assessments

2. Annual Precipitation and Evapotranspiration values were determined using the Thornthwaite (1948) method for monthly water budget calculation:

3. Evaporation from impervious areas was assumed to be 20% of Precipitation

4. Infiltration Features are calculated using daily Precipitation data and averaged over the number of years of available data. The entire Catchment is assumed to contribute with no infiltration occuring during months with a negative average temperature.

5. Total Adjusted Runoff is calculated as (Pervious Runoff + Impervious Runoff) - (Infiltration Features)
| Water B | alance | Assessment |
|---------|--------|------------|
|---------|--------|------------|

Sheet 4 of 4

;

Project No: 11056 Project Name: Osaca Designed/Checked By: LT/IA Date: 21-Nov-22

Characteristic	Existing	Proposed No Mitigation	Change	Proposed With Mitigation	Change
Inputs (m³/yr)					
Precipitation	214,183	214,183	0.0%	214,183	0.0%
Run-On	0	0	0.0%	0	0.0%
Other Inputs	0	0	0.0%	0	0.0%
Total Inputs	214,183	214,183	0.0%	214,183	0.0%
Outputs (m³/yr)					
Precipitation Surplus	86,633	93,577	8.0%	93,577	8.0%
Net Surplus	86,633	93,577	8.0%	93,577	8.0%
Evapotranspiration	127,550	120,606	-5.4%	120,606	-5.4%
Infiltration	67,247	61,922	-7.9%	61,922	-7.9%
Infiltration Features	0	0	0.0%	0	0.0%
Total Infiltration	67,247	61,922	-7.9%	61,922	-7.9%
Runoff Pervious Areas	19,386	17,611	-9.2%	17,611	-9.2%
Runoff Impervious Areas	0	14,045	0.0%	14,045	0.0%
Total Runoff	19,386	31,656	63.3%	31,656	63.3%
Total Outputs	214,183	214,183	0.0%	214,183	0.0%

Nitrate Dilution Calculations			
Total Dilution Area	24.40 ha		
No. of Lots	59		
Sewage Flow per Lot	1000 L/day		
Total Daily Sewage Loading	59,000 L/day		
Nitrate in Septic Effluent	40 mg/L		
Background Nitrates	0.54 mg/L		
Stormwater Effluent Nitrates	0 mg/L		
Infiltration Rates			
Infiltration Rate (Clean Water)	mm/year		
Infiltration Rate (Clean Water)	169,648 L/day		
Infiltration Rate (Stormwater)	- mm/year		
Infiltration Rate (Stormwater)	- L/day		
Nitrate Concentrations			
Nitrate Loading - Development	2,360,000 mg/day		
Nitrate Loading - Rainfall	91,610 mg/day		
Nitrate Loading - Runoff	0 mg/day		
Total Nitrate Loading	2,451,610 mg/day		
Dilution - Development	59,000 L/day		
Dilution - Groundwater Recharge	169,648 L/day		
Total Dilution	228,648 L/day		
Boundary Nitrate Concentration	10.72 mg/L		

Appendix H

Mass Balance Equation

Appendix H – D-5-4 Groundwater Impact Assessment: Mass Balance Equation

$Q_tC_t = Q_eC_e + Q_iC_i$

Where Q_t = Total Volume ($Q_e + Q_i$)

Note: As per the requirements of D-5-4, the maximum volume of effluent allowed to be used as dilution water is 1000L/day/lot.

Ct = Total Concetration of nitrate at property boundary

Qe = volume of septic effluent

Ce = Concentration of nitrate in effluent (40 mg/L)

Qi = Volume of available dilution water

Ci = Concentration of nitrate in dilution water

In order to determine the concertation of the nitrate at the property boundary (C_t) , the mass balance equation is rearranged to the following:

$$Ct = \frac{QeCe + QiCi}{Qt}$$