

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 65 WARD STREET AND 18-20 HOPE STREET SOUTH PORT HOPE, ONTARIO

Prepared for:

CVH (No. 6) LP 766 Hespeler Road, Suite 301 Cambridge, Ontario N3H 5L8

Attention:

Ms. Melissa Carter

File No: 1-19-0660-42 Date: March 18, 2020

©Terraprobe Inc.

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E 5P5 Barrie, Ontario L4N 4Y8 (905) 643-7560 Fax: 643-7559 www.terraprobe.ca

Terraprobe Inc. **Central Ontario** 220 Bayview Drive, Unit 25 (705) 739-8355 Fax: 739-8369

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

TABLE OF CONTENTS

SECTION

PAGE

1.0	EXECUTIVE SUMMARY		
2.0	INTR	ODUCTION	4
	2.1	Site Description	
	2.2	Property Ownership	
	2.3	Current and Proposed Future Uses	
		2.3.1 Current Property Use	
		2.3.2 Future Property Use	
	2.4	Applicable Site Condition Standards	
	2.5	Objectives of Investigation	
3.0		KGROUND INFORMATION	
	3.1	Physical Setting	
		3.1.1 Water Bodies, Wetlands and Areas of Natural Significance	
	2.2	3.1.2 Topography and Surface Water Drainage	
	3.2	Past Investigations	10
4.0	SCOP	PE OF THE INVESTIGATION	
	4.1	Overview of Site Investigation	
	4.2	Media Investigated	
		4.2.1 Rationale for Inclusion or Exclusion of Media	
	4.2	4.2.2 Overview of Field Investigation of Media	
	4.3	Deviations from Sampling and Analysis Plan	
	4.4	Impediments	
5.0		STIGATION METHOD	
	5.1	General	
	5.2	Drilling	
	5.3	Soil Sampling	
		5.3.1 Equipment Used	
	~ 4	5.3.2 Geological Description of Soil	
	5.4	Field Screening Measurements	
	5.5 5.6	Ground Water Monitoring Well Installation Field Measurement of Water Quality Parameters Ground Water: Sampling	
	5.0 5.7	Ground Water Sampling	
	5.8	Sediment Sampling	
	5.9	Analytical Testing	
	5.10	Residue Management Procedures	
	2.10	5.10.1 Soil Cuttings	
		5.10.2 Fluids from Equipment Cleaning	
	5.11	Elevation Surveying	
	5.12	Quality Assurance and Quality Control Measures	
		5.12.1 Containers, Labelling, Handling and Chain of Custody	
		5.12.2 Equipment Cleaning Procedures	
		5.12.3 Field Quality Control Measures	
		5.12.4 Deviations in the Quality Assurance and Quality Control Measures	22
6.0	REVI	EW AND EVALUATION	
	6.1	Geology	

	6.1.1	Geological Unit Thickness (Estimate)	
	6.1.2	Elevations of Geological Units	
	6.1.3	Material in Geological Units	
	6.1.4	Properties of Aquifers and Aquitards	
	6.1.5	Rationale for Choice of Aquifers and Aquitards Investigated	
6.2		d Water Elevations and Flow Direction	
	6.2.1	Rationale for Monitoring Well Locations and Screen Intervals	
	6.2.2	Results of Interface Probe Measurements	
	6.2.3	Thickness of Free-Flowing Product	
	6.2.4	Ground Water Elevations	
	6.2.5	Interpreted Direction of Ground Water Flow	25
	6.2.6	Assessment of Temporal Variability	
	6.2.7	Influence of Buried Utilities	26
6.3	Groun	d Water Hydraulic Gradients and Hydraulic Conductivity	26
	6.3.1	Horizontal Hydraulic Gradients	26
	6.3.2	Vertical Hydraulic Gradients	26
	6.3.3	Hydraulic Conductivity	
6.4	Coarse	e Soil Texture	
6.5	Soil: H	Field Screening	28
6.6		uality	
	6.6.1	Location and Depth of Samples	
	6.6.2	Comparison to Applicable Standards (Soil)	
	6.6.3	Contaminants of Concern (Soil)	
	6.6.4	Contamination Impact on Other Media	
	6.6.5	Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)	
6.7		d Water Quality	
0.7	6.7.1	Location and Depth of Sample Locations	
	6.7.2	Field Filtering	
	6.7.3	Comparison to Applicable Standards (Ground Water)	
	6.7.4	Contaminants of Concern (Ground Water)	
	6.7.5	Chemical or Biological Transformations	
	6.7.6	Contamination Impact on Other Media	
60	6.7.7	Presence of Light or Dense Non-Aqueous Phase Liquids (Ground Water)	
6.8	-	y Assurance and Quality Control Results	
	6.8.1	Types of Quality Control Samples Collected and Results	
	6.8.2	Samples Not Handled in Accordance with the Analytical Methods	
	6.8.3	Subsection 47 (3) of the Regulation	
	6.8.4	Results Qualified by Laboratory	
	6.8.5	Overall Quality of Field Data	34
		NS	
7.1		on and Concentration of Contamination	
	7.1.1	Land	
	7.1.2	Ground Water	
7.2	Signat	ures	36
REFE	RENCE	S	37
LIMI	TATION	S AND USE OF THE REPORT	38

7.0

8.0 9.0

FIGURES

Figure 1	Site Location Plan
Figure 2	Phase One Conceptual Site Model with PCA and APEC Locations
Figure 3	Borehole and Monitoring Well Location Plan
Figure 4	Ground Water Elevations and Flow Direction
Figure 5	Soil Exceedances – Plan View

TABLES

Table 1	Soil Quality – Metals and Inorganics
Table 2	Soil Quality – Petroleum Hydrocarbons
Table 3	Soil Quality – Volatile Organic Compounds I
Table 4	Soil Quality – Volatile Organic Compounds II (BTEX)
Table 5	Soil Quality – Polycyclic Aromatic Hydrocarbons
Table 6	Ground Water Quality – Metals and Inorganics
Table 7	Ground Water Quality – Petroleum Hydrocarbons
Table 8	Ground Water Quality – Volatile Organic Compounds
Table 9	Ground Water Quality – Volatile Organic Compounds II (BTEX)
Table 10	Ground Water Quality – Polycyclic Aromatic Hydrocarbons

APPENDICES

- Appendix A Phase One Conceptual Site Model
- Appendix B Site Survey
- Appendix C Notification & Response regarding Use of Non-potable Ground Water Standards
- Appendix D
- Appendix E Standard Field Investigation Protocol

Sampling and Analysis Plan

- Appendix F Borehole Logs
- Appendix G Grain Size Analyses
- Appendix H Ground Water Levels
- Appendix I Geological Units
- Appendix J Monitoring Well Construction Details
- Appendix K Laboratory Certificates of Analysis
- Appendix L Proposed Development Plan

1.0 EXECUTIVE SUMMARY

CVH (No. 6) LP (Client) retained Terraprobe Inc. (Terraprobe) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the Phase Two Property (Property) located at 65 Ward Street and 18 and 20 Hope Street South in Port Hope, Ontario, hereafter referred to as *'the Property'*. A Phase One Environmental Site Assessment (Phase One ESA) of the Property was conducted as outlined in the document entitled *'Phase One Environmental Site Assessment, 65 Ward Street and 18-20 Hope Street South, Port Hope, Ontario'* dated December 2, 2019 and it was noted that the conclusions of the Phase One ESA indicated eight (8) Areas of Potential Environmental Concern (APECs) exist on the Property:

Area of Potential Environmental Concern	Location and Address of Potential Contaminating Activity	Potentially Contaminating Activity	Contaminants of Potential Concern	Media Potentially Impacted (Ground-water, soil and/or sediment)
APEC 1: Asphalt Parking Lot and Walkways on the Phase One Property	65 Ward Street Phase One Property	#NA ¹ – De-icing of Parking Lot and Walkways	EC/SAR in soil. Sodium, Chloride in ground water.	Soil and ground water
APEC 2: North Portion of the Property	65 Ward Street Phase One Property	#30 – Importation of Fill Material of Unknown Quality	Metals, Hydride Forming Metals, PHCs (F1-F4), PAHs	Soil and ground water
APEC 3: North Portion of the Property	65 Ward Street Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water
APEC 4: East Portion of the Property	18 Hope Street South Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water
APEC 5: East- Central Portion of the Property	20 Hope Street South Phase One Property	#30 – Importation of Fill Material of Unknown Quality	Metals, Hydride Forming Metals, PHCs (F1-F4), PAHs	Soil and ground water

Area of Potential Environmental Concern	Location and Address of Potential Contaminating Activity	Potentially Contaminating Activity	Contaminants of Potential Concern	Media Potentially Impacted (Ground-water, soil and/or sediment)
APEC 6: East- Central Portion of the Property	20 Hope Street South Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water
APEC 7: Central Portion of the Property	20 Hope Street South Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water
APEC 8: Central Portion of the Property	20 Hope Street South Phase One Property	#55 – Transformer Manufacturing, Processing and Use	PHCs, PCBs	Soil and ground water

The Phase Two ESA was required to investigate the APECs for the Contaminants of Potential Concern that have been identified on the Property and was completed in general accordance with Ontario Regulation 153/04 (O.Reg. 153/04).

The Property is located at the southwest corner of the intersection of Ward Street and Hope Street South in Port Hope, Ontario and is irregular in shape, with a total area of approximately 12,140 sq. m (3.0 acres). The Property is currently developed with four (4) building structures. The building identified as Building 1 is irregular in shape with an approximate area of 1228 sq. m and extends through the eastern and southern portions of the Property. The building is currently and historically been used as a Long-Term Care Facility. The building identified as Building 2 is located in the west-central portion of the Property and is roughly square in shape with an approximate area of 47.4 sq. m. Historically, the building has been used as a laundry facility and boiler room and currently houses a back-up generator and diesel tank for Building 1 use. The building identified as Building 3 is located in the eastern portion of the Property and is roughly rectangular in shape with an approximate area of 60.4 sq. m. Historically, the building has been used as a nursing home and is currently unoccupied. The building identified as Building 4 is located in the northern portion of the Property and irregular in shape with an approximate area of 614.4 sq. m. Historically, the building was used as an army hospital and is currently unoccupied.

Terraprobe understands that the Property may be redeveloped to facilitate the construction of a new slabon-grade multi-storey residential nursing home for Residential Use. As the Property will be remain in

Residential Property Use, the Ministry of the Environment, Conservation and Parks (MECP) will not require a Record of Site Condition (RSC) to be filed for the Property.

The conclusions of the Phase Two ESA were:

- The applicable Site Condition Standards are the 2011 Ministry of the Environment, Conservation and Parks (MECP) Table 3 Standards for Residential/ Parkland/ Institutional Property Use with coarse textured soils (MECP Table 3 RPI Coarse Standards).
- During the investigation, five (5) main stratigraphic units were encountered as follows:
 - A layer of asphalt pavement underlain with thick granular subbase material (0.4 to 0.8 \pm m thick) or a layer topsoil (0.20 to 0.3 \pm m thick), overlying;
 - A layer of Earth Fill (0.4 to 2.1 ±m thick) was encountered beneath the asphalt/topsoil, overlying;
 - A layer of clayey silt glacial till (0.8 to 1.5 ±m thick) was encountered beneath the earth fill zone and/or asphalt pavement or topsoil in boreholes BH1, BH2, BH5, BH7, BH9, BH10, BH11, BH12, overlying;
 - A layer of silty sand glacial till (0.7 to 5.9 ±m thick) was encountered beneath the earth fill zone or glacial till deposit in each borehole, overlaying;
 - A layer of sand deposit was encountered within the silty sand layer in borehole BH10.
- Applicable Site Condition Standards were met in the earth fill soil located on the Property with exception of the following:
 - Lead (Metals) in borehole BH8 sample SS1 (BH8/SS1) at a depth of approximately 0 mbgs to 0.76 mbgs
- Applicable Site Conditions Standards were met in the native material located on the Property.
- Applicable Site Condition Standards were met for ground water on the Property.

In summary, soil impacted with Lead was identified in the vicinity of borehole BH8 in shallow fill. A Remedial Action Plan is recommended to be developed to address the excavation for the removal of the impacted material in the vicinity of borehole BH8 to ensure that elevated lead identified in the soil are no longer remaining on the Property.

2.0 INTRODUCTION

CVH (No. 6) LP (Client) retained Terraprobe Inc. (Terraprobe) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the Phase Two Property (Property) located at 65 Ward Street and 18-20 Hope Street South in Port Hope, Ontario, hereafter referred to as 'the Property'. A Phase One Environmental Site Assessment (Phase One ESA) of the Property was conducted as outlined in the document entitled 'Phase One Environmental Site Assessment, 65 Ward Street and 18-20 Hope Street South, Port Hope, Ontario' dated December 2, 2019 and it was noted that the conclusions of the Phase One ESA indicated eight (8) Areas of Potential Environmental Concern (APECs) on the Property. The Phase Two ESA was required to investigate the APECS for the Contaminants of Potential Concern that have been identified on the Property and was completed in general accordance with Ontario Regulation 153/04 (O.Reg. 153/04).

2.1 Site Description

The Property located at the southwest corner of the intersection of Ward Street and Hope Street South in the Port Hope, Ontario and is irregular in shape, with a total area of approximately 12,140 sq. m (3.0 acres). The Property is currently developed with four (4) building structures. The building identified as Building 1 is irregular in shape with an approximate area of 1228 sq. m and extends through the eastern and southern portions of the Property. The building is currently and historically been used as a Long-Term Care Facility. The building identified as Building 2 is located in the west-central portion of the Property and is roughly square in shape with an approximate area of 47.4 sq. m. Historically, the building has been used as a laundry facility and boiler room and currently houses a back-up generator and diesel tank for Building 1 use. The building identified as Building 3 is located in the eastern portion of the Property and is roughly rectangular in shape with an approximate area of 60.4 sq. m. Historically, the building has been used as a nursing home and is currently unoccupied. The building identified as Building 4 is located in the northern portion of the Property and irregular in shape with an approximate area of 614.4 sq. m. Historically, the building was used as an army hospital and is currently unoccupied.

Terraprobe understands that the Property may be redeveloped to facilitate the construction of a new slabon-grade multi-storey residential nursing home for Residential Use. As the Property will be remain in Residential Property Use, the Ministry of the Environment, Conservation and Parks (MECP) will not require a Record of Site Condition (RSC) to be filed for the Property.

The general location of the Property is presented on Figure 1, the layout of the Property with respect to the Potentially Contaminating Activities (PCAs) and APECs are presented on Figure 2. The legal survey is attached in Appendix B.

The Property information is as follows:

Legal Description	Lots 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 Smith Estate Plan, Town of Port Hope, now in the Municipality of Port Hope, County of Northumberland
-------------------	---

PIN(s)	51075-0087 (LT)
Assessment Roll Number	Not Provided
Municipal Address	65 Ward Street and 18 & 20 Hope Street South
Zoning	The Municipality of Port Hope Zoning By-Law (No 20/2010) was accessed on October 22, 2019 and the Property is zoned as Urban
Area	12140 sq. m (3.0 acres)
	CVH (No. 6) LP
Droporty Owner Information	766 Hespeler Road, Suite 301
Property Owner Information	Cambridge, ON
	N3H 5L8
	Ms. Melissa Carter
Persons, other than Property	Southbridge Health Care LP / CVH (No. 6) LP
Owner, who engaged the Qualified Person to conduct the Phase One	766 Hespeler Road, Suite 301
ESA	Cambridge, ON
	N3H 5L8

2.2 Property Ownership

The ownership information for the Phase Two Property is as follows:

Legal Description	Lots 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 Smith Estate Plan, Town of Port Hope, now in the Municipality of Port Hope, County of Northumberland
PIN(s)	51075-0087 (LT)
	Southbridge Health Care GP Inc. (Formerly CVH (No. 6) LP is the current Property Owner since 2015.
Property Owner Information	Southbridge Health Care GP Inc. (Formerly CVH (No. 6) LP 766 Hespeler Road, Suite 301
	Cambridge, ON
	N3H 5L8

2.3 Current and Proposed Future Uses

2.3.1 Current Property Use

The Property is currently developed with four (4) building structures, one building acts as a long-term care facility, while the remaining three (3) buildings are unoccupied. Under O. Reg. 153/04, the current Property Use of the Property would be considered to be in Residential Property Use as defined by the MECP.

2.3.2 Future Property Use

Terraprobe understands that the Property is to be redeveloped to facilitate the construction of a new slabon-grade multi-storey residential nursing home. Terraprobe understands that the proposed development plan provided is conceptual only. The concept plan may differ significantly from the final plan. Under O.Reg 153/04, the proposed Property Use of the Property would be considered to be Residential Property Use as defined by the MECP. The proposed conceptual development plan is provided in Appendix M.

2.4 Applicable Site Condition Standards

Terraprobe notified the Municipality of Port Hope on January 8, 2020 of the intention to use non-potable ground water standards and the municipality has 30 days to respond if they have an objection. The notification to the Municipality of Port Hope has been attached in Appendix D. It is Terraprobe's understanding that the use of non-potable criteria is permitted in the vicinity of the Property. As such, the applicable soil and ground water Standards for the Property are understood to be those in Table 3 of the April 15, 2011 Ministry of the Environment, Conservation and Parks (MECP) "*Soil, Ground Water and Sediment Standards for use under part XV.1 of the Environmental Protection Act*" for Residential/Parkland/ Institutional Property Use in a non-potable ground water condition for coarse textured soil (Table 3 RPI Coarse Standards).

These are considered to be the applicable Standards for the following reasons:

- Soil pH was within the ranges within which the generic assessment criteria other than the Table 1 (Background) Standards may be applied.
- The intended use for the Property is Residential.
- Soil at the Property was found to be coarse textured based on a review of the soil samples collected from the boreholes and the results of soil grain size analyses.
- The Property is not located within 30 m of a surface water body.
- The Property is not located in, adjacent to, or within 30 m of an area of natural significance.
- Bedrock across the Property is found at depths of greater than 2 m
- The Property is located in the Town of Port Hope which is serviced with municipal water drawn from surface water and there are no water supply wells within 250 m of the Property (refer to associated Hydrogeological Report for details).

2.5 Objectives of Investigation

The general objectives of the investigation include the following:

• To determine the concentration(s) and location(s) of Contaminants of Potential Concern (COPCs) identified in a Phase One ESA for the Property, and found through the course of conducting the Phase Two ESA, in soil, sediment, and ground water, as applicable.

• To determine if all COPCs identified in the investigation met the generic Site Condition Standard, as applicable.

To ensure that the general objectives of the investigation were met, the Qualified Person ensured the following:

- That the investigation provided sufficient information to provide an understanding of the geological and hydrogeological conditions at the Phase Two Property; and
- That one or more rounds of field sampling were conducted for all COPCs identified for the Property, as identified in the Sampling and Analysis Plan (Appendix E) of the Phase Two ESA and found through the course of conducting the Phase Two ESA, in soil, sediment, and ground water, as applicable.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

3.1.1 Water Bodies, Wetlands and Areas of Natural Significance

Schedule B-1 (Development Constructions and Urban Detail), of the Town of Port Hope Official Plan, November 22, 2019, was reviewed. The Site is not located within the areas designated as Natural Heritage or Natural Hazards.

Mapping from the Ontario Ministry of Natural Resources and Forestry (MNRF) was reviewed to determine if water bodies were present on the Property and within 250 m of the Property. The MNRF National Heritage Information Centre database for listings of Areas of Natural or Scientific Interest (ANSIs) was reviewed. The information is summarized below.

Water Bodies (Property)	• No water bodies were identified on the Property.		
Water Bodies (Study Area)	• No water bodies were identified within the Study Area.		
Wetland	Provincially Significant		
(Property)	• No Provincially Significant wetlands were present on the Property		
	Non-Provincially Significant		
	No Non-Provincially Significant wetlands were present on the Property		
	Unevaluated		
	• No Unevaluated wetlands were present on the Property		
Wetland	Provincially Significant		
(Study Area)	• No Provincially Significant wetlands were present in the Study Area.		
	Non-Provincially Significant		
	• No Non-Provincially Significant wetlands were present in the Study Area		
	<u>Unevaluated</u>		
	• No Unevaluated wetlands were present in the Study Area.		

ANSIs	Provincially Significant Life Science ANSI	
(Property)	• No Life Science ANSIs were identified on the Property.	
	Provincially Significant Earth Science ANSI	
	• No Earth Science ANSIs were identified on the Property.	
ANSIs	Provincially Significant Life Science ANSI	
(Study Area)	• No Life Science ANSIs were identified in the Study Area.	
	Provincially Significant Earth Science ANSI	
	• No Earth Science ANSIs were identified on the Property.	

3.1.2 Topography and Surface Water Drainage

A topographic map from the MNRF and the geological mapping produced by the Ontario Ministry of Northern Development and Mines - Ontario Geological Survey was reviewed. The information gleaned from the mapping is summarized below.

Topography	The OBM, Toporama, MNR and Google Earth maps were reviewed and it was identified that the elevation of the Property was approximately 101 m above sea level (masl). The Property is primarily flat and sloping towards the west.
Hydrogeology	The nearest water body is the Ganaraska River, which is located approximately 500 m west of the Property. The approximate depth to ground water, based on Water Well Records and review of previous investigations in the local area is expected to be approximately 3.0 mbgs. Ground water is expected to flow southwest towards the River. The MECP's on-line Source Water Protection Atlas indicates that the Property is not located in a Well Head Protection Area or Significant Ground water Recharge Area and is not the site of a Highly Vulnerable Aquifer. It is a Zone 2 Intake Protection Zone (surface water).
Geology (overburden)	Based on published geological data, the overburden material is expected to be sandy silt to silt, silt and clay with minor sand and gravel.
Geology (bedrock)	The bedrock on the site is of the Shadow Lake Formation, which consists of limestone, dolostone, shale, arkose and sandstone.
Geology (depth to bedrock)	Based on Water Well Records, depth to bedrock in the vicinity of the Property ranges from 8 m (east) to 15 m (west), although it should be noted that these locations are several hundred meters from the Property.

3.2 Past Investigations

The following environmental reports were provided and reviewed as part of the investigation. A summary of Terraprobe's Phase One ESA that was conducted for the Property concurrently with the Phase Two ESA is also summarized below:

The following Environmental reports were provided and reviewed as part of the investigation:

	Report Title	Phase I Environmental Site Assessment, Community Nursing Home, 18 & 20 Hope Street South, Port Hope, Ontario
1	Report Date	May 2013
	Prepared By	Genivar
	Prepared For	Community Lifecare Inc.

- Genivar Inc. (Genivar) was retained by Community Lifecare Inc. to document the finding of the Phase 1 Environmental Site Assessment conducted at the Community Nursing Home located at 18 & 20 Hope Street South, Port Hope, Ontario.
- The Property is located southwest of the Hope Street South and Ward Street intersection in Port Hope, Ontario and is currently operating as a retirement residence and nursing home in an area of Residential Property Use.
- The Property is developed with four building structures that include a nursing home, old Port Hope Hospital/Villa, an old residence and laundry facility building.
- The Hospital/villa, residence and laundry facility were first constructed in the early 1900s and used as a military field hospital and residence. The Community Nursing Home was constructed in 1974/1975.
- The Phase I ESA identified a potential soil and ground water contamination attributed to three (3) potential heating oil tanks for old hospital/nursing home, residence and old laundry building (i.e., Buildings 2 through 4).

	Report Title	Limited Phase II Environmental Site Assessment, Port Hope Community Nursing Home, 18 and 20 Hope Street South, Ontario
2	Report Date	February 12, 2014
	Prepared By	WSP (Formerly Genivar)

Prepared For

Community Lifecare Inc.

- WSP Canada Inc. (WSP) was retained by CVH (No. 6) LP to conduct a Limited Phase II Environmental Site Assessment of the Port Hope Community Nursing Home at 18 and 20 Hope Street and 65 Ward Street in Port Hope, Ontario. The objective was to determine if the Property meets the applicable Ministry of the Environment (MECP) criteria in considering of the current site use as a Residential/Parkland/Institutional.
- The subject Property is located southwest of the Hope Street South and Ward Street intersection in Port Hope, Ontario and has an area of approximately 2.67 acres. The subject Property is currently operating as a retirement residence and nursing home in an area of Residential Property Use.
- The investigation comprised of the following:
 - Review existing reports and create a work plan based on the conclusions;
 - Investigate subsurface soil and ground water conditions;
 - Evaluate and compare the soil and ground water analytical results to applicable MECP Site Condition Standards; and
 - Prepare Report.

In summary, the results of the investigation generally indicate the following:

- The Property subsurface soil conditions generally consisted of asphalt, topsoil, and/or gravelly sand fill underlain by a silt to sandy silt layer. Clayey silt was encountered at 1.4 mbgs at each borehole, underlain by sandy silt at depth of 2.9 mbgs to 3.0 mbgs. Medium to coarse textured sand seams were observed in the sandy silt layer at MW 14-1. Each borehole was advanced to 6.7 mbgs and encountered saturated conditions and elevation ranges between 96.37 masl to 97.76 masl.
- The results of chemical analysis of soil for metals and inorganics were reportedly below the MECP Table 3 Site Condition Standards (SCSs) with the exception of the duplicate sample which exceeded for Lead at MW 14-1. The original sample did not exceed the standard for Lead. The results of chemical analysis of soil for PAH, PHC F1-F4 and BTEX were below the MECP Table 3 SCSs. The report is in error. The wrong assessment criterion was used for lead, i.e., the concentration of lead in soil at BH14-1 did not exceed its Table 3 Site Condition Standard. The report omitted noted exceedances for Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) at BH14-1. Elevated EC and SAR are typically associated with the use of de-icing salt and may be accompanied by elevated sodium and chloride in ground water. Based on recent changes to the amendment, elevated EC and SAR are not considered exceedances as they are typically associated with the use of de-icing agents and may be accompanied by elevated sodium and

chloride in ground water. APEC 1 relates to the use of de-icing agents on the asphalt parking lot and walkways.

• Ground water sampling was conducted for one (1) event on January 10, 2014. The results of ground water analysis indicate that the ground water meets the MECP Table 3 SCS for metals and inorganics, PHC and VOC concentrations. The reported PAH concentrations were below the MECP Table 3 SCS with exception to the following: Benzo(b)fluoranthene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene in MW14-1. Similar issues were reported for a sample collected at BH14-4 (Terraprobe does not have the associated report, these data are cited in the following report) but were not reproduced when the well was re-sampled using as low flow sampling technique. The exceedances were attributed to a contribution from sediment. Terraprobe concurs.

	Report Title	Remediation of PAH Impacted Soil at the Port Hope Community Nursing Home, 18 and 20 Hope Street South and 65 Ward Street, Port Hope, Ontario
3	Report Date	October, 2014
	Prepared By	WSP (formerly Genivar)
	Prepared For	Community Lifecare Inc.

- WSP Canada Inc. was retained to complete an anomaly investigation and ground water resampling program for PAH impacts associated with buried coal-like material identified during the supplemental Phase II ESA (report not provided to Terraprobe) completed at 18 and 20 Hope Street South and 65 Ward Street, in Port Hope, Ontario.
- Excavation was conducted to identify the anomaly and a 0.5 m thick concrete slab measuring 1.5 m by 1.0 m was identified at 1.2 m below ground surface. No tank was observed but it is considered likely that a former Underground Storage Tank (UST) was present on top of the concrete slab.
- The extent of the excavation was sampled and thirty-two (32) samples were obtained and one (1) TCLP. Areas where impacts were identified were excavated and disposed of at a licensed waste facility. In addition, a wire trench was observed with PHC F2 and F3 and PAH impacts which was included in the remediation program.
- Five (5) additional boreholes were advanced and six (6) soil samples, one (1) duplicate soil sample, two (2) ground water samples and one (1) duplicate ground water sample were obtained to assess the horizontal and vertical extent of the PAH impacts.
- The soil samples collected from the excavation extents and floor and the low flow ground water sample comply with applicable MOE 2011 Table 3 Site Condition Standards (SCS) for PAHs and PHC F2 and F3.

Given that the apparent source of the PAH impacts is buried coal-like material, Terraprobe is of the opinion that verification samples should also have been collected for analysis for metals.

	Report Title Phase One Environmental Site Assessment, 65 Ward Street and 18-20 Hope Street Port Hope, Ontario Port Hope, Ontario				
	Report Date	December 2, 2019			
4	File Number	1-19-0660-41			
	Prepared By	Terraprobe Inc.			
	Prepared For	CVH (No. 6) LP			

Scope of Study

• Review of historical information, a visual site inspection and interviews to identify potential environmental concerns on the Property.

Results of Study

- The Property is approximately irregular in shape with a total area of approximately 12,140 sq. m (3.0 acres) and is located at the southwest corner of the intersection of Ward Street and Hope Street South in Port Hope, Ontario.
- The Municipality of Port Hope Zoning By-Law (No. 20/2010) was accessed on November 25, 2019 and the Property is zoned as Urban Institutional.
- The first developed use of the Property appears to be sometime before 1904, with residential dwellings as seen on the fire insurance plan.
- The study area generally consists of mostly Residential/Institutional properties. Potentially Contaminating Activities (PCAs) were identified in the study area surrounding the Property.
- The Phase One ESA identified eight (8) Areas of Potential Environmental Concern resulting from Potentially Contaminating Activities on the Property or within the Study Area (250 m) that may affect the Property.
- The Phase One ESA identified the following Area of Potential Environmental Concern on the Property due to the Potentially Contaminating Activities (PCAs) noted:

APEC 1: EC/SAR-impacted soil in the parking area south of Building 4. Possible sodium and chloride impacts to ground water.

APEC 2: Remedial excavation within a portion of APEC 1. Metals-impacted soil may remain in place.

APEC 3, 4, 6 and 7: Vicinities of inferred former heating oil tanks at Buildings 2 (APEC 4), 3 (APEC 7) and 4 (APEC 3) and present-day diesel fuel tank for backup generator in Building 2 (APEC 6).

APEC 5: Fill of unknown quality used to backfill an excavation where an underground fuel storage tank was removed from APEC 5 in the 1990s.

APEC 8: Vicinity of pad-mounted transformer.

• A Phase Two Environmental Site Assessment is required to investigate the Areas of Potential Environmental Concern for the Contaminants of Potential Concern that have been identified on the Property.

The Phase One Conceptual Site Model is attached in Appendix A. Figure 2 indicates the borehole locations with respect to the APEC investigated for site coverage.

4.0 SCOPE OF THE INVESTIGATION

The scope of work for the Phase Two ESA was determined on the basis of the results of the previous reports and in accordance with the scope of work proposed by Terraprobe.

4.1 Overview of Site Investigation

In 2019, Terraprobe conducted the following subsurface work at the Property for the Phase Two Environmental Site Assessment:

- Drilling of a total of twelve (12) boreholes (BH1 through BH12) to depths of up to 7.8 m below ground surface.
- Installing ground water monitoring wells for the environmental investigation in four (4) of the boreholes (BH3, BH4, BH5, BH8).
- Analyzing selected soil samples for parameters including:
 - Metals and Inorganics
 - Hydride-Forming Metals (H-M, "As, Sb, Se")
 - Volatile Organic Compounds (VOCs)
 - Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
 - Petroleum Hydrocarbons (PHCs)
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Polychlorinated Biphenyls (PCBs)
- Surveying all boreholes and monitoring wells to a geodetic benchmark.
- Measuring ground water elevations to determine ground water elevation and flow direction.
- Developing and sampling of the four environmental monitoring wells.
- Analyzing ground water samples for:
 - Metals and Inorganics

- Hydride-Forming Metals
- Sodium
- Volatile Organic Compounds (VOCs)
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Petroleum Hydrocarbons (PHCs)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)

The table below summarizes the scope of work conducted by Terraprobe. The number of samples conducted includes duplicate analyses, but does not include the trip blanks and field blanks that were collected/prepared. Water level measurements are provided in Appendix H. Field protocols are provided in Appendix E.

Date	Scope of Investigation	Scope of Soil Analysis	Scope of Ground Water Analysis
October 29 – November 1, 2019	 Drilled twelve (12) boreholes (BH1, BH2, BH3, BH4, BH5, BH6, BH7, BH8, BH9, BH10, BH11 and BH12) and sampled for soil Installed monitoring wells in seven (7) of the boreholes (BH3, BH4, BH5, BH6, BH8, BH10 and BH12) 	 4 Metals and Inorganics (ORPs) Analysis 14 Metals Analysis 18 H-M Analysis 12 PHC Analysis 12 VOC Analysis 12 BTEX Analysis 5 PAH Analysis 2 PCB Analysis 	
November 14 - 15, 2019	 Water levels taken from monitoring wells (BH3, BH4, BH5, BH6, BH8, BH10 and BH12) Monitoring wells developed for sampling (BH3, BH4, BH5, BH8 and BH10) 		
November 19, 2019	 Water levels taken from monitoring wells (BH3, BH4, BH5, BH6, BH8, BH10 and BH12) Sampled monitoring wells (BH3, BH4, BH5, BH8 and BH10) 		 2 Metals and Inorganics (ORPs) analysis 3 Metals Analysis 5 H-M Analysis 5 PHC Analysis 5 VOC Analysis 5 BTEX Analysis 2 PAH Analysis 1 PCB Analysis
December 9, 2019 Notes:	BH12)		

Notes:

ORPs (if any) for soil include B-HWS, CN-, EC, CrVI, Hg, pH, SAR

ORPs (if any) for ground water include CN-, CrVI, Hg, pH, Chloride

4.2 Media Investigated

Media	Included or Excluded	Rationale
Soil	Included	Based upon the Phase One ESA investigation, soil sampling was required on the Property for the select contaminants of potential concern (COPCs). Sample locations were selected to investigate soil across the Property.
Sediment	Excluded	Sediment sampling was not conducted on the Phase Two Property because there are no water bodies on-site.
Ground Water	Included	Based upon the Phase One ESA investigation, ground water sampling was required on the Property for the COPCs. Monitoring wells were installed to investigate ground water quality across the Property.
Surface Water	Excluded	Surface water sampling was not conducted on the Phase Two Property because there are no water bodies on-site.

4.2.1 Rationale for Inclusion or Exclusion of Media

4.2.2 Overview of Field Investigation of Media

Soil sampling was conducted during the drilling program by use of a split spoon sampling device. Ground water sampling was conducted from monitoring wells installed within the completed boreholes.

4.3 Deviations from Sampling and Analysis Plan

The sampling and analysis plan is provided in Appendix E. There were no deviations from the sampling and analysis plan during the investigation.

4.4 Impediments

There were no impediments encountered during the investigation.

5.0 INVESTIGATION METHOD

5.1 General

Public and private utility clearances were undertaken prior to commencing the subsurface investigation. The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures. The Standard Field Investigation Protocol is presented in Appendix F.

5.2 Drilling

The drilling information for the Phase Two ESA is provided below:

Borehole	BH1, BH2, BH3, BH4, BH5, BH6, BH7, BH8, BH9, BH10, BH11 and BH12
Date of Work	October 29 – November 1, 2019
Name of Contractor	Strong Soil Search Inc.
Equipment Used	Mini-mole track mounted drill rig, hollow and solid stem augers, 2 inch split spoon sampling device
Decontamination Measures	The split spoon sampling device was washed between each sample to minimize the potential for cross-contamination.
Sampling Frequency	Please refer to the borehole logs in Appendix G for the sampling frequency.

5.3 Soil Sampling

5.3.1 Equipment Used

- Laboratory-supplied sampling containers
- Nitrile gloves
- Cooler with loose ice
- RKI Instruments EAGLE 2 Monitor

5.3.2 Geological Description of Soil

Please refer to the borehole logs in Appendix G for the geological description of each soil sample collected.

5.4 Field Screening Measurements

Soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the "*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*", MECP, December 1996.

Samples were screened using an RKI Instruments EAGLE 2 Monitor. The monitor has a range of 0 parts per million (ppm) to 50,000 ppm and an accuracy of +/- 5%. The monitor was calibrated with hexane prior to field screening as per the calibration procedure outlined by RKI Instruments in "*Instruction Manual Eagle Series Portable Multi-Gas Detector 71-0028RK*" released August 8, 2010.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Photoionization detector field screening readings are provided on the borehole logs in Appendix G.

5.5 Ground Water Monitoring Well Installation

Monitoring wells were installed in seven (7) boreholes at BH3, BH4, BH5, BH6, BH8, BH10 and BH12. The monitoring wells were drilled by the drilling sub-contractors between October 29 and November 1, 2019, under the supervision of an experienced Terraprobe field technician. All monitoring wells were constructed of 38-mm (1.5-in) ID PVC screens and risers. Filter sand was placed around the well screen to approximately 0.6 m above the top of the screen. All monitoring wells were then backfilled with bentonite to approximately 0.3 m below ground surface. The monitoring wells were finished with flush mount casings.

As per Ontario Regulation 903, the monitoring wells were tagged. The monitoring well locations are provided on Figure 3. The monitoring well installation details are provided on the borehole logs in Appendix G.

5.6 Field Measurement of Water Quality Parameters Ground Water: Sampling

Field measurement of water quality parameters were measured using a YSI 63 Handheld System.

YSI 63 Hand-held System

Range

- pH 0.00 to 14.00 pH
- EC 0.0 to 200.0 mS/cm
- Salinity 0.0 to 80.0 ppt
- Temperature -5.0 to 75.0°C

Resolution

- pH 0.01 pH
- EC 0.1 mS/cm
- Salinity 0.1 ppt
- Temperature 0.1°C

Accuracy

- pH ± 0.1 pH within 10°C of calibration, pH ± 0.2 pH within 20°C
- EC ±0.5% F.S.
- Salinity $\pm 2\%$ or ± 0.1 ppt
- Temperature $\pm 0.1^{\circ}$ C

5.7 Ground Water Sampling

The monitoring wells were purged using a standard flow Waterra inertial pump system. Ground water was sampled using a dedicated bailer, or non-gas contact positive displacement pump (bladder pump) and low flow sampling techniques. Low flow sampling involves extracting ground water at rates comparable to ambient ground water flow (typically less than 300 mL/min), so that the drawdown of the water level is minimized, and the mixing of stagnant water with water from the screened intake area in a well is reduced.

Stabilization of parameters (pH, conductivity, temperature, etc.) of the purged water are monitored before a sample is taken, thus low flow methods facilitate equilibrium with the surrounding formation water and produces samples that are representative of the formation water.

Stabilization was considered to occur when consecutive readings were within the following:

- <u>Conductivity</u> \pm 3%
- <u>Temperature $\pm 3\%$ </u>
- $\underline{pH} \pm 0.1$ unit

The use of bladder pumps results in the least amount of alteration in sample integrity as compared to other sample retrieval methods. Water comes into contact with the inside of the bladder (Teflon) and the sample tubing (also Teflon), which may be dedicated to each well.

The use of dedicated bailers helps prevent cross-contamination and mitigate disturbances to the sample collected.

Sampling methodology from the MECP's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", December 1996 (the "1996 Guideline"), "Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04", May 2019 and "Protocol for

Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection *Act*", March 09, 2004, amended July 01, 2011 (the "Analytical Protocol").

5.8 Sediment Sampling

No sediment sampling was conducted as part of this investigation.

5.9 Analytical Testing

Analytical testing of all soil and ground water samples was conducted by AGAT Laboratories, a laboratory accredited by the Canadian Association for Laboratory Accreditation (CALA).

5.10 Residue Management Procedures

5.10.1 Soil Cuttings

Soil cuttings generated during the drilling activities were disposed of in soil bin and was removed from the Property after the drilling was complete.

5.10.2 Fluids from Equipment Cleaning

The fluids from cleaning were removed from the Property and disposed of by the drilling sub-contractor.

5.11 Elevation Surveying

The elevations of the boreholes on the Property were surveyed by Terraprobe using a Trimble R10 Global Navigation Satellite System (GNSS). The Trimble R10 system is a differential global positioning system (GPS) which involves the cooperation of two receivers, one that is stationary and another that is roving around making position measurements. The elevation of each borehole on the Property is presented on the borehole logs in Appendix G.

5.12 Quality Assurance and Quality Control Measures

5.12.1 Containers, Labelling, Handling and Chain of Custody

Containers

The following laboratory-supplied sample containers were used for all sampling conducted on the Property (where applicable).

Soil Parameters	Container			
PHC (F1, BTEX), VOCs, 1,4-Dioxane	2 x 40mL glass vial (methanol preservative)			
Metals, Mercury, Boron-HWS, Chromium Hexavalent, EC, SAR, pH, Chloride, Cyanide	250 mL glass jar, Teflon lined lid			
PHCs (F2-F4), VOC moisture, PAHs, OCPs, PCBs, CPs, ABNs, Methyl mercury, FOCs, Dioxins & Furans	125 mL glass jar, Teflon lined lid			
Ground Water Parameters	Container			
Chloride, electrical conductivity, pH	125 mL HDPE			
Cyanide (CN-)	60 mL HDPE (sodium hydroxide preservative)			
Hexavalent chromium	60 mL HDPE (0.45um field filter followed by ammonium buffer solution)			
Metals (includes hydride-forming metals, calcium, magnesium, sodium)	60 mL HDPE (0.45um field filter nitric acid preservative)			
Mercury	40 mL clear glass bottle (0.45um field filter hydrochloric acid preservative)			
Methyl mercury	125 mL Teflon (FLPE) (hydrochloric acid preservative)			
BTEX, PHCs (F1), THMs, VOCs;	2 x 40 mL glass VOA vials (sodium bisulfate preservative, no headspace)			
PHCs (F2–F4), PAHs	2 x 100 mL amber glass bottle, (sodium bisulfate preservative, 1 cm headspace)			
PCBs	2 x 250 mL amber glass bottle, Teflon lined lid			
Benzo(a)pyrene (Lab Filtered)	2 x 100 mL amber glass bottle, Teflon lined lid (sodium bisulfate preservative, 1 cm headspace)			
OCPs	2 x 500 mL amber glass bottle, Teflon lined lid			
CPs, ABNs,	500 mL amber glass bottle, Teflon lined lid			
Dioxins and furans	2 x 1 L amber glass bottle, Teflon lined lid			

Labelling

All sampling containers were identified with laboratory-supplied labels. The labels included the following information:

- Unique Sample ID
- Company Name
- Date and Time
- Project Number

Handling

Samples were placed in coolers with loose ice after collection for transportation to the laboratory. Sample hold times were met for all submitted soil and ground water samples.

Chain of Custody

Laboratory-supplied Chain of Custody forms were completed for all samples submitted for analysis.

5.12.2 Equipment Cleaning Procedures

All non-dedicated sampling and monitoring equipment was cleaned following each use. During soil sampling the split spoon sampling device was washed between samples to minimize cross-contamination. During ground water sampling any part of the interface meter which came into contact with the ground water was cleaned between monitoring wells.

Dedicated equipment (nitrile gloves, terra core samplers, bladders, tubing) was changed between each sample to avoid cross-contamination.

5.12.3 Field Quality Control Measures

- All non-dedicated sampling and monitoring equipment was cleaned following each use.
- Where ground water samples are to be analyzed for volatile organic compounds one trip blank sample was submitted for laboratory analysis with each laboratory submission.
- Sufficient field duplicate samples were collected in each medium being sampled, so that at least one (1) field duplicate sample can be submitted for laboratory analysis for every ten (10) samples submitted for laboratory analysis.
- Calibration checks on field instruments occurred daily prior to the commencement of sampling.

5.12.4 Deviations in the Quality Assurance and Quality Control Measures

There were no deviations in the quality assurance and quality control measures.

6.0 REVIEW AND EVALUATION

6.1 Geology

Detailed geological information for the Property is presented on the borehole logs in Appendix G. The geology at the Property is summarized below.

6.1.1 Geological Unit Thickness (Estimate)

The concrete/aggregate/topsoil material ranged in thickness from approximately 0 m to 0.8 m below ground surface (mbgs), with an average thickness of 0.3 mbgs. The Earth Fill material thickness was encountered in all boreholes and ranged from approximately 0.4 mbgs to 2.3 mbgs. The native soil thickness ranged from approximately 0.8 mbgs to 8.2 mbgs, with an average thickness of 5.1 mbgs in all boreholes. Bedrock was not encountered in any of the boreholes during the investigation. The geological unit thicknesses are presented in Appendix J.

6.1.2 Elevations of Geological Units

The elevation of the concrete/aggregate material started at approximately 100.9 masl (ranging from 99.9 to 102.2 masl) and extended to an elevation depth of approximately 100.64 masl (ranging from 99.7 to 102 masl). The elevation of the earth fill material started at approximately 100.64 masl and extended to an elevation depth of 99.3 masl. The native soil elevation started where the earth fill ended at approximately 99.3 masl (ranging from 97.6 to 100.4 masl) and extended to an elevation of approximately 94.2 masl (ranging from 92.1 to 98.1 masl). Bedrock was not encountered in any of the boreholes during the investigation. The geological unit elevations are presented in Appendix J.

6.1.3 Material in Geological Units

Surficial Pavement Structure/Topsoil

Boreholes 2, 4 and 9 encountered an asphalt pavement structure varying in thickness from about 380 mm (Borehole 2) to 800 mm (Borehole 4) at the ground surface. The measured asphaltic concrete layer thickness was about 50 mm (Boreholes 9) and 85 mm (Borehole 2) underlain by an aggregate base layer varying in thickness from about 295 mm (Borehole 2) to 730 mm (Borehole 4). A surficial topsoil layer, varying in thickness from about 150 mm (Boreholes 1, 5, 7, 8, 10 to 12) to 300 mm (Borehole 3) was encountered at Boreholes 1, 3, 5 to 8 and 10 to 12 locations. The topsoil was brown/dark brown in colour and predominantly consisted of a silt matrix.

The topsoil and pavement structure component thicknesses noted above were measured from the borehole drilling and are approximate. These thicknesses may vary between and beyond the boreholes.

<u>Earth Fill</u>

Earth fill materials, consisting of clayey silt, trace to some sand, trace amounts of organics and rootlets/sand and gravel to sand with trace amounts of silt was encountered underlain the topsoil layer or surficial pavement structure extending to the depths ranging from 0.8 m (Borehole 2) to 2.3 m (Boreholes 4, 8 and 12) below grade.

Standard Penetration Test results (N-values) obtained from the clayey silt earth fill zone ranged from 2 to 16 blows per 300 mm of penetration, indicating a soft to very stiff consistency, while the N-values obtained from the sand and gravel and sand, trace silt fill zone ranged from 8 to 24 blows per 300 mm of penetration, indicating a loose to compact relative density. The in-situ moisture contents of the earth fill samples ranged from 2 to 37%, indicating a moist to wet (typically moist) condition.

<u>Glacial Till</u>

Clayey silt, trace to some sand till deposit with trace amounts of gravel or silty sand, trace to some clay till deposit with trace amounts of gravel was encountered underlying the earth fill zone in each borehole and extended to the full depth of investigation up to about 8.2 m below grade (Borehole 7), except at Borehole 10 where a layer of sand, trace to some gravel with trace amounts of silt was encountered underlying the silty sand till layer and extended to the depth of about 7.6 m below grade.

N-values obtained from the undisturbed clayey silt, trace to some sand till deposit ranged from 12 to greater than 50 blows per 300 mm of penetration, indicating a stiff to hard consistency while the N-values obtained from the silty sand, trace to some clay till deposit ranged from 12 to greater than 50 blows per 300 mm of penetration, indicating a compact to very dense relative density. The in-situ moisture contents of the glacial till samples ranged from 2 to 32%, indicating a moist condition.

It should be noted that the glacial till deposit may contain larger size particles (cobbles and boulders) that are not specifically identified in the boreholes. The size and distribution of such obstructions cannot be predicted with borings, because the borehole sampler size is insufficient to secure representative samples for the particles of this size.

Sand

Sand with trace to some gravel with trace silt was encountered at Borehole 10 within the silty sand till layer from approximately 4.6 to 7.6 m below grade. N-values obtained from the sand deposit were 50 and 53 blows per 300 mm of penetration, indicating a very dense relative density. The in-situ moisture content of the silty sand sample was about 10%, indicating a wet condition.

Bedrock

Bedrock was not encountered during the subsurface investigation of the Property.

6.1.4 Properties of Aquifers and Aquitards

6.1.5 Rationale for Choice of Aquifers and Aquitards Investigated

The native silty sand water table aquifer was chosen for investigation because of:

- the possibility of free ground water.
- the native soil aquifer is the first water-bearing zone, relevant to PHC-related APECs.

6.2 Ground Water Elevations and Flow Direction

6.2.1 Rationale for Monitoring Well Locations and Screen Intervals

Monitoring wells were located across the Property in order to provide full site coverage. The monitoring wells were screened within the sandy silt layer across the Property to allow for the collection of ground water samples within the strata of interest.

6.2.2 Results of Interface Probe Measurements

Interface probe measurements indicated that only water was present on the Property. No light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) were detected.

6.2.3 Thickness of Free-Flowing Product

No free-flowing product was encountered on the Property.

6.2.4 Ground Water Elevations

Unstabilized ground water levels were measured in each of borehole as they were drilled and after completion, as noted in the borehole logs in Appendix G. Ground water levels were measured in the installed monitoring wells using a Solinst interface probe. Ground water elevations are presented in Appendix H.

6.2.5 Interpreted Direction of Ground Water Flow

Based on stabilized water levels, the ground water flow direction was found to be west/southwest towards the Ganaraska River, located approximately 500 m west of the Property (Figure 4).

6.2.6 Assessment of Temporal Variability

A total of three (3) ground water level measurements were collected on the Property in the native sandy silt layer aquifer with variations of up to 1.1 m, depending on location.

6.2.7 Influence of Buried Utilities

As the depth to ground water is approximately 1.5 to 3.6 mbgs, there is a limited (i.e., localized) potential for utility service trenches to act as preferential conduits for the migration of contaminants, if present.

6.3 Ground Water Hydraulic Gradients and Hydraulic Conductivity

6.3.1 Horizontal Hydraulic Gradients

The horizontal hydraulic gradient is calculated using the following equation:

 $I=\Delta h/\Delta s$

where:

I = horizontal hydraulic gradient, $\Delta h (m) =$ ground water elevation difference; and, $\Delta s (m) =$ separation distance

The ground water table (GW Unit 1) is within the native sand layer. Based on the current measured ground water levels, the horizontal hydraulic gradient of the ground water for the native sand layer (GW Unit 1) at the Property was determined to be approximately 0.015 southwest.

6.3.2 Vertical Hydraulic Gradients

The vertical hydraulic gradient cannot be accurately determined at this time as there are no nested monitoring wells installed on the Property. The vertical hydraulic gradient needs to be measured between two neighboring monitoring wells installed between two different stratums (shallow and deep) where both monitoring wells in a nested well setting have water levels.

6.3.3 Hydraulic Conductivity

The hydraulic conductivities from Terraprobe wells BH3, BH6 and BH10 were determined based on the rising water level recovery of the monitoring wells (rising head test). This test involves the rapid removal of water from a single well and monitoring the water level recovery. The results of the rising head tests were analysed using the Bouwer and Rice method (1976). The results of the analysis are presented in Appendix G. The hydraulic conductivities of the strata applicable to the Property are as follows:

Monitoring Well	Well Screen Elevation (masl)	Strata Screened Within	Hydraulic Conductivity (rising head test, m/s)
ВНЗ	96.23 – 93.18	Sand and Silt, Trace Gravel	1.35 x 10 ⁻⁷
BH6	97.63 – 94.58	Sand and Silt, Some Clay, Trace Gravel	3.12 x 10 ⁻⁷
BH10	96.33 – 93.28	Sand and Silt, Some Clay, Trace Gravel	1.17 x 10 ⁻⁴

Based on the soil samples submitted for grain size analysis, the hydraulic conductivities can be calculated based on the D10 values. The D10 value is the soil particle diameter at which 10% of the sample's mass has a diameter less than this value. The hydraulic conductivities can be found in the table below.

Borehole / Monitoring Well	Sample No.	Midpoint Depth / Elevation (m)	Soil Type	D10 (mm)	Hydraulic Conductivity (m/s)
BH1	SS3	1.8 – 98.6	Clayey Silt	5.40 x 10 ⁻⁴	2.92 x 10 ⁻⁷
BH8	SS5	3.4 – 97.3	Silty Sand	6.90 x 10 ⁻⁴	4.76 x 10 ⁻⁷
BH9	SS1	0.3 – 100.9	Aggregate	3.02 x 10 ⁻⁴	9.12 x 10 ⁻⁸

It should be noted that the above hydraulic conductivities were estimated based on grain size analysis of the disturbed collected sample and does not consider compaction or saturation of the soils. The grain size analyses can be found in Appendix H.

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the Property are:

- Granular (aggregate base) 10⁻¹
- Silty Sand 10⁻³ m/s to 10⁻⁷
- Silt 10⁻⁵ m/s to 10⁻⁹ m/s
- Glacial Till (Silts and Clays) 10⁻⁶ m/s to 10⁻¹² m/s

The hydraulic conductivity field results are relatively consistent with the published values associated with the geological materials which were tested with exception to the aggregate material in BH9. The granular material is variable and cannot be accurately determined.

6.4 Coarse Soil Texture

Section 42. (1) Subsection (1) of O.Reg. 153/04 states '*If the qualified person determines that at least 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, the qualified person shall apply the standard for coarse textured soil.*' Coarse textured soil is defined as soil with more than 50% by mass of particles greater than 75 microns in diameter.

The analytical results for soil and ground water samples were compared to the MECP Table 3 Site Condition Standards for Residential/ Parkland/ Institutional Property Use for coarse textured soil because the results of three soil samples that were submitted for grain size analysis consisted of soil with more than 50% by mass of particles greater than 75 microns in diameter.

6.5 Soil: Field Screening

All recovered soil samples were screened in the field using portable hydrocarbon vapour testing equipment and following the procedure outlined in the *96 Guideline*.

Field screening measurements were used to help select samples for petroleum hydrocarbon and volatile organic compounds laboratory analysis. Photoionization detector field screening readings are provided on the borehole logs in Appendix G.

6.6 Soil Quality

6.6.1 Location and Depth of Samples

The table below provides the samples collected from each borehole with the measured depth from original ground surface and parameters for analysis:

				Soil							
Sample ID	Depth / Elev. (m) / (masl)	Strata	Date Sampled	Metals	Metals and Inorganics	Hydride Forming Metals	PHCs (F1-F4)	BTEX	VOCs	PAHs	PCBs
BH1-SS1	0 – 0.61 / 100.4 – 99.79	Fill	Nov. 07, 2019	~							
BH1-SS4	2.29 – 2.9 / 98.11 – 97.5	Native	Nov. 07, 2019	~							
BH3-SS1	0-0.61 / 100.8 - 100.18	Fill	Nov. 07, 2019	~		~					
BH3-SS2	0.76 – 1.37 / 100.04 - 99.43	Fill	Nov. 07, 2019				✓	\checkmark	~		
BH3-SS3	1.52 – 2.13 / 99.28 – 98.67	Native	Nov. 07, 2019	~		~					
BH3-SS5	3.05 - 3.66 / 97.75 - 97.14	Native	Nov. 07, 2019							~	
BH3-SS6	4.57 – 4.85 / 96.23 – 95.95	Native	Nov. 07, 2019				\checkmark	\checkmark	~		
BH4-SS2	0.76 – 1.37 / 100.14 – 99.53	Fill	Nov. 07, 2019		~	~				~	
BH4-SS3	1.52 – 2.13 / 99.38 – 98.77	Fill	Nov. 07, 2019				~	\checkmark	~		
BH4-SS5	3.05 – 3.35 / 97.85 – 97.55	Native	Nov. 07, 2019		~	~				~	
BH4-SS7	6.1 - 6.4 / 94.8 - 94.5	Native	Nov. 07, 2019				~	\checkmark	~		
BH5-SS1	0-0.61/101.2 -100.59	Fill	Nov. 07, 2019	~		~					
BH5-SS2	0.76 – 1.37 / 100.44 – 99.83	Fill	Nov. 07, 2019				✓	✓	~		

Phase Two Environmental Site Assessment
65 Ward Street and 18-20 Hope Street South, Port Hope, Ontario

				Soil								
Sample ID	Depth / Elev. (m) / (masl)	Strata	Date Sampled	Metals	Metals and Inorganics	Hydride Forming Metals	PHCs (F1-F4)	BTEX	VOCs	PAHs	PCBs	
BH5-SS3	1.52 – 2.13 / 99.68 – 99.07	Native	Nov. 07, 2019	~		~						
BH5-SS6	4.57 – 4.65 / 96.63 – 96.55	Native	Nov. 07, 2019				~	~	~			
BH6-SS1	0-0.61 / 102.2 - 101.59	Fill	Nov. 07, 2019	~		~						
BH6-SS4	2.29 – 2.72 / 99.91 – 99.48	Native	Nov. 07, 2019	~		~						
BH7-SS2	0.76 – 1.37 / 100.44 – 99.83	Fill	Nov. 07, 2019	~		~	~	~	~			
BH7-SS4	2.29 – 2.9 / 98.91 – 98.3	Native	Nov. 07, 2019	~		~				~		
BH7-SS7	6.1 – 6.71 / 95.1 – 94.49	Native	Nov. 07, 2019				~	~	~			
BH8-SS1	0-0.61 / 100.7 - 100.09	Fill	Nov. 07, 2019		~	~						
BH8-SS2	0.76 – 1.37 / 99.94 – 99.33	Fill	Nov. 07, 2019				~	~	~		~	
BH8-SS4	2.29 – 2.9 / 98.41 – 97.8	Native	Nov. 07, 2019	~		~					~	
BH8-SS7	6.1 – 6.25 / 94.6 – 94.45	Native	Nov. 07, 2019				~	~	~			
BH10-SS1	0-0.61/100.9 -100.29	Fill	Nov. 07, 2019	~		~						
BH10-SS2	0.76 – 1.37 / 100.14 – 99.53	Fill	Nov. 07, 2019				✓	~	~			
BH10-SS3	1.52 – 2.13 / 99.38 – 98.77	Native	Nov. 07, 2019	~		~						
BH10-SS6	4.57 – 5.18 / 96.33 – 95.72	Native	Nov. 07, 2019				~	~	~			
BH12-SS1	0 – 0.61 / 99.9 – 99.29	Fill	Nov. 07, 2019	~		~						
BH12-SS6	4.57 - 4.83 / 95.33 - 95.07	Native	Nov. 07, 2019	~		~						

Notes: ORPs analyzed include Boron (HWS), Chromium IV, Cyanide, Mercury, Electrical Conductivity (EC), pH and Sodium Adsorption Ratio (SAR).

6.6.2 Comparison to Applicable Standards (Soil)

Select soil samples were analysed for the Contaminants of Potential Concern (COPCs). COPCs include:

- Metals
- Metals and Inorganics
- Hydride-Forming Metals (H-M)

- Volatile Organic Compounds (VOCs)
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Petroleum Hydrocarbons (PHCs)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)

The results of the analysis were compared to the applicable MECP site condition standard for the Property (MECP Table 3 RPI Coarse Standards). The laboratory certificates of analysis are provided in Appendix L, and the results of the soil chemical analysis are provided in Tables 1 to 5.

Metals in Soil

A metals exceedance of the MECP Table 3 RPI Coarse Standards were noted in the sample BH8/SS1 for Lead. No other metal exceedances were detected. All samples are summarized in Table 1 and the laboratory certificates of analysis are provided in Appendix L.

Hydride-Forming Metals in Soil

No hydride-forming metal exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 1 and the laboratory certificates of analysis are provided in Appendix L.

Petroleum Hydrocarbons in Soil

No PHCs exceedances of the MECP Table 3 RPI Coarse Standards were noted in the sampled analyzed. All sampled are summarized in Table 2 and the laboratory certificates of analysis are provided in Appendix L.

Volatile Organic Compounds in Soil

No VOC exceedances of the MECP Table 3 RPI Coarse Standards were noted in the sampled analyzed. All sampled are summarized in Table 4 and the laboratory certificates of analysis are provided in Appendix L.

Benzene, Toluene, Ethylbenzene, and Xylenes in Soil

No BTEX exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 4 and the laboratory certificates of analysis are provided in Appendix L.

Polycyclic Aromatic Hydrocarbons in Soil

No PAH exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. The results are summarized in Table 5 and the laboratory certificates of analysis are provided in Appendix L. The sample exceeding for PAHs as noted above is shown on Figure 5.

6.6.3 Contaminants of Concern (Soil)

The Contaminants of Concern associated with the soil on the Property was found to be Lead (Metals), no other exceedances were detected. The exceedances detected were only detected in the earth fill at BH8. The native soils did not exceed for Lead or any other parameters.

The Contaminants of Concern associated with the earth fill on the Property are as follows:

• Lead (246 μg/g)

There were no Contaminants of Concern associated with the native soil on the Property.

6.6.4 Contamination Impact on Other Media

The lead in shallow fill at BH8 is considered unlikely to impact other media because (i) it is present above the water table, (ii) lead is sparingly soluble, and (iii) lead was not detected in the ground water sample collected at BH8 (<0.5 μ g/L).

6.6.5 Presence of Light or Dense Non-Aqueous Phase Liquids (In Soil)

Light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL) were not detected in the earth fill or native soil on the Property.

6.7 Ground Water Quality

6.7.1 Location and Depth of Sample Locations

One (1) round of ground water sampling was completed for the monitoring wells on the Property. Ground water samples were analysed for parameters including Metals, Hydride-Forming Metals (H-M), PHCs, BTEX, VOCs, PAHs and PCBs. The laboratory certificates of analysis are provided in Appendix L.

Monitoring Well	Screen/Sample Elevation (masl)	Metals	Metals and Inorganics	H-M	PHCs (F1-F4)	BTEX	VOCs	PAHs	PCBs
BH3	96.23 – 93.18	✓		~	~	~	✓	✓	
BH4	96.33 - 93.28		~	✓	~	~	√	✓	
BH5	96.63 - 93.58	✓		✓	~	~	✓		
BH8	96.13 - 93.08		~	✓	~	~	~		~
BH10	96.33 – 93.28	✓		✓	~	~	✓		

Notes: ORPs (if any) analyzed include Chromium IV, Cyanide, Chloride, and Mercury. H-M= Hydride-Forming Metals

6.7.2 Field Filtering

Field filtering occurred for all metal samples analyses that require field filtering as per the requirements of the *Analytical Protocol*. Field filtration utilized a 0.45-micron filter.

6.7.3 Comparison to Applicable Standards (Ground Water)

Select ground water samples were analysed for the COPCs. COPCs include:

- Metals
- Metals and Inorganics
- Hydride-Forming Metals
- Volatile Organic Compounds (VOCs)
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Petroleum Hydrocarbons (PHCs)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)

The results of the analysis were compared to the applicable MECP site condition standard for the Property (MECP Table 3 RPI Coarse Standards). The laboratory certificates of analysis are provided in Appendix L, and the results of the ground water chemical analysis are provided in Tables 6 to 10.

Metals and Inorganics in Ground Water

No metal exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 5 and the laboratory certificates of analysis are provided in Appendix L.

Hydride-Forming Metals in Ground Water

No hydride-forming metal exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 6 and the laboratory certificates of analysis are provided in Appendix L.

Petroleum Hydrocarbons in Ground Water

No PHCs exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 7 and the laboratory certificates of analysis are provided in Appendix L.

Volatile Organic Compounds in Ground Water

No VOCs exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 7 and the laboratory certificates of analysis are provided in Appendix L.

Benzene, Toluene, Ethylbenzene, and Xylenes in Ground Water

No BTEX exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 9 and the laboratory certificates of analysis are provided in Appendix L.

Polycyclic Aromatic Hydrocarbons in Ground Water

No PAH exceedances of the MECP Table 3 RPI Coarse Standards were noted in the samples analyzed. All samples are summarized in Table 10 and the laboratory certificates of analysis are provided in Appendix L.

6.7.4 Contaminants of Concern (Ground Water)

There were no Contaminants of Concern associated with the ground water on the Property.

6.7.5 Chemical or Biological Transformations

Chemical or biological transformations are not expected to occur.

6.7.6 Contamination Impact on Other Media

As no Contaminants of Concern (COCs) were identified within the ground water, there is no potential of impact to the native materials on the site due to ground water movement through the soil or evaporation from the ground water.

6.7.7 Presence of Light or Dense Non-Aqueous Phase Liquids (Ground Water)

Light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL) were not detected in the ground water on the Property.

6.8 Quality Assurance and Quality Control Results

6.8.1 Types of Quality Control Samples Collected and Results

In general, samples were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement and sample container type. Laboratory results were compared to MECP standards for quality control under the *Analytical Protocol* which require laboratory results to meet

specific performance criteria such as specified method detection limit (MDL) requirements. The sampling and analyses performed conformed with the requirements of the *96 Guideline* and the *Analytical Protocol*.

Blind duplicate samples were submitted at a rate of 10%.

6.8.2 Samples Not Handled in Accordance with the Analytical Methods

Holding Time

All samples met the holding times specified in the Analytical Protocol.

Preservation Method

All samples met the preservation methods specified in the Analytical Protocol.

Storage Requirement

All samples met the storage requirements specified in the Analytical Protocol.

Container Type

All samples used were the container type specified in the Analytical Protocol.

6.8.3 Subsection 47 (3) of the Regulation

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47(3). A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been included in full in Appendix L to the Phase Two ESA report.

6.8.4 Results Qualified by Laboratory

The Laboratory did not make any significant comments that changed the outcome of the analytical results regarding the soil and ground water samples.

6.8.5 Overall Quality of Field Data

Decision making regarding the environmental condition of the Property was not affected by the overall quality of the field data. The overall quality of the field data was considered by the Qualified Person to meet the objectives of the investigation and assessment.

7.0 CONCLUSIONS

7.1 Location and Concentration of Contamination

7.1.1 Land

There was one (1) exceedance of the applicable Site Condition Standards noted in the earth fill on the Property (lead from 0.0 to 0.76 m below ground surface at BH8, Figure 5). There were no other exceedances of the applicable Site Condition Standards noted in any other fill/soil sample.

7.1.2 Ground Water

There were no exceedances of the applicable Site Condition Standards associated with the ground water on the Property.

7.2 Signatures

The Phase Two Environmental Site Assessment has been completed by Amir Karim, B.Eng., E.I.T., under the direction and supervision of R. Baker Wohayeb, M.A.Sc., P.Eng, QP_{RA} . The draft report was reviewed by Stephen Hodgson, P.Geo., QP_{ESA} . The findings and conclusions presented in this report have been determined on the basis of the information that was obtained and reviewed from review of previous investigations provided and on the current investigation for the Phase Two Property. The Phase Two Environmental Site Assessment was completed in general accordance with Ontario Regulation 153/04 (Records of Site Condition–Part XV.1 of the Environmental Protection Act).

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

Terraprobe Inc.

Amir Karim, B.Eng., E.I.T. Project Manager

R. Baker Wohayeb, M.A.Sc., P.Eng, QP_{RA} Principal

ROFESSION

Stephen Hodgson, P.Geo., QP_{ESA} Senior Hydrogeologist

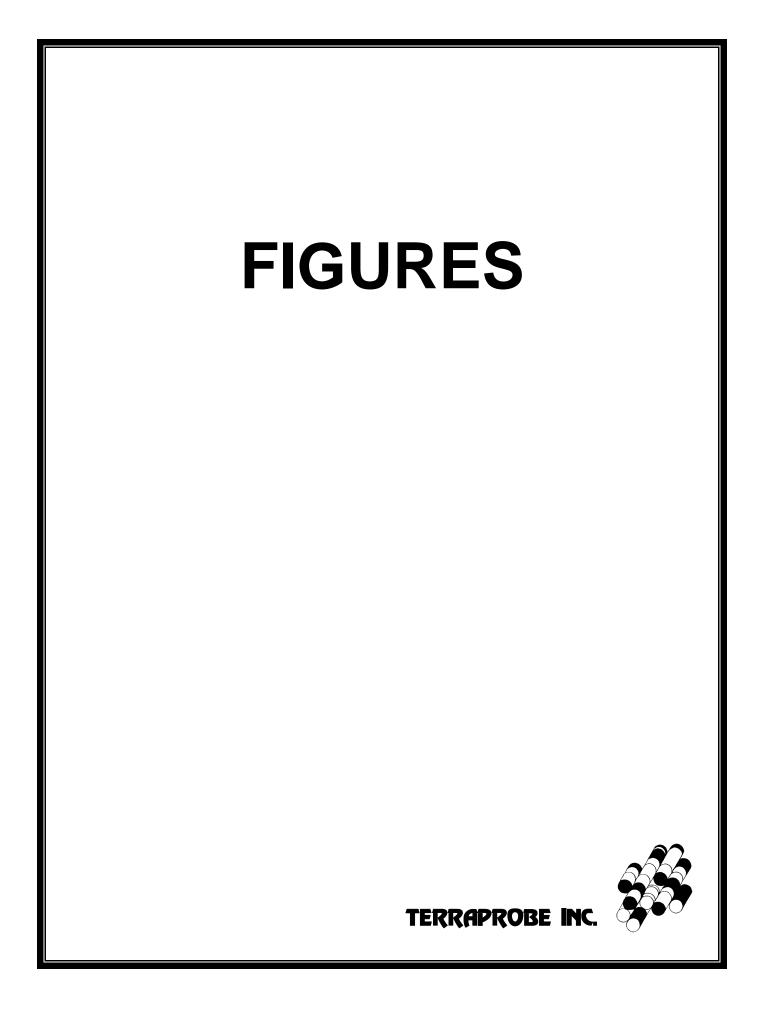
Brampton Office

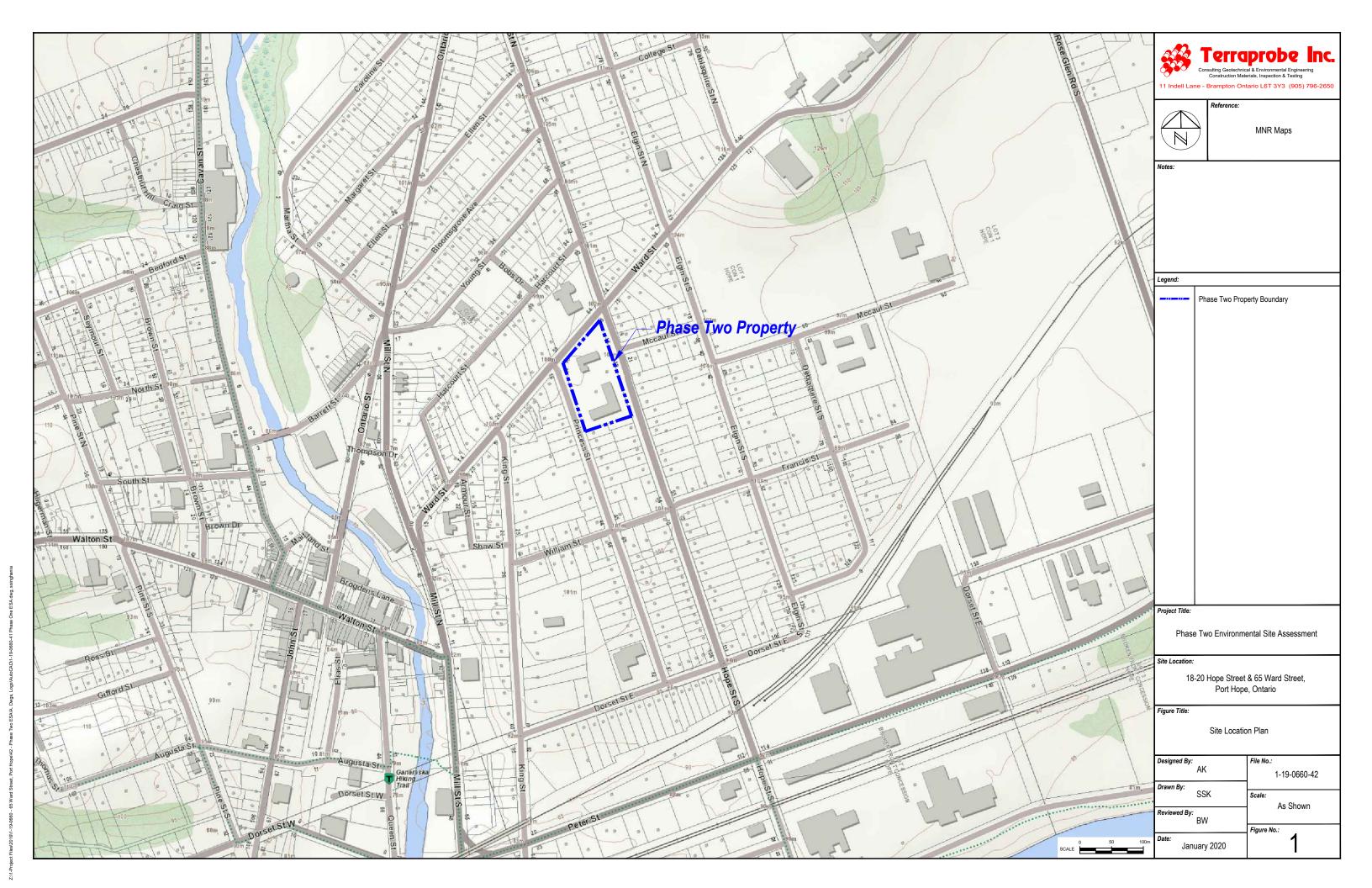
Page No. 36

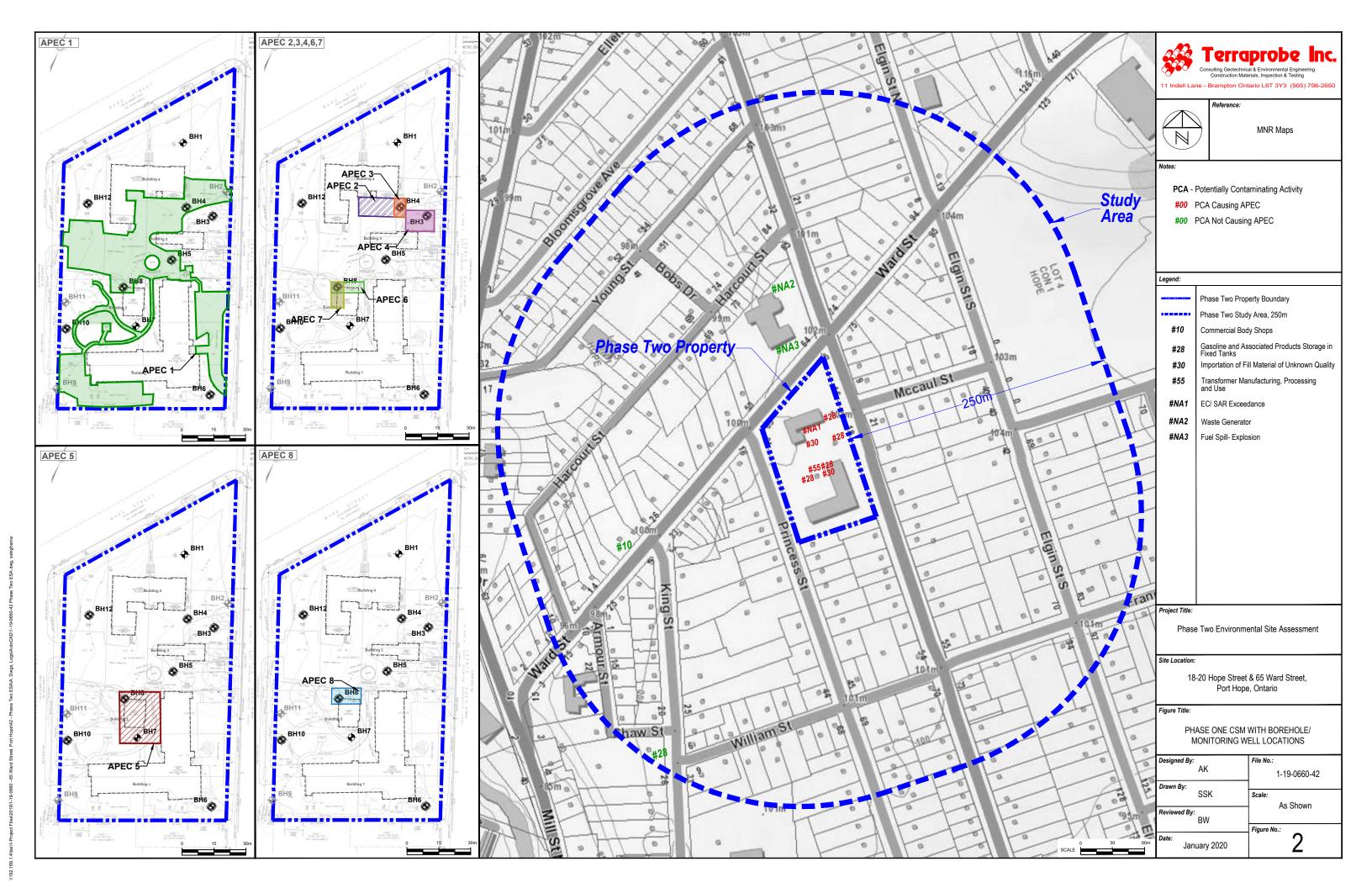
8.0 **REFERENCES**

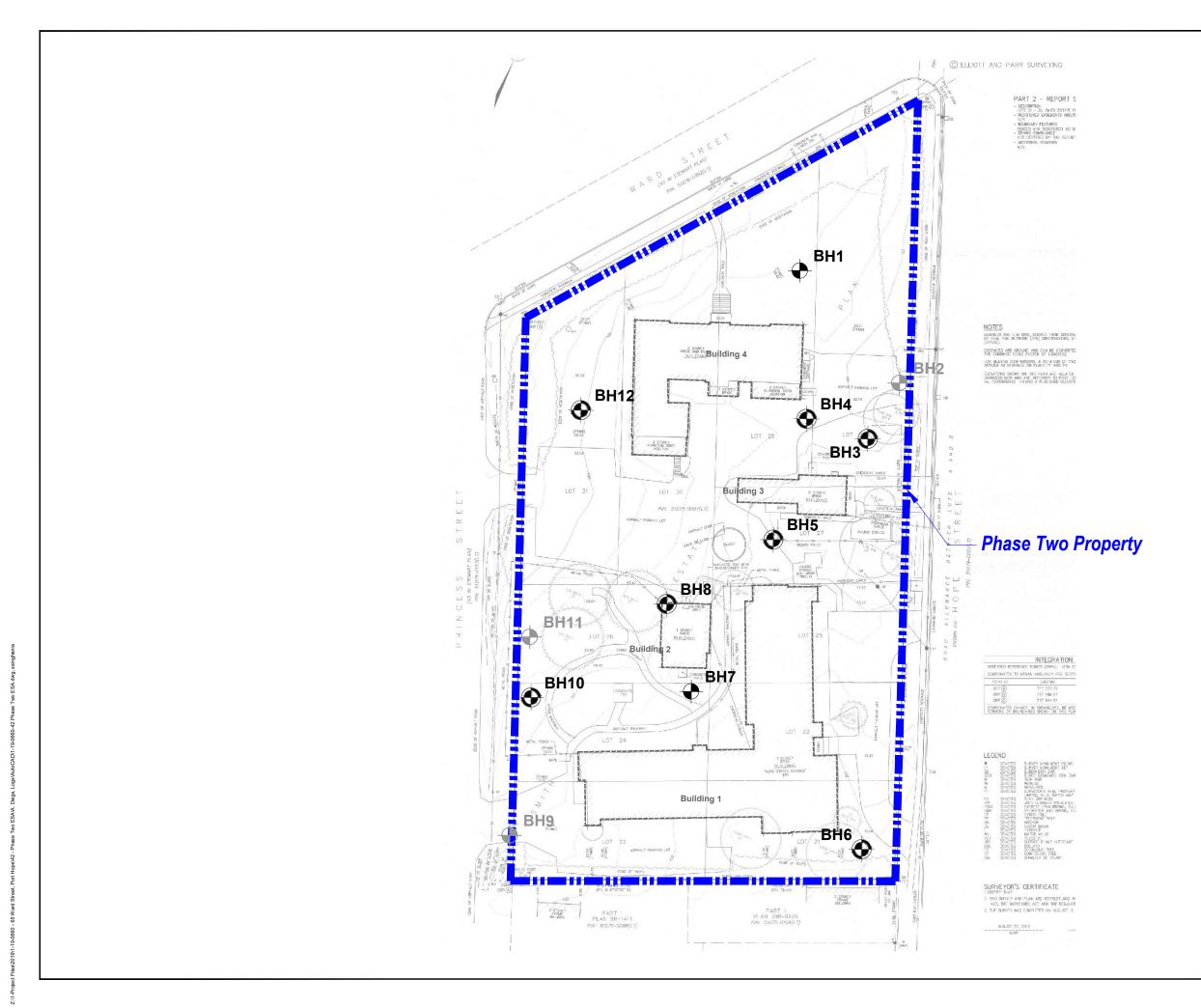
- 1. Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- 2. Chapman, L.J. and Putnam, D.F. 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- 3. Freeze, R. Allen and Cherry, John A., 1979. Ground water. Page 29.
- 4. Ministry of the Environment, Conservation and Parks, December 1996. *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.*
- 5. Ministry of Environment, Conservation and Parks, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- 6. Ministry of the Environment, Conservation and Parks, June 2011. *Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.*
- 7. Ministry of the Environment, Conservation and Parks, July 2011. *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.*
- 8. Terraprobe Inc. "Phase One Environmental Site Assessment, 350 Bloor Street East, Toronto, Ontario" DRAFT report dated September 25, 2019.

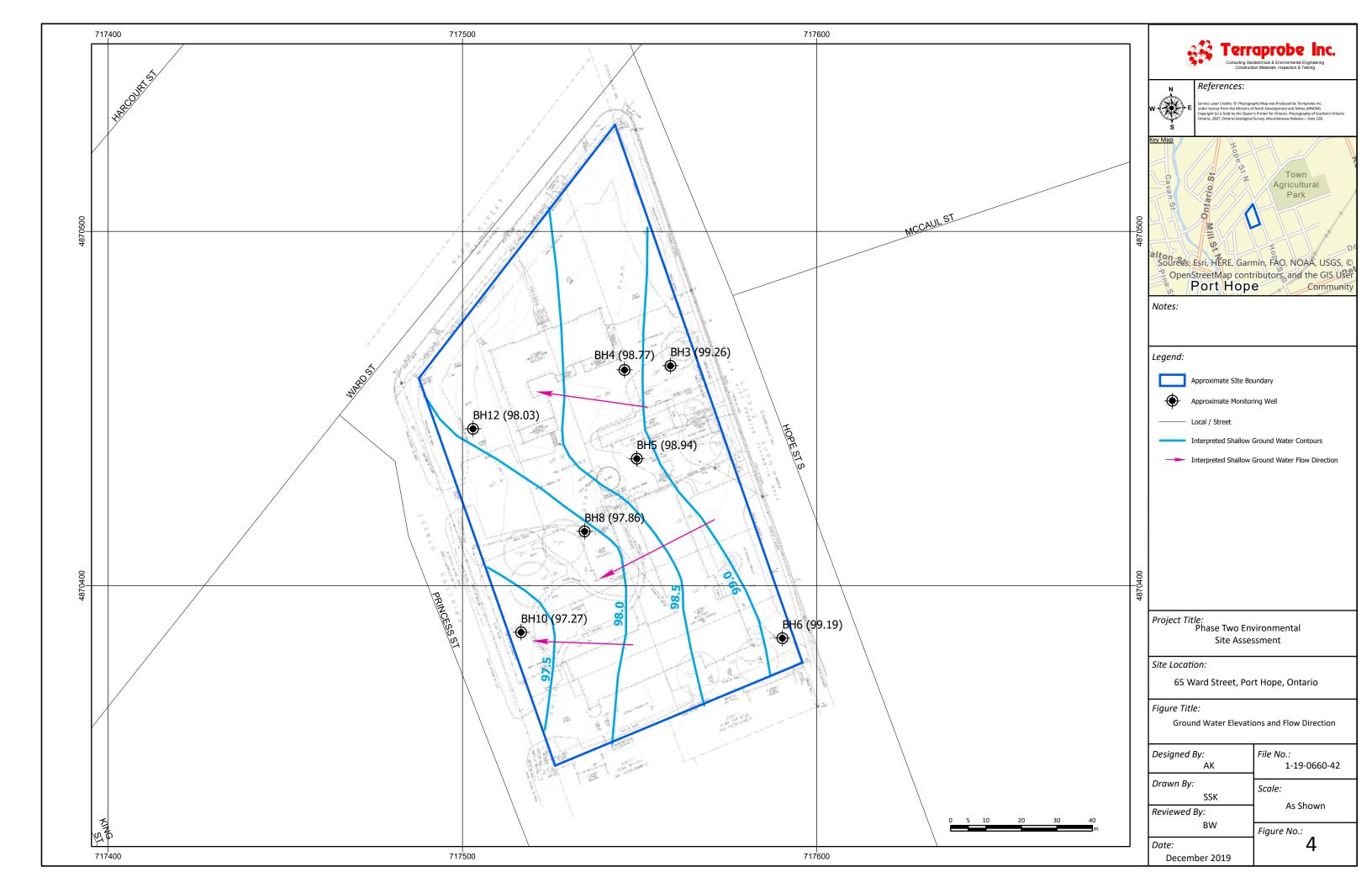
9.0 LIMITATIONS AND USE OF THE REPORT

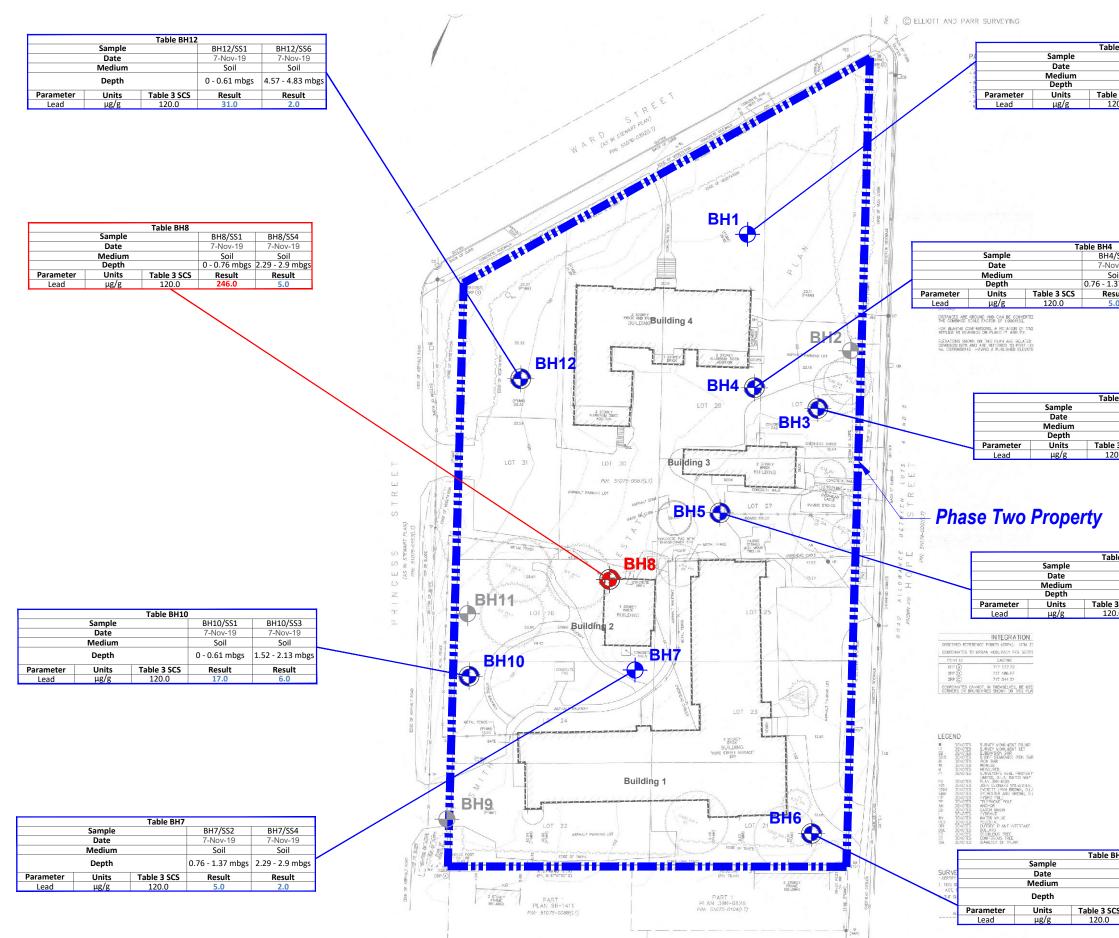

This report was prepared for the exclusive use of CVH (No. 6) LP (Client) and is intended to provide an assessment of the environmental condition on the property located at 65 Ward Street and 18-20 Hope Street South in Port Hope, Ontario. The report was prepared for the purpose of identifying potential environmental concerns, including an assessment of the likelihood that the environmental quality of the soil and ground water at the Property may have been adversely affected by past and present practices at the Property, and/or those of the surrounding properties prior to development of the Property. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

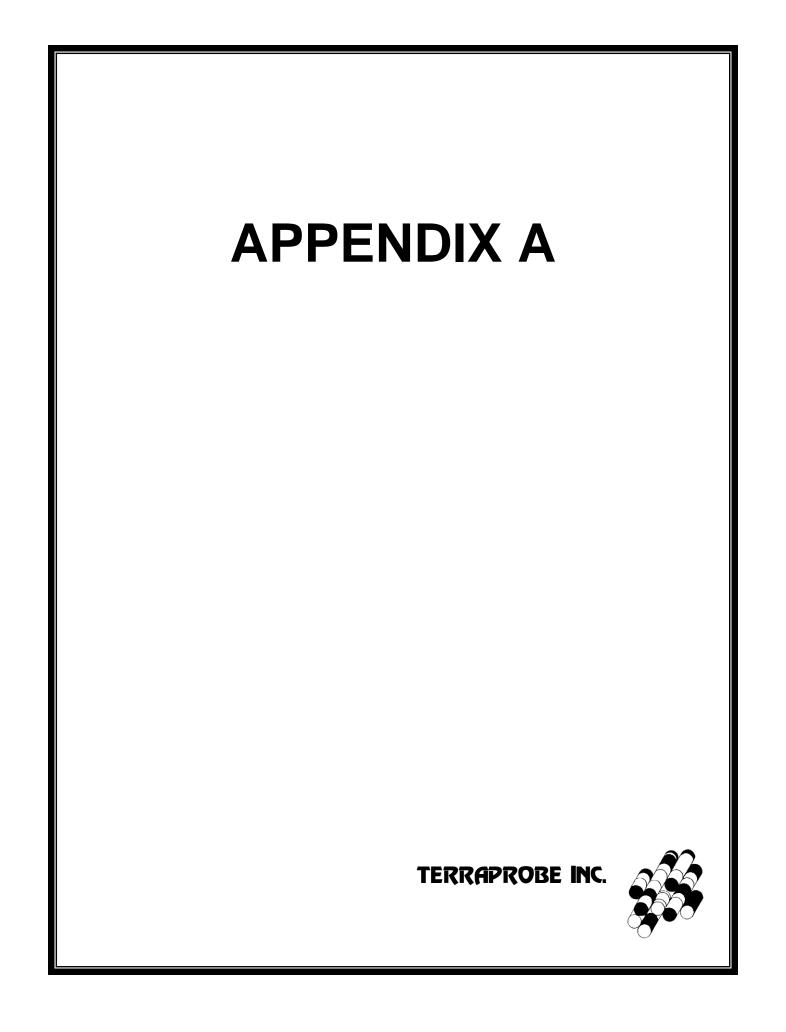

The assessment should not be considered a comprehensive audit that eliminates all risks of encountering environmental problems. The information presented in this report is based on information collected during the completion of the subsurface investigation conducted by Terraprobe Inc. It is based on conditions at the Property at the time of the site inspection. The subsurface conditions were assessed based on information collected at specific borehole and monitoring well locations. The actual subsurface conditions between the sampling points may vary.


There is no warranty expressed or implied by this report regarding the environmental status of the Property. Professional judgment was exercised in gathering and analyzing information collected by our staff, as well as that submitted by others. The conclusions presented are the product of professional care and competence, and cannot be construed as an absolute guarantee.


In the event that during future work new information regarding the environmental condition of the Property is encountered, or in the event that the outstanding responses from the regulatory agencies indicate outstanding issues on file with respect to the Property, Terraprobe should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.







	Terra	probe Inc.		
11 Indell Lar	Construction Mate	cal & Environmental Engineering erials, Inspection & Testing tario L6T 3Y3 (905) 796-2650		
Notes:	Reference: Lots 21,22,23 Smith Estate Municipality Referance No Dated: Augus	,24,25,26,27,28,29,30 And 31 Plan of Port Hope : 19-25-717-00		
Legend:	Phase Two Prop Approximate Bo			
↓		allow Borehole Location		
۲		nitoring Well Location		
Project Title:				
-	Project Title: Phase Two Environmental Site Assessment			
Site Location: 18-	Site Location: 18-20 Hope Street & 65 Ward Street, Port Hope, Ontario			
Figure Title:				
E	BOREHOLE AND MONITORING WELL LOCATION PLAN			
Designed By: Drawn By:	AK	File No.: 1-19-0660-42		
Reviewed By:	SSK BW	scale: As Shown		
m <i>Date:</i> Janı	uary 2020	Figure No.: 3		

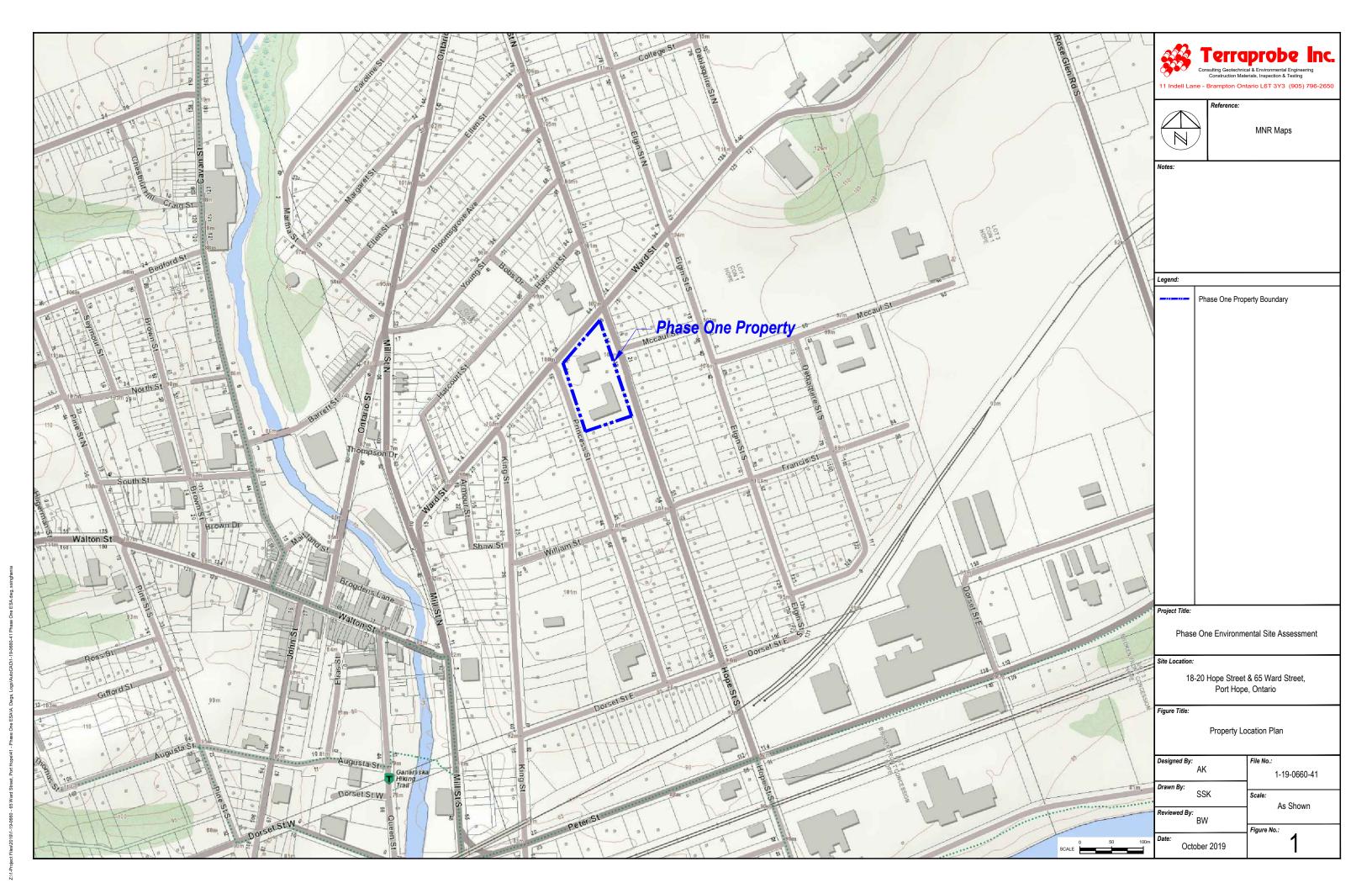
le BH1 BH1/SS1 BH1/SS4 7-Nov-19 7-Nov-19 Soil Soil 0 - 0.61 mbgs 2.29 - 2.9 mbgs e 3 SCS Result Result 20.0 31.0 7.0	View Reference: Nuncipality of Port Hope Reference No: 19:25:717-00 Date: August 23, 2019 By: Elliott and Parr Surveying BLUE
/SS2 DUP-1 BH4/SS5 ov-19 7-Nov-19 7-Nov-19 oil Soil Soil 37 mbgs 0.76 - 1.37 mbgs 3.05 - 3.35 mbgs sult Result Result .0 13.0 8.0	Legend: Phase Two Property Boundary Approximate Borehole Location Approximate Shallow Borehole Location Approximate Monitoring Well Location
BH3 BH3/SS1 BH3/SS3 7-Nov-19 7-Nov-19 Soil Soil 0 - 0.61 mbgs 1.52 - 2.13 mbgs 2 3 SCS Result 0.0 20.0 6.0	
BH5/SS1 BH5/SS3 7-Nov-19 7-Nov-19 Soil Soil 0 - 0.61 mbgs 1.52 - 2.13 mbgs 3 SCS Result 0.0 91.0	Project Title: Phase Two Environmental Site Assessment
	Site Location: 18-20 Hope Street & 65 Ward Street, Port Hope, Ontario Figure Title: BOREHOLE AND MONITORING WELL LOCATION PLAN
BH6 BH6/SS1 BH6/SS4 7-Nov-19 7-Nov-19 Soil Soil 0 - 0.61 mbgs 2.29 - 2.72 mbgs CS Result 26.0 3.0	Designed By: AK File No.: Drawn By: SSK 1-19-0660-42 Drawn By: SSK Scale: Reviewed By: BW Figure No.: Date: Figure No.:
	January 2020 5

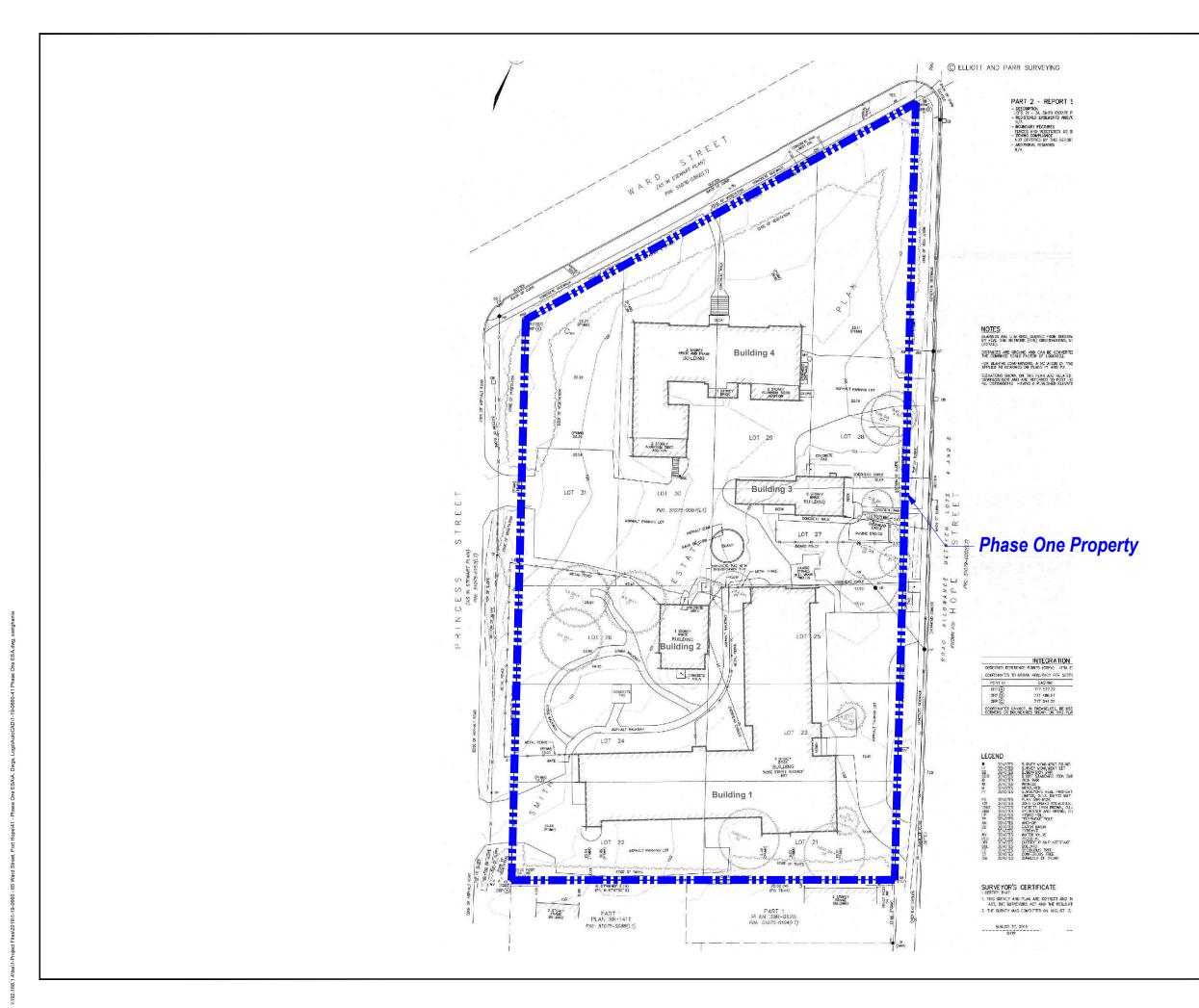
PHASE ONE CONCEPTUAL SITE MODEL

65 Ward Street, port Hope

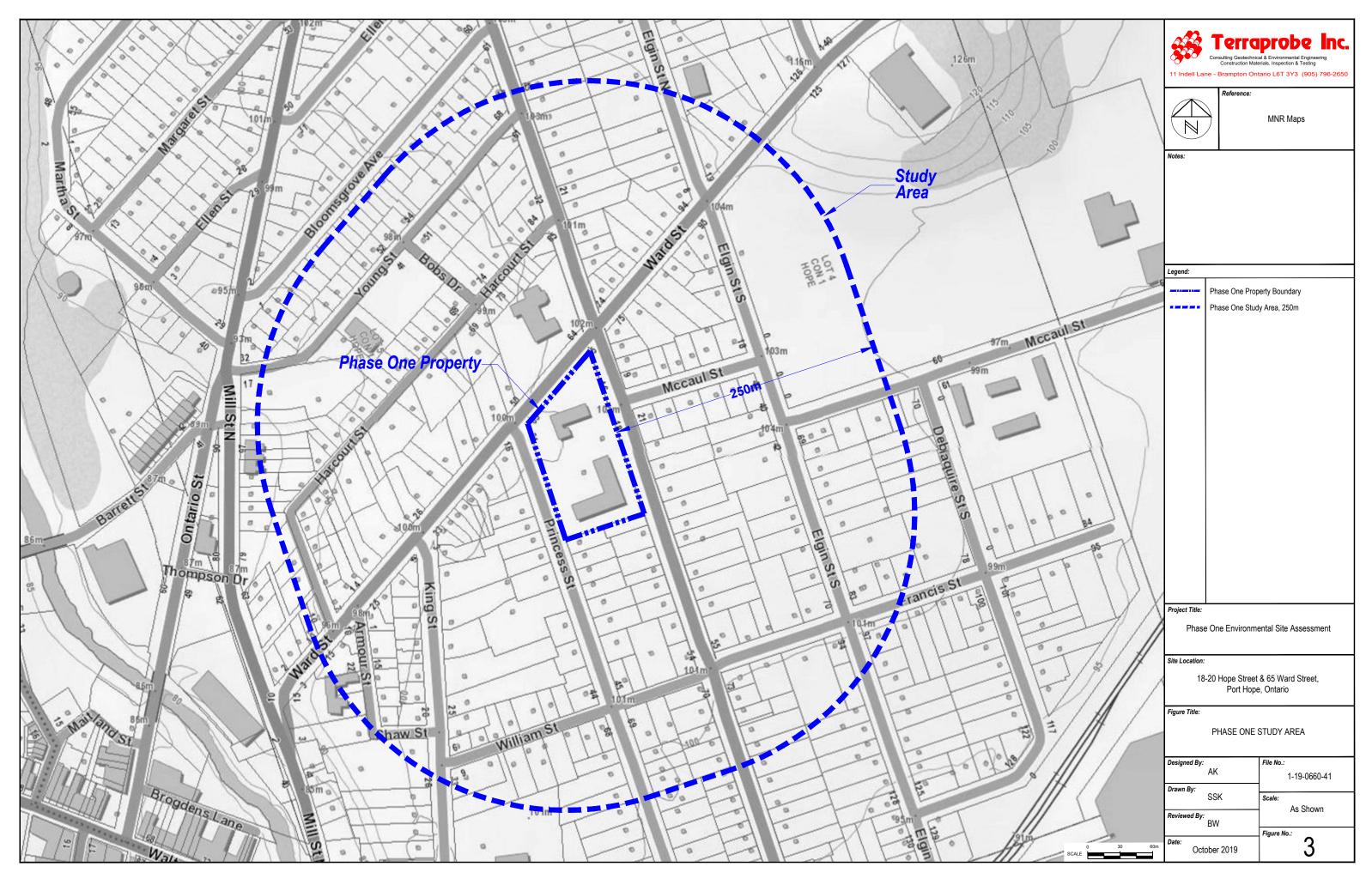
Phase O	ne CSM	Information Pertaining to Property		
Figures of the Phase One Study Area are provided that:				
i.	Show any existing buildings and structures,	There are four (4) buildings on the Property at the time of the site inspection. Three (3) Buildings were unoccupied while one (1) building was used as Nursign Home. The Property has the municipal addresses of 18 & 20 Hope Street South and 65 Ward Street. The legal description of the Property is Lots 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 Smith Estate Plan, Town of Port Hope, Now in the Municipality of Port Hope, County of Northumberland (PIN # 51076-0392 (LT).		
ii.	Identify and locate water bodies located in whole or in part on the Phase One Study Area	No water bodies were identified on the Property. The nearest water body is the Ganaraska River which is located approximately 0.52 km west of the Property. All water bodies on the Phase One Property and in the Phase One Study Area are shown on Figure 1 (if any).		
iii.	Identify and locate any Areas of Natural Significance located in whole or in part on the Phase One Study Area	Terraprobe reviewed the Ontario Ministry of Natural Resources and Forestry NHIC database for natural area listings. No Areas of Natural Significance were located in the Phase One Study Area.		
iv.	Locate any drinking water wells at the Phase One Property	No drinking water wells were identified on the Property.		
v.	Show roads, including names, within the Phase One Study Area	The Property is bounded by Ward Street and an elementary school to the north, Princess Street and residential homes to the west, Hope Street South and residential homes to the east and William/Francis Street and residential homes to the south.		
		Other roads and properties within the Study Area are presented on Figure 3.		
vi.	Show use of properties adjacent to the Phase One Property	The Land Uses of the adjacent properties are shown on Figure 4.		
vii.	Identify and locate area where any potentially contaminating activity has occurred, and show tanks in such areas	Potentially Contaminating Activities (PCAs) located on the Property and within the Study Area are shown on Figure 5.		
viii.	Identify and locate any areas of potential environmental concern	Eight (8) Areas of Potential Environmental Concern (APECs) and associated Contaminants of Potential Concern are described on the Table of Areas of Potential Environmental Concern. The location of the APECs on the Phase One Property are shown on Figure 6.		

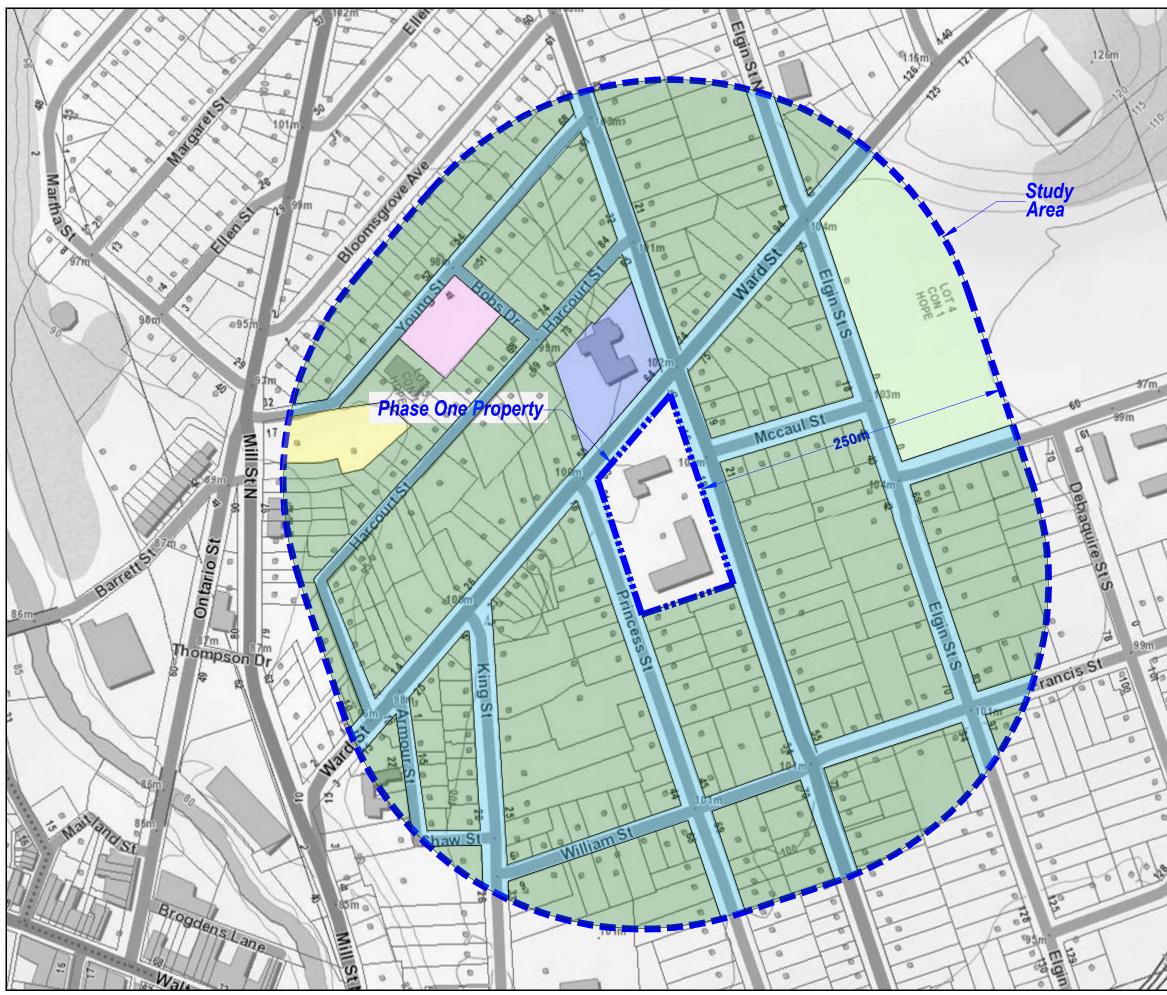
Phase C	One CSM	Information Pertaining to Property		
The following is a description and assessment of:				
i.	i. Any areas where potentially contaminating activity on or potentially affecting the Phase	65 Ward Street (Phase One Property)		
		• #NA ¹ – De-icing of Parking Lot and Walkways		
	One Property has occurred,	65 Ward Street (Phase One Property)		
		• #30 – Importation of Fill Material of Unknown Quality		
		65 Ward Street (Phase One Property)		
		• #28 – Gasoline and Associated Products Storage in Fixed Tanks		
		18 Hope Street South (Phase One Property)		
		• #28 – Gasoline and Associated Products Storage in Fixed Tanks		
		20 Hope Street South (Phase One Property)		
		• #28 – Gasoline and Associated Products Storage in Fixed Tanks		
		20 Hope Street South (Phase One Property)		
		• #30 – Importation of Fill Material of Unknown Quality		
		20 Hope Street South (Phase One Property)		
		• #28 – Gasoline and Associated Products Storage in Fixed Tanks		
		20 Hope Street South (Phase One Property)		
		• #55 – Transformer Manufacturing, Processing and Use		
ii.	Any contaminants of potential	Contaminants of Potential Concern (CoPCs) identified the Property include:		
	concern	• Metals in soil and groundwater		
		Hydride Forming Metals in soil and groundwater		
		VOCs in soil and groundwaterPHCs in soil and groundwater		
		 PAHs in soil and groundwater 		
		PCBs in soil and groundwater		
iii.	The potential for underground utilities, if any present, to affect contaminant distribution and transport	During the site inspection, connections for hydro, natural gas and communications were observed indicating underground utility connections. As such, there may be potential for underground utilities to affect the horizontal distribution of transport of contaminants.		

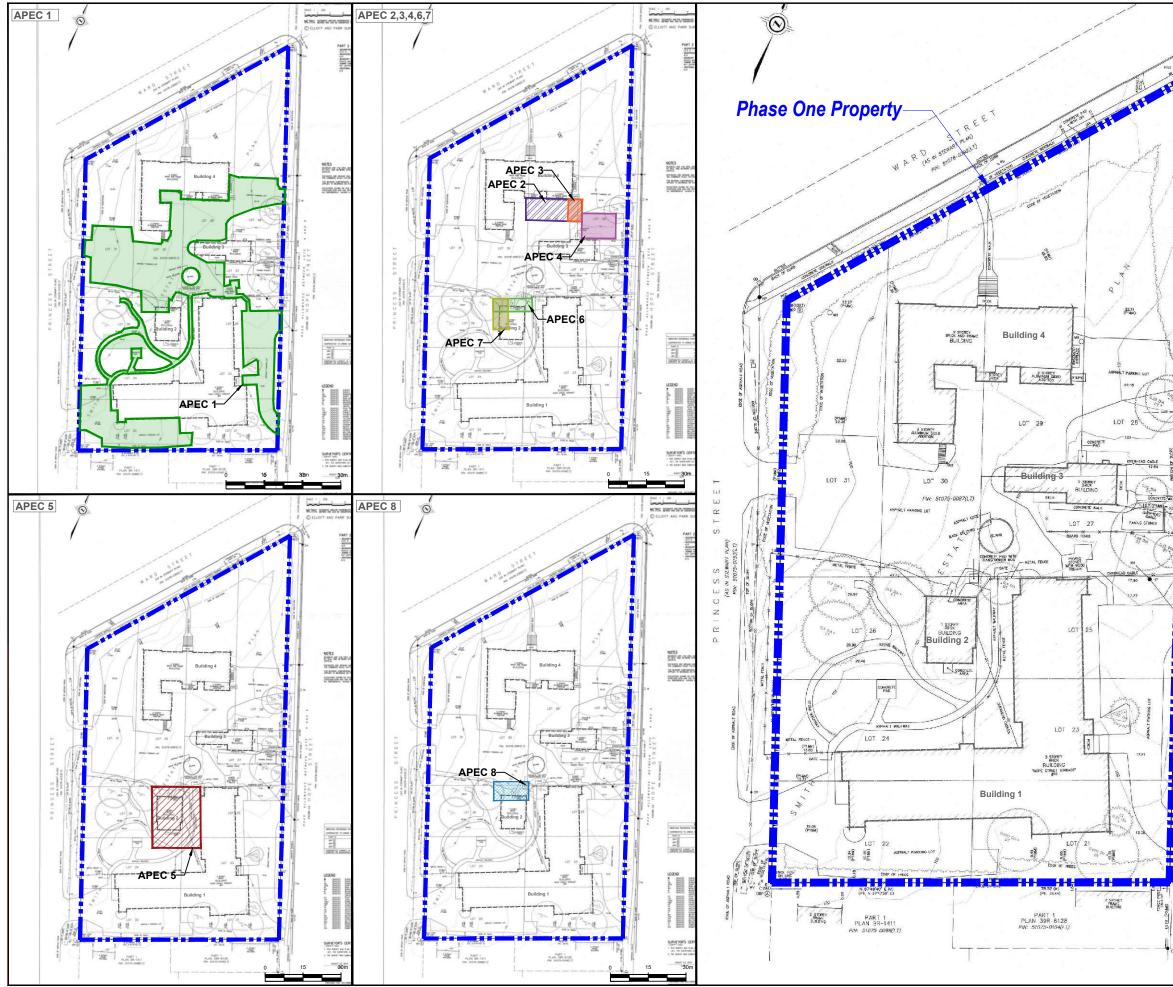


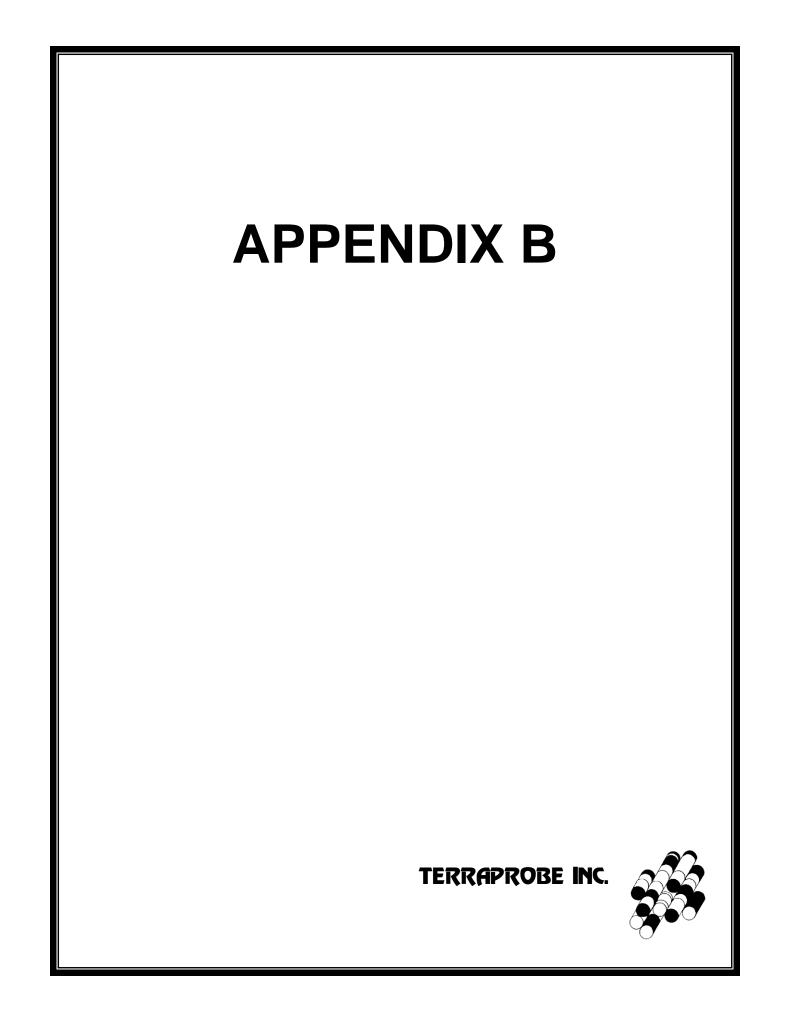

Phase O	ne CSM	Information Pertaining to Property	
iv.	Available regional or site specific geological and hydrogeological information,	 Topography The OBM, Toporama, MNR and google earth maps were reviewed and it was identified that the elevation of the Property was approximately 101 m above sea level (masl). The Property is primarily flat and sloping towards west. Hydrogeology The nearest water body is the Ganaraska River, which is located approximately 500 m west of the Property. The approximate depth to ground water, based on Water Well Records and previous investigations in the local area is expected to be approximately 3.0 mbgs. Ground water is expected to flow southwest towards the River. Geology (overburden) Based on published geology, the overburden material is expected to be sandy silt to silt, silt and clay with minor sand and gravel Geology (bedrock) The bedrock on the site is of the Shadow Lake Formation, which consists of limestone, dolostone, shale, arkose and sandstone. Geology (depth to bedrock) 8 to 15 m; however, the locations were both several hundred m from the Property. 	
v.	How any uncertainty or absence of information obtained in each of the components of the Phase One ESA could affect the validity of the model.	No uncertainty was encountered while conducting the Phase One ESA that could affect the validity of the model.	

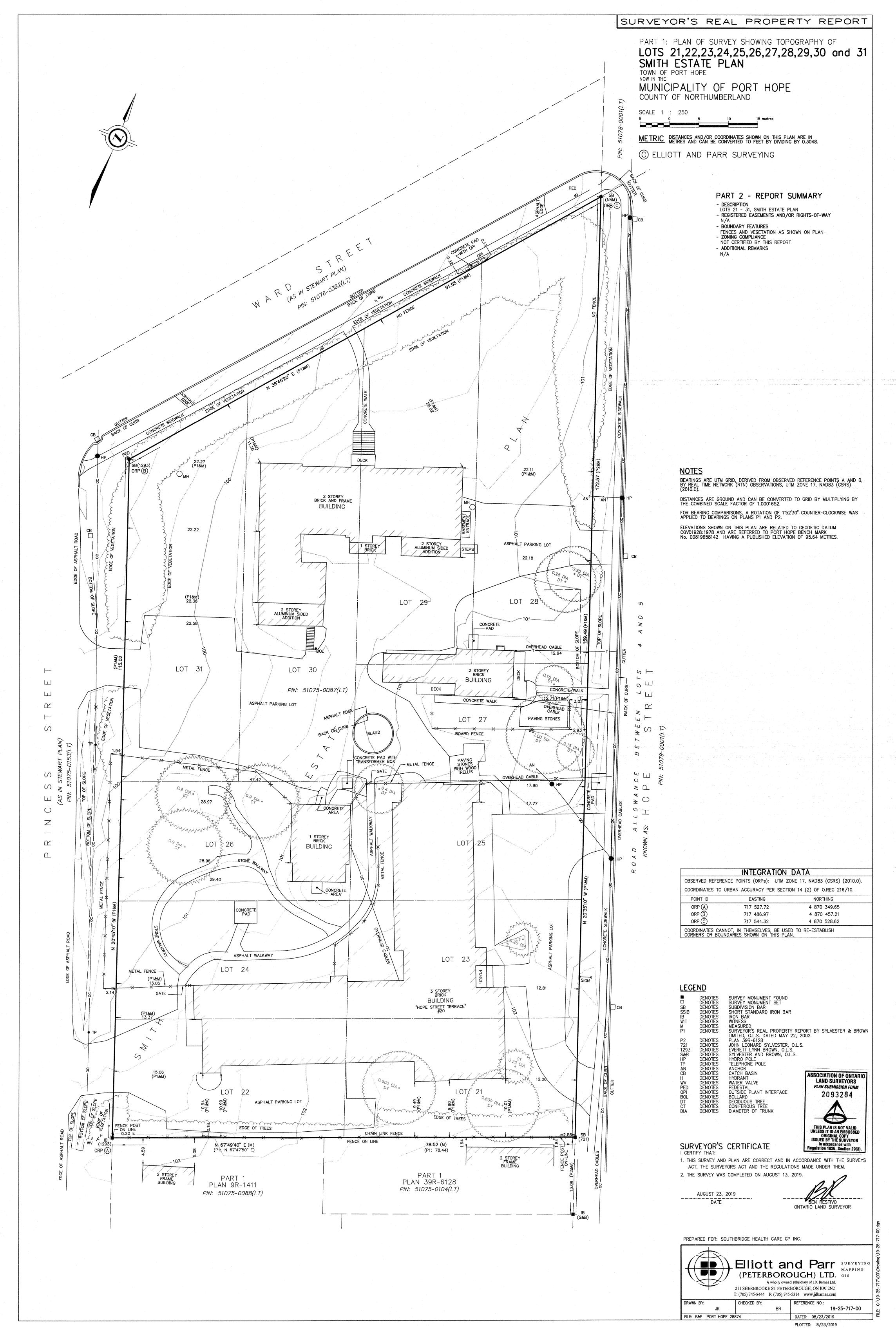
Figures:

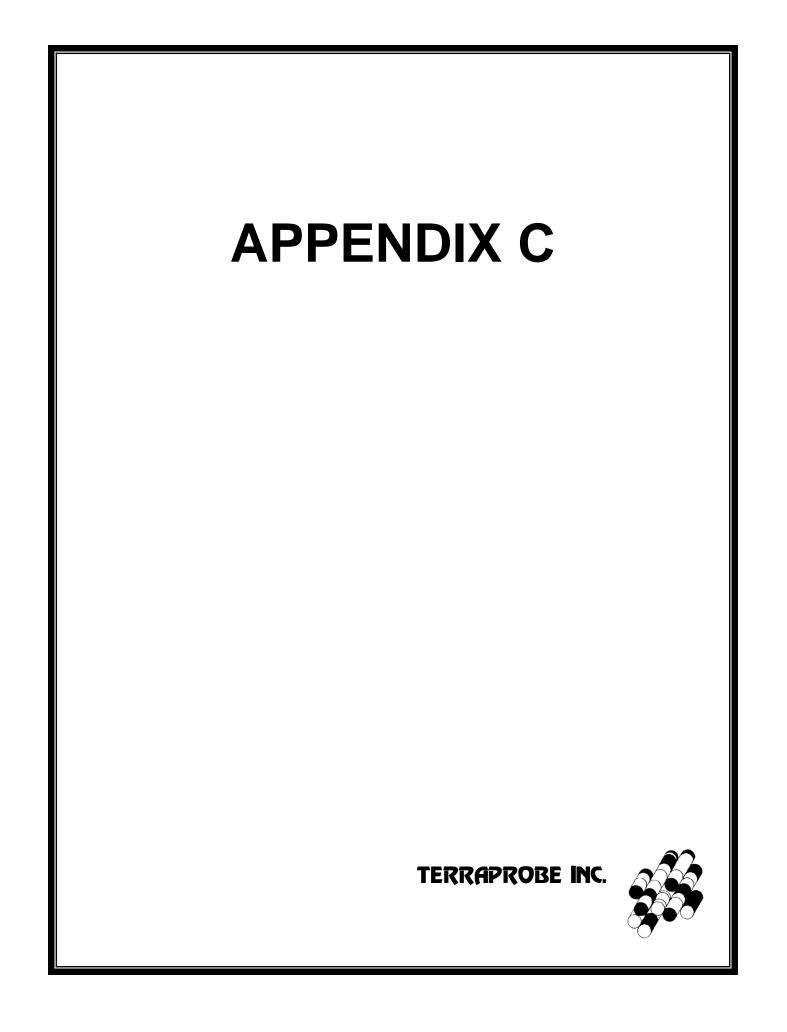

- Figure 1 Phase One Property Location
- Figure 2 Phase One Property
- Figure 3 Phase One Study Area
- Figure 4 Adjacent Property Land Uses
- Figure 5 PCA Locations
- Figure 6 APEC Locations




	U	Construction Mate	at & Environmental Engineering rials, Inspection & Testing ario L6T 3Y3 (905) 796-2650		
		Smith Estate Municipality Referance No Dated: Augus	of Port Hope : 19-25-717-00		
	Notes:	Dy. Ellott and			
	Notes: The locations of utilities shown are approximations only, and cannot be relied upon and should not be considered as utility locates or clearances. Before excavation or drilling takes place proper public and private utility locates will have to be obtained.				
	Legend:				
		hase One Prop	erty Boundary		
	Project Title:				
	-				
	Phase One Environmental Site Assessment				
	Site Location:				
	18-20 Hope Street & 65 Ward Street, Port Hope, Ontario				
	Figure Title:				
	PHASE ONE PROPERTY				
			File No.:		
	AK Drawn By:		1-19-0660-41		
	SSK Reviewed By: BW		As Shown		
20m	Date: October 2019		Figure No.: 2		




K	0	nsulting Geotechnic Construction Mate Brampton On	a & Environmental Engineering arials, Inspection & Testing tario LGT 3Y3 (905) 796-2650
56, 000	Notes:		T b/tNRtdMdap s p data © 2015 Google York Region Maps
F	Legend:		
MccaulSt	PH Ra CC CC Pa In	hase One Stud esidential Lanc	l Use d Use (Roads) d Use
B4			
E	Project Title: Phase O	ne Environme	ental Site Assessment
0	Site Location: 18-20	Hope Street Port Hope	& 65 Ward Street, e, Ontario
THE REAL	Figure Title:	CENT PROP	ERTY LAND USES
5 // /	Designed By: TV Drawn By: SS		File No.: 1-16-0281-41 Scale:
0 30 60m	Reviewed By: ME Date:	3	As Shown
	Novemb	er 2016	4



	5 10 13 madeus			
	ES AND/OR COORDINATES SHOWN ON T NOD CAN BE CONVERTED TO FEET BY AND PARR SURVEYING		Terra	al & Environmental Engineering rials, Inspection & Testing
Marine Carl	PART 2 - REPO		- Brampton On	tario L6T 3Y3 (905) 796-2650
	- DESCRIPTION - OTS 21 - 31 SOITH ES - REGISTERE EXAMINES - REGISTERE EXAMINES - REGISTERE EXAMINES - REGISTERE AND EARCH NOT CARTINE AT HIS - ADD TOTAL REMARKS N/A		Smith Estate Municipality Referance No Dated: Augus	of Port Hope b: 19-25-717-00
		Notes:		
	i de	APEC - Ar	ea of Potentia	Environmental Concern
e <mark>e</mark> Alfrederica		Legend:		
	DTES Kings are utv srid, derived from to Sal the vetwork (rtr) observation Sal)	 F	hase One Prop	erty Boundary
	TANCES ARE ORCUND AND CAN BE COT COMENCE SCALE FACTOR OF LOODIE L BEARING COMPARISONS, A ROTATION LIED TO BEARINGS ON PLANS P1 AND		APEC 1	
	VATIONS SHOWN ON THE FLAN ARE RI DIR20.1978 AND ARE REFERRED TO PA OC819858142 HAVING A PUBLISHED B		APEC 2	
	$\sim 10^{-1}$		APEC 3 APEC 4	
	1. A.		APEC 5	
NON S			APEC 6	
			APEC 7	
5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·	APEC 8	
	a			
астин встин 51079-0001(LT)				
	ж а			
AS LI				
B C A D WICHY				
	IN TEGRAT SERVED REFERENCE POINTS (CRPL): CORDINATES TO URBAIN ADDURACY PER			
	PCHT ID EASTING ORP (1) 717 527.72 ORP (2) 717 486.87	Project Title:		
Converting of the second secon	DRP () 717 544.32 CORDINATES CANNOT, IN THEMELY S CORRENS OF BOUNDARES SHOWN ON TH	-	One Environme	ental Site Assessment
	GEND DENOTES SURVEY MOREMENT I DENOTES SURVEY MOREMENT I DENOTES SUBVEY MOREMENT I DENOTES SUBVEYSION I AR	Site Location:		
	BUNDTES SUDDYISON AA B DENOTES SHORT STANDARD IN DENOTES HORT STANDARD IN DENOTES INON BAR DENOTES MEASURED DENOTES MEASURED DENOTES SUPPLYOTES TAL PF DENOTES SUPPLYOTE TAL PF	18-2	Hope Street C Port Hope	& 65 Ward Street, e, Ontario
22 721 530 530 19	DENOTES JOHN GERNARD SYLV 3 DENOTES JOHN LEONARD SYLV 3 DENOTES EVERETT LINN BROW 4 DENOTES SYLVESTER AND BRO DENOTES HYDRO FOLT DENOTES TELEFHONE POLE	Figure Title:		
2	CEND PROTES DEVELS		APEC LO	CATIONS
50 721		Designed By: A	к	File No.: 1-19-0660-41
1.1	IRVEYOR'S CERTIFICATE ENDEVITHATE THIS SURVEY AND PLAN ARE CORRECT ACT. THE SURVEYORS ACT AND THE R THE SURVEY WAS CONFLETED ON AUG.	Drawn By: S	SK	Scale:
문공 (v	AUGUST 23. 2019 DATE	<i>Reviewed By:</i> B	W	As Shown
	REPARED FOR SOUTHBRIDGE HEALTH O	Date: Octob	er 2019	Figure No.: 6

POINT ID	EASTING	NORTHING
ORP (A)	717 527.72	4 870 349.65
ORP	717 486.97	4 870 457.21
ORP C	717 544.32	4 870 528.62

January 8, 2020

File No. 1-19-0660-42 Brampton Office

Engineering Services Port Hope Public Works Office 5 Mill Street South Port Hope, ON L1A 2S6

Attention: Mike van den Broek

RE: NOTIFICATION OF INTENT TO USE NON-POTABLE GROUND WATER STANDARD UNDER PART XV.1 OF THE ENVIRONMENTAL PROTECTION ACT

Terraprobe Inc. has been retained by the owner of a property in the Municipality of Port Hope to complete a Phase Two Environmental Site Assessment. The municipal address of the property is 65 Ward Street and 18-20 Hope Street South, Port Hope, Ontario.

Terraprobe intends to use the Full Depth Site Condition Standards in a Non-Potable Ground Water Condition, Table 3, for residential property use from the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" for the evaluation of soil and ground water at the property. This letter is to formerly notify the municipality of Port Hope of the intention to use the non-potable ground water criteria for the above noted property. The subject property and surrounding area are municipally serviced by potable water and sewers.

Please contact our office within 30 days if the Municipality of Port Hope has any objection to the use of non-potable ground water criteria at the property. If you have any questions, please do not hesitate to call this office.

Yours truly,

Terraprobe Inc.

w

Amir Karim, B.Eng., E.I.T.

Greater Toronto 11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250
 Hamilton – Niagara
 Ce

 903 Barton Street, Unit 22
 220

 Stoney Creek, Ontario L8E 5P5
 Ba

 (905) 643-7560 Fax: 643-7559
 (70

 www.terraprobe.ca

 Central Ontario

 2
 220 Bayview Drive,

220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

File No. 1-19-0660-42 Brampton Office

RE: SAMPLING AND ANALYSIS PLAN (SAP) 65 WARD STREET AND 18-20 HOPE STREET SOUTH PORT HOPE, ONTARIO

1. INTRODUCTION

This appendix presents the Sampling and Analysis Plan (SAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA) for the Property located in the southwest corner of the intersection of Ward Street and Hope Street South in the Port Hope, Ontario with the municipal address of 65 Ward Street and 18-20 Hope Street South, in Port Hope, Ontario (hereinafter referred to as the 'Property'). The Phase Two ESA is conducted to provide characterization of the Property subsurface conditions, identify the extent of soil and ground water impacts, if any, and to assess remedial options such that, upon completion of remedial actions, if required, a Record of Site Condition (RSC) can be filed on the Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry. The SAP presents the procedures and approach to the field investigative activities to characterize the Property site conditions and meet the data quality objectives of the Phase Two ESA.

The SAP presents the sampling program for the Property, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control (QA/QC) measures for the collection of accurate, reproducible and representative data. These components are described in further detail below.

2. QUALITY ASSURANCE AND QUALITY CONTROL PROGRAM

The data quality objectives of the quality assurance/quality control (QA/QC) program is to obtain soil and ground water samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program are achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy.

Greater Toronto 11Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250

TerraprobeInc.Hamilton – NiagaraCentra903 Barton Street, Unit 22220 BaStoney Creek, Ontario L8E 5P5Barrie(905) 643-7560 Fax: 643-7559(705)www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 The field QA/QC program includes the following components:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC components are provided below.

2.1 Decontamination Protocols

Decontamination protocols are followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split soil sampling devices are cleaned and decontaminated between sampling intervals and auger flights between borehole locations in accordance with Standard Operating Procedure (SOP) requirements as indicated in Appendix E. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters are decontaminated between monitoring well locations during well development and purging activities. All decontamination fluids are collected and stored in sealed, labelled containers.

2.2 Equipment Calibration

All equipment requiring calibration are calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments are checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration is checked prior to the beginning of sampling activities. All calibration data are documented in a bound hard cover notebook.

2.3 Sample Preservation

Laboratory supplied sample containers are used for all sampling conducted on the Property. All samples are preserved using appropriate analytical test group specific reagents, as required and as provided by the laboratory, and upon collection placed in ice-filled insulated coolers for storage and transport.

2.4 Sample Documentation

All samples are assigned a unique identification number, which is recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples are handled and transported following Chain of Custody protocols.

2.5 Field Quality Control Samples

Field quality controls samples are collected to evaluate the accuracy and reproducibility of the field sampling procedures. For soil sampling, one (1) field duplicate sample is collected for every ten (10) samples of a specific geologic unit submitted for analysis. For ground water sampling, one (1) field duplicate is collected for every ten (10) samples submitted for chemical analysis. The field duplicate samples are assessed by calculating the relative percent difference (RPD) and comparing to the analytical test group specific acceptance criteria.

For ground water samples submitted for the analysis of VOCs, one (1) field blank prepared in the field using de-ionized water and/or one (1) trip blank prepared by the contractual laboratory are submitted for chemical analysis to evaluate the potential for sample cross-contamination during sampling and transportation. The recommended alert criterion is the detection of any test group analyte at a concentration in excess of laboratory detection limits.

3. DATA QUALITY OBJECTIVES

The data quality objectives of the quality assurance/quality control (QA/QC) program are as follows:

- To obtain soil and ground water samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA.
- To collect samples of unbiased (i.e. non-contaminated) samples, document sampling procedures, and to collect appropriate QC samples to provide a measure of sample reproducibility and accuracy.
- To collect field quality control samples at a rate that meets or exceeds those specified in Section 2.5, and to ensure that the results of those QC samples are satisfactory.

The data quality objectives for all types of field data collected during the Phase Two ESA field investigation that set the level of uncertainty in environmental data were set such that:

- Decision-making is not affected; and,
- The general (general) objectives of the investigation are met.

The data quality objectives are met through implementation of the QA/QC program and in the use of the Standard Operating Procedures identified below.

4. STANDARD OPERATION PROCEDURES FOR FIELD INVESTIGATION METHODS

To meet the requirements of the field sampling program, the following field investigative methods are undertaken:

- Borehole Drilling;
- Field Screening Measurements, including Calibration Procedures;
- Monitoring Well Installation;
- Monitoring Well Development;
- Field Measurement of Water Quality Indicators, including Calibration Procedures;
- Residue Management Procedures;
- Ground water Level Measurements;
- Elevation Survey; and,
- Ground water Sampling.

The following procedures are not required for this investigation:

- Excavating; and,
- Sediment Sampling.

The field investigative methods required for this investigation are described in the following sections.

4.1 Borehole Drilling

Boreholes are advanced at the Property to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of ground water monitoring wells. Multiple boreholes are required at the Property and would require depths to investigate the surficial fill and native till overburden materials to provide for the collection of samples of the surficial and subsurface materials beneath the Property. Additional boreholes may be drilled for delineation of any soil and ground water impacts identified during the investigation. The borehole locations are selected to assess the soil and ground water quality in the areas of potential environmental concern (APECs) identified at the Property as below:

- 1. APEC 1 is the result of on-site sources which includes the de-icing of asphalt parking lot and walkways located on the Property. Contaminants of Potential Concern (COPCs) are Electrical Conductivity (EC) and Sodium Absorption Ratio (SAR). The COPCs may have impacted the soil and ground water.
- 2. APEC 2 is the result of on-site sources which include the importation of fill material of unknown quality at the north portion of the Property. COPCs are Metals, Hydride Forming Metals, PHCs (F1-F4) and PAHs. The COPCs may have impacted the soil and ground water.
- 3. APEC 3 is the result of on-site sources which includes a historic fuel storage tank identified at the north portion of the Property. COPCs are BTEX and PHCs (F1-F4). The COPCs may have impacted the soil and ground water.
- 4. APEC 4 is the result of on-site sources which includes a historic fuel storage tank identified at the east portion of the Property. COPCs are BTEX and PHCs (F1-F4). The COPCs may have impacted the soil and ground water.
- 5. APEC 5 is the result of on-site sources which include the importation of fill material of unknown quality at the east portion of the Property. COPCs are Metals, Hydride Forming Metals, PHCs (F1-F4) and PAHs. The COPCs may have impacted the soil and ground water.

- 6. APEC 6 is the result of on-site sources which includes a historic fuel storage tank identified at the center-east portion of the Property. COPCs are BTEX and PHCs (F1-F4). The COPCs may have impacted the soil and ground water.
- 7. APEC 7 is the result of on-site sources which includes an active fuel storage tank identified in Building 2 at the center of the Property. COPCs are BTEX and PHCs (F1-F4). The COPCs may have impacted the soil and ground water.
- 8. APEC 8 is the result of on-site sources which includes an active pad mount Transformer located between Building 1 and 2 on the property (center of the Property). COPCs are PHCs and PCBs. The COPCs may have impacted the soil and ground water.

Prior to borehole drilling, utility clearances are obtained from public and private locators, as required. If any uncertainty regarding the location of a buried utility at a borehole location is encountered or if a borehole location is within 1 m of a buried utility, the borehole is initiated by daylighting or hand augering to a sufficient depth to be clear of any utilities. Boreholes are required to be advanced into the surficial fill and overburden soils by a drilling company under the full-time supervision of Terraprobe staff. An appropriate drill rig equipped with sampling arrangement is utilized to advance the boreholes through the overburden materials.

4.2 Soil Sampling

Soil samples for geologic characterization and chemical analysis are required to be collected on a continuous basis in the overburden materials using 5 cm diameter and 60 cm long tube samplers advanced into the subsurface using a portable direct push drill rig or a truck mounted drill rig equipped with hollow or solid stem augers and split spoon sampler. The soil cores are extruded from the plastic lined inner tubes/split spoon samplers. Geologic and sampling details of the recovered cores are logged and the samples are assessed for the potential presence of non-aqueous phase liquids.

Samples for chemical analysis are selected on the basis of visual, combustible gas and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of known impacts.

Recommended volumes of soil samples selected for chemical analysis are collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples are placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for VOC and/or petroleum hydrocarbon (PHC) fractions F1 and F2 analysis are collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples are assigned unique identification numbers, and the date, time, location, and requested analyses for each sample are documented in a bound field note book. The samples are submitted to the contractual laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves are used during the handling and sample collection for each soil core to prevent sample cross-contamination.

4.3 Field Screening Measurements, including Calibration Procedures

A portion of each soil core is placed in a re-sealable plastic bag and allowed to reach ambient temperature prior to field screening with a combustible gas detector or photo-ionization detector (PID) that is calibrated with an appropriate reference gas prior to use. The vapour measurements are made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling.

4.4 Monitoring Well Installation

Select boreholes are required to be instrumented as ground water monitoring wells installed with 3 m to 6 m long screens intercepting the ground water table in the overburden within the aquifers of interest. Additional monitoring wells may be installed for delineation of any ground water impacts identified during investigation, or to confirm ground water quality after remediation, if conducted. The monitoring wells are installed in general accordance with the Ontario Water Resources Act- R.R.O. 1990, Regulation 903 – Amended to O. Reg. 128/03 and are installed by a licensed well contractor.

The monitoring wells are constructed using 38 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The bases of the well screens are sealed with PVC end caps. All well pipe connections are factory machined threaded flush couplings. The pipe components are pre-wrapped in plastic, which are removed prior to insertion in the borehole to minimize the potential for contamination. No lubricants or adhesives are used in the construction of the monitoring well. The annular space around the well screens is backfilled with silica sand to an average height of 0.3 m above the top of the screen. Granular bentonite is placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells are completed with a flush mount or stick-up protective steel casing cemented into place.

4.5 Monitoring Well Development

The monitoring wells are developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters. The monitoring wells will be developed using a WaterraTM sample tubing and surge block SBD-25. Monitoring well development is monitored by visual observations of turbidity, and by taking field measurements of pH, specific conductance and temperature for every standing well (i.e. wetted casing) volume removed. Standing water volumes are determined by means of an electronic water level meter. Approximately three to five (3 to 5) wetted well volumes are removed; and, well development continues until the purged water has chemically stabilized as indicated by visual observations and field parameters measurements.

Well development details are documented on a well development log sheet or in a bound hard cover notebook. All development waters are collected and stored in labelled, sealed containers.

4.6 Field Measurement of Water Quality Indicators, including Calibration Procedures

Water quality parameter measurements are recorded using a multi meter instrument. The instrument probes are calibrated prior to use, following manufacturer's procedures using analytical grade reagents, or if obtained from a field equipment supplier, the calibration checked. Approximately three to five (3 to 5) wetted well volumes are removed; and, well development continues until the purged water has chemically stabilized as indicated by visual observations and field parameters measurements.

Details of field measurement of water quality indicators are documented on a log sheet or in a bound hard cover notebook, indicating the values of the parameters, the volumes of water purged, the date of purging, and additional information. A YSI Multi-Probe System was used.

4.7 Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of soil cuttings from drilling activities, decontamination fluids from equipment cleaning, and waters from well development and purging are placed in labeled, sealed drums for off-Site disposal, or are disposed of by the licensed well contractor.

4.8 Ground Water Level Measurements

Ground water level measurements are recorded for monitoring wells to determine ground water flow and direction in the overburden aquifers beneath the Property. Water levels are measured with respect to the top of the casing by means of a Solinst interface probe, an electronic water level meter. The water levels are recorded on water level log sheets or in a bound field notebook. The water level meter probe is decontaminated between each monitoring well location.

4.9 Elevation Survey

An elevation survey is conducted to obtain vertical control of the monitoring well locations at the Property. The elevation at the borehole locations within the underground parking garage and the finished ground surface elevation were derived from the drawings provided by Cushman and Wakefield. (*Plan Garage Level "C" and Plot Plan*, prepared by John B. Parkin Associate, dated June 25, 1985). It should be noted that the elevations provided on the Borehole Logs in Appendix G are approximate only, for the purpose of relating soil stratigraphy and should not be used or relied on for other purposes.

4.10 Ground Water Sampling

Ground water samples are collected from monitoring wells for chemical analysis. The monitoring wells are purged first of three to five wetted well volumes of water to remove standing water and draw in fresh formation water. Wells, which are purged dry, are to recover to 75% of static levels before sampling.

Recommended ground water sample volumes are collected into pre-cleaned, laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples are placed in an insulated cooler chilled with ice for storage and transport. Samples for VOC analysis are collected in triplicate vials prepared with concentrated hydrochloric acid as a preservative. Each VOC vial is inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head- space is present.

All ground water samples are assigned unique identification numbers, and the date, time, project number, company name, location and requested analyses for each sample are documented in a bound hard cover notebook. The samples are submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves are used for each sampling location to prevent sample cross-contamination.

5. PHYSICAL IMPEDIMENTS

No physical impediments are expected to be encountered that interfere with or limit the ability to conduct sampling and analysis of the required parameters and media at the Phase Two Property.

6. SAMPLING AND ANALYSIS PLAN RATIONALE AND PROCEDURES

The SAP has identified rationale and procedures for the following items:

- Choice of Sampling System;
- Sampling Media;
- Number of Samples;
- Sampling Frequency;
- Sampling Points;
- Sampling Depth Intervals;
- Other Field Information; and,
- Samples to be Submitted for Laboratory Analysis.

These sampling and analysis plan rationale and procedures are listed in further details in the following sections.

6.1 Choice of Sampling System

A judgemental sampling system has been selected for the purposes of this investigation. Random sampling and grid sampling systems have not been chosen as the primary sampling system in this investigation as APECs have been identified and there is an understanding as to where potential contaminants may be found. Investigation of the APECs is considered sufficient and more effective in locating contaminants within the Property.

6.2 Sampling Media

The soil sampling media consists of the earth fill underneath the surficial materials, and the underlying native glacial till. There are no APECs identified for the sediment at the Property and thus sediment is not included in the soil sampling media. The soil sampling, in the case of VOCs, is location-specific to assess for the potential presence of these chemical constituents based on field screening observations, or the identification of areas of potential concern.

The ground water samples are collected from the aquifers of interest contained within the native soil and glacial till. The ground water sampling is location-specific to assess for the potential presence of chemical constituents based on previous observations, or the identification of potential areas of concern.

6.3 Number of Samples

At least one sample is required to be taken for each contaminant of concern in each medium for which that contaminant was identified for each APEC. Where exceedances are found, additional samples may be required to delineate the impact.

6.4 Sampling Frequency

Soil sampling is completed at the Property at 0.6 m (2 ft.) for every 0.76 m (2.5 ft.) drilled for the first 3.0 m (10 ft.), then at 0.6 m (2 ft.) for every 1.52 m (5 ft.) drilled. However, if fill material is present then soil sampling proceeds at 0.6 m (2 ft.) for every 0.76 m (2.5 ft.) drilled until the samples no longer indicate the presence of fill material or until the depth of the investigation.

Ground water sampling and analysis is completed at the Property for each monitoring well at least once after the development of the well is complete and water quality parameters indicate the formation water is stable.

6.5 Sampling Points

Soil sampling points for PAHs may be identified by the presence of cinders or apparent indication of PAHs within the soil samples. Soil sampling points for PHCs may be identified by the presence of

hydrocarbon odours, signs of obvious staining, and combustible gas readings. Soil sampling points for VOCs may be identified by the presence of solvent odour and signs of obvious staining. Details including the exact depth are marked on the borehole log prior to sampling. Sampling points do not apply to Metals, Hydride-forming metals, and Other Regulated Parameters soil sampling as a composite sample is taken over a sampling depth interval. However, for reference, the mid-depth of the interval is used as the sampling point. Further details are indicated in Section 6.6. These details identify the specific locations of potential exceedances and assist in the analysis of migration and source of the contaminant of concern.

Sampling points for ground water samples are identified at the mid-point of the well screen elevation when the low flow sampling rate is equal to or lower than the recharge rate at the monitoring well of interest. However, if the sampling rate exceeds the recharge rate or if the water table is present below the mid-point of the well screen, the sampling point does not apply to ground water sampling. Instead a sampling depth interval is recorded using the top of the water table to the bottom of the well screen in the aquifer of interest. Further details are indicated in Section 6.6.

6.6 Sampling Depth Intervals

Sampling depth intervals for soil sampling are identified as the full split spoon sampler (or equivalent) depth with respect to the geodetic elevation. The sampling depth intervals typically correspond with the sampling frequency as mentioned in Section 6.4.

Sampling depth intervals for ground water sampling when non-low flow sampling is utilized is identified as the top of the well screen to the bottom of the well screen when the water table is above the top of the well screen. In the event the water table is below the top of the well screen, the top of the water table to the bottom of the well screen will be used as the sampling depth interval for ground water sampling.

6.7 Other Field Information

Vertical control of the boreholes and monitoring wells will ultimately be obtained through the completion of an elevation survey with reference to a geodetic benchmark. Ground water flow and direction in the water table aquifer are determined through ground water level measurements and the relative ground water elevations established in the Property elevation survey.

Wells are required with screens within the native soil, which is the aquifer of interest. This provides data regarding ground water quality in the aquifer of interest. The water table aquifer is the zone that is expected to be impacted in the APECs identified in the Phase One studies.

6.8 Samples to be Submitted for Laboratory Analysis

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials and ground water for chemical analysis of one or more of the following parameters: metals, hydride forming metals, sodium, ORPs, PHCs, VOCs and BTEX.

7. SAMPLING AND ANALYSIS PLAN CRITERIA

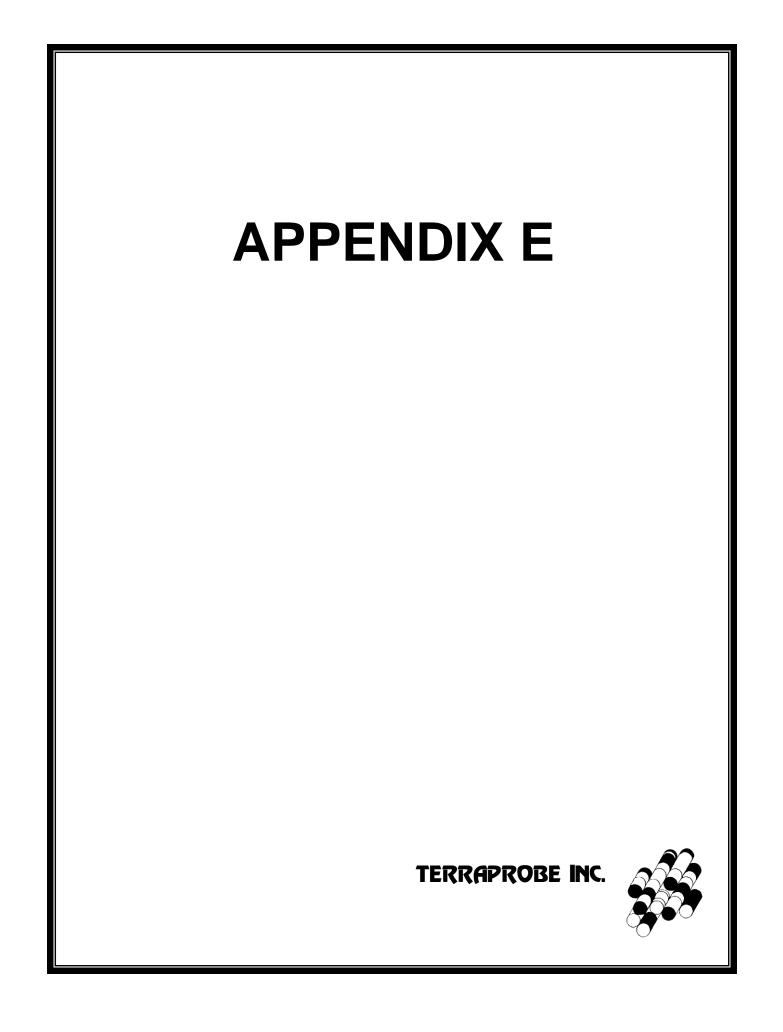
The QP considered the PCAs, all COPCs, and appropriate subsets of such contaminants and any other information and matters relating to the environmental condition of the property which are relevant to an informed professional judgment.

Based on the consideration of all matters and items above, the QP determined the sampling and analysis of COPCs and appropriate sampling and analysis for any other relevant contaminants that may be of concern at the Property.

The Phase Two ESA investigations, rationale for sampling locations with respect to APECs is summarized in the following table:

Area of Potential Environmental Concern	Location and Address of Potential Contaminating Activity	Potentially Contaminating Activity	Contaminants of Potential Concern	Media Potentially Impacted (Ground-water, soil and/or sediment)
APEC 1: North Portion of the Property	65 Ward Street Phase One Property	#NA ¹ – De-icing of Parking Lot and Walkways	EC/SAR in soil. Sodium, Chloride and Metals in ground water.	Soil and ground water
APEC 2: North Portion of the Property	65 Ward Street Phase One Property	#30 – Importation of Fill Material of Unknown Quality	Metals, Hydride Forming Metals, PHCs (F1-F4), PAHs	Soil and ground water
APEC 3: North Portion of the Property	65 Ward Street Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water

Area of Potential Environmental Concern	Location and Address of Potential Contaminating Activity	Potentially Contaminating Activity	Contaminants of Potential Concern	Media Potentially Impacted (Ground-water, soil and/or sediment)	
APEC 4: East Portion of the Property	18 Hope Street South Phase One Property	- Associated Products		Soil and ground water	
APEC 5: East- Central Portion of the Property	20 Hope Street South Phase One Property	#30 – Importation of Fill Material of Unknown Quality	Metals, Hydride Forming Metals, PHCs (F1-F4), PAHs	Soil and ground water	
APEC 6: East- Central Portion of the Property	20 Hope Street South Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water	
APEC 7: Central Portion of the Property	20 Hope Street South Phase One Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	PHCs (F1-F4), BTEX	Soil and ground water	
APEC 8: Central Portion of the Property	20 Hope Street South Phase One Property	#55 – Transformer Manufacturing, Processing and Use	PHCs, PCBs	Soil and ground water	



7.1 Plan of Implementation

Borehole	Rationale	APEC	Chemi	cal Analyses
Dorenoie	Kationale	ALEC	Soil	GW
BH1	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality.	APEC I	2 Metals 2 H-M	
BH3	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine possible contaminants and ground water elevation.	APEC 1 APEC 4	2 Metals 2 H-M 2 PHCs 2 VOCs 2 BTEX 2 PAHs	1 Metals 1 H-M 1 PHCs 1 VOCs 1 BTEX 1 PAHs
BH4	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine possible contaminants and ground water elevation.	APEC 1 APEC 2 APEC 3	2 M&I 2 H-M 2 PHCs 2 VOCs 2 BTEX 2 PAHs	1 M&I 1 H-M 1 PHCs 1 VOCs 1 BTEX 1 PAHs
BH5	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine possible contaminants and ground water elevation.	APEC 1 APEC 4 APEC 6	2 Metals 2 H-M 2 PHCs 2 VOCs 2 BTEX	1 Metals 1 H-M 1 PHCs 1 VOCs 1 BTEX
BH6	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality.	APEC 1	2 Metals 2 H-M	
BH7	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality.	APEC 5 APEC 7	2 Metals 2 H-M 2 PHCs 2 BTEX 2 PAH	

Borehole	Rationale	APEC	Chemical	Analyses
Borenoie	Kationale	ATEC	Soil	GW
BH8	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine possible contaminants and ground water elevation.	APEC 1 APEC 5 APEC 6 APEC 7 APEC8	2 M&I 2 H-M 2 PHCs 2 VOCs 2 BTEX 2 PCBs	1 Metals 1 H-M 1 PHCs 1 VOCs 1 BTEX 1 PCBs
BH10	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine possible contaminants and ground water elevation.	APEC 1 APEC 7	2 Metals 2 H-M 2 PHCs 2 VOCs 2 BTEX	1 Metals 1 H-M 1 PHCs 1 VOCs 1 BTEX
BH12	Borehole to determine soil stratigraphy. Sample earth fill and native soil to determine soil quality. Monitoring well placed to determine ground water elevation	APEC 1	2 Metals 2 H-M	

STANDARD OPERATING PROCEDURE – SOIL SAMPLING

General Procedures

Introduction

Subsurface investigations typically involve sampling of subsurface soils at various depths at locations of interest. Several soil sampling methods can be implemented depending on the nature of the investigations. Field screening of soil samples may be performed when potential contaminants of concern include VOC and PHC F1.

Equipment Required

- Nitrile Gloves
- Field Parameter Measurement Device (Gastech, PID)
- Laboratory Sample Bottles
- Terracores or sampling syringes (sampler)
- Field Notebook and/or Field Sheets
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice and cooler

- 1. Review sampling plan and sampling locations with project manager
- 2. Determine what equipment and supplies are required.
- 3. Obtain necessary sampling and monitoring equipment.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all sampling locations.
- 7. Assemble the appropriate laboratory supplied jars/vials.
- 8. Collect the samples to be analyzed
 - a. Borehole split spoon, sample from spoon
 - i. Split spoon sampling methods are primarily used to collect shallow and deep subsurface soils.
 - ii. Gravel, concrete, asphalt and etc. present at or near the surface of the sampling location should be removed prior to split spoon sampling.

	Terrapro	be Inc.	
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E 5P5	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-	(705) 670-0460 Fax: 670-0558
	www.terrap	probe.ca	

- iii. Split spoons used for soil sampling must be constructed with stainless steel and are 2 inches in diameter and 18 to 24 inches in length.
- iv. The top several inches of the material in the spoon must be discarded before remove any portion of the spoon for sampling.
- b. Test pit (backhoe), bag from excavator bucket, then sample.
 - i. Usually used in the collection of surface and shallow soil samples. Allow soil samples to be collected from very specific intervals.
 - ii. The bucket must be decontaminated prior to sample collection.
 - iii. Ensure to scrap off any smeared material on the surface of the bucket that may crosscontaminate the sample prior to jarring the soil sample.
 - iv. Make sure to not physically enter backhoe excavations to collect a sample for safety issue.
- c. Hand-dig (hang augers), sample.
 - i. Hand augers are typically used to advanced boreholes and collect surficial soils and shallow subsurface soils. A 4 inch stainless steel auger buckets with cutting heads are usually used. The bucket is advanced by simultaneously pushing and turning using an attached handle with extension.
 - ii. The top several inches of the soil collected by the auger bucket should be discarded and not be placed in the laboratory supplied container for sample submission.
 - iii. VOC samples need to be collected directly from the auger bucket, if possible.
 - iv. The entire hand auger assembly must be decontaminated before sampling at a new location. This is to minimize cross-contamination of soil samples.
- 9. Fill the appropriate jars, making sure to label properly; include the date, company name, parameter to be analyzed, and project number.
- 10. Change Nitrile gloves between samples.
- 11. Clean off loose soil that may be on the outside of the jar.
- 12. Place in a cooler with ice.
- 13. Log samples in field book.
- 14. Complete a Chain of Custody for all samples.
- 15. Package samples and complete necessary paperwork.
- 16. Transport samples (that have been kept cool) to laboratory or transport to office and call for pick up.

- SESD Operating Procedure Soil Sampling U.S EPA, December 2011
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011

STANDARD OPERATING PROCEDURE – BOREHOLE DRILLING

Solid and Hollow Stem Augers

Introduction

Soil drilling, using a drill rig or other equipment based on site accessibility is a common way to obtain soil samples on a site. Soil drilling is typically completed with a truck or bombardier-mounted drill rig, or Pionjar (or other portable drilling equipment) depending on the site accessibility. The driller operator will handle all equipment, including opening the split spoon.

Hollow stem augers are typically used when wet or loose cohesionless materials are encountered to permit sampling without removing the augers. Alternatively, solid stem augers are advanced and removed at each sampling depth. Samples and in-situ Standard Penetration Testing (STP) are conducted by driving a standard 2" diameter split spoon (hollow sampling tube) through a process of continuous or intermittent sampling. If monitoring wells are to be installed in the boreholes, hollow stem augers are to be used.

Equipment Required

- Personal Protective Equipment (PPE)
 - Hard hat, safety vest, protective eyewear, steel toed boots
- Nitrile Gloves
- Slider Bags
- Borehole logs & Clipboard
- Portable Soil Vapour Measurement Device (Gastech/PID)
- Laboratory Sample Bottles
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice
- Drums for Soil Storage

- 1. Prior to drilling, boreholes will be numbered and marked and the site cleared for utilities.
- 2. Downhole equipment is cleaned/decontaminated by the contractor.

	Terrapro	be Inc.	
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E 5P5	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-	(705) 670-0460 Fax: 670-0558
	www.terrap	probe.ca	

- 3. All drill cuttings are to be placed in labeled drums or other container and moved to a designated location.
- 4. Review sampling plan and borehole locations with project manager
- 5. Determine what equipment and supplies are required.
- 6. Obtain necessary sampling and monitoring equipment.
- 7. Coordinate with project manager and clients and drilling crew, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Perform health and safety meeting, discuss safety around rig and muster points should there be an emergency.
- 10. The technician will direct the drill crew where to set up the rig to begin drilling.
- 11. A borehole log must be prepared for every borehole drilled. Include: elevation, GPS coordinates, depth, soil classification, drilling details, sampling, water levels, free product (if any).
- 12. Record the type of equipment used (solid stem or hollow, type of rig) and the start time when drilling begins.
- 13. Sampling will be at pre-specified intervals; typically every 2 ¹/₂" to 10-15 feet then once every 5 feet from then on. Between samples, split spoons will be cleaned (if an environmental sampling is being conducted).
- 14. At each sampling interval record; interval number (or sample ID), blow counts, soil description, PPM reading
- 15. Record depth of borehole, caving (if any) and water level when borehole is complete.
- 16. Upon completion of drilling in an open borehole that will not be converted to a well the borehole is to be properly filled and abandoned. There are two methods depending on whether the static water level is above or below the bottom of the borehole.
 - a. Above and less than 20 feet deep: Abandon borehole by mixing cement or cement/bentonite grout and pouring the mixture into the borehole until it is filled to ground surface.
 - b. Below and more than 20 feet deep: Mix and pump cement/bentonite mixture to the bottom of the hole until filled to ground surface.

- Standard Operating Procedure No. 6. Drilling, Logging, and Sampling of Subsurface Materials.
- Geotechnical Field Investigations, Terraprobe Limited, July 1990.

STANDARD OPERATING PROCEDURE -FIELD SCREENING AND CALIBRATION

RKI Eagle Gastech and Mini Rae Photo-Ionization Detector

Introduction

Field screening is an important tool in that it provides data for onsite, real time total vapor measurements, evaluation of existing conditions, sample location optimization, extent of contamination, and health and safety evaluations.

RKI Eagle

Portable Multi-Gas Detector

The gastech can be used for reading headspace values in soil and water (wells). There are two types of 'Gastechs' in the Terraprobe office, the RKI Eagle 1 and Eagle 2. These portable gas detectors assist in screening field samples on many projects.

Portable VOC Monitor (Mini Rae 2000)

Portable VOC Monitors or PIDs (photo-ionization detector) monitors VOCs using the photo-ionization detector. If screening is required for VOCs, then this machine can be used. The PIDs are also used for health and safety for workers in enclosed spaces (such as trenches) in a known contaminated area.

Equipment Required

For Cailbration

- Canister of gas (Hexane at 400ppm for Eagle 1, Hexane at 1650ppm for Eagle 2, Isobutylene at 100ppm for PID)
- Regulator.
- Tubing to attach probe to canister. •

Field Screening

- Eagle or Mini Rae
- Nitrile Gloves
- Slider Bags
- Sampling Plan (from project manager) •

Terraprobe Inc.

Greater Toronto 11 Indell I ane Brampton, Ontario L6T 3Y3

Hamilton - Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E 5P5 Barrie, Ontario L4N 4Y8 (905) 796-2650 Fax: 796-2250 (905) 643-7560 Fax: 643-7559 www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 (705) 739-8355 Fax: 739-

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

- Access Agreements (if required)
- Field Notebook and/or Field Sheets Appropriate Sampling Jars

Procedure (Calibration)

In order to ensure accuracy in the field, Terraprobe calibrates its Gastechs and PIDs each time they will be in the field.

There are three different gas canisters – one for the Eagle 1, the other for the Eagle 2 and a third for the MiniRae. The Eagle 1 is calibrated using the concentration of 400ppm while the Eagle 2 is calibrated with the concentration of 1650ppm. The PID is calibrated with Isobutylene at a concentration of 100ppm. Calibrating each machine is similar in principle but there are differences due to the different models we are using.

Eagle 1:

- 1. Take the Eagle to a fresh-air location
- 2. Turn the Eagle on and allow one minute for warm up
- 3. Hold the AIR button until a tone sounds
- 4. Press and hold SHIFT/▼ and then press the DISP/ADJ button. This will display the Calibration menu.
- 5. Select Single Calibration, press Enter
- 6. Press Enter to select HEX
- 7. The screen displays the channel selected, and the gas reading will flash
- 8. Connect the tubing from the regulator to the Eagle's probe.
- 9. If needed, use the AIR /▲ and SHIFT/▼ buttons to adjust the reading to match the concentration on the cylinder.
- 10. Press the ENTER button to set the value. Single Calibration will end and the menu will display.
- 11. Disconnect the tubing from the probe.
- 12. With the single calibration menu still displayed, use the SHIFT/▼ button until the ESC message displays, then press the ENTER button to return to the Calibration menu.
- 13. Press the SHIFT/▼ button to place the arrow next to Normal Operation and then press ENTER to return to the normal screen.

Eagle 2:

- 1. Take the Eagle to a fresh-air environment.
- 2. Turn the Eagle on and allow one minute for warm up.
- 3. Press and hold the RANGE/SHIFT button, when press the DISPLAY/ADJUST/NO button and release both buttons.
- 4. The Calibration Mode Screen displays with the cursor beside Auto Calibration.
- 5. Set the fresh air reading by: Moving the cursor to the Perform Air Adjust menu item by using the RANGE/SHIFT button. Press and release the POWER/ENTER/RESET button. The screen will say "Perform Air Adjust?" Press the AIR/YES button to continue. The Eagle 2 will indicate it is adjusting the zero reading before it returns to the Calibration Mode Screen.
- 6. Move the cursor to Single Calibration menu item by using the AIR/YES button.
- 7. Press and release the POWER/ENTER/RESET button. The "Select Sensor Screen" appears with the cursor flashing.
- 8. Move the cursor next to the sensor you want to calibrate with the AIR/YES and RANGE/SHIFT buttons.
- 9. Press and release the power enter reset button to proceed to the Single Calibration Gas Value screen. The calibration gas value is flashing
- 10. If necessary, adjust the calibration gas value to match the cylinder concentration with the air/yes and range/shift buttons.
- 11. Press and release the power/enter/reset button to proceed to the single calibration apply gas screen. Cal in Process is flashing.
- 12. Connect the tubing from the demand flow regulator to the probe. Allow the Eagle 2 to draw gas for one minute.

Mini Rae PID Calibration

- 1. Bring the Mini Rae to a fresh air environment.
- 2. Push the MODE and N/- buttons together to access a sub menu.
- 3. "Fresh Air Cal?" will appear.
- 4. Press the Y/+ key, the display shows "zero in progress" followed by "wait" and a countdown timer.
- 5. After about 15 seconds, the display shows the message "zeroed... reading = X.Xppm..." Press any key or wait, the monitor will return to "Fresh Air Calibration?" menu.
- 6. Connect the tubing to the regulator on the gas cylinder.
- 7. Press the Y/+ key at the "Span Cal?" to start calibration. The display shows the gas name and the span value of the corresponding gas.
- 8. The display shows "Apply gas now!" Turn on the valve of the span gas supply.

- 9. Display shows "wait... 30" with a countdown timer showing the number of remaining seconds while the monitor performs the calibration.
- 10. When the countdown timer reaches 0, the display gas shows the calibrated value.
- 11. After a span calibration is completed, the display will show the message "Span Cal Done! Turn Off Gas!"
- 12. Turn off the flow of gas and disconnect the calibration tubing from the Mini Rae.
- 13. Press any key to return to the sub menu. Press MENU to return to main menu and being operations.

Procedure (Field Screening)

- 1. Place soil sample in a slider bag and gently break up the pieces.
- 2. Using the Eagle, insert the probe into the bag and hold it above the soil. Do NOT put the probe in the soil. Wait 30 seconds for the probe to read the soil vapour.
- 3. Record the value and remove the probe from the slider bag.
- 4. PIDs can be used the same way HOWEVER, it must be noted that if sampling for VOCs, the sample must be preserved within 10-12 seconds of sampling. This means that any sample that is potentially going to be jarred must have a methanol vial stored immediately.
- 5. Using the probes to measure headspace readings in a well follows the same basic principles. Open the j-plug or slip cap and quickly insert the probe into the top of the well taking extreme caution not to allow the probe to touch any water, and cover the top of the well with your hand.
- 6. Wait 30 seconds for the probe to establish a reading.
- 7. Remove the probe and record the value.

- US EPA Field Sampling Guidance Document #1210 "Soil Sampling for Volatile Compounds"
- MiniRae 2000 Portable VOC Monitor Operation and Maintenance Manual, Rev. C
- US EPA Field Screening Methods Catalog User's Guide
- Instruction Manual Eagle Series Portable Multi Gas Detector. Rev.H.
- RKI Eagle 2 Operator's Manual. Rev. Q.

STANDARD OPERATING PROCEDURE – FIELD MEASUREMENT OF WATER QUALITY INDICATORS

YSI 63 Hand-held System

Introduction

Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken. The YSI 63 Hand-held system can be used with all ground water sampling methods (manual or low-flow).

YSI 63's micro-processor allows the system to be easily calibrated with the press of a few keys. Additionally, the micro-processor performs a self-diagnostic routine each time the instrument is turned on. The self-diagnostic routine provides useful information about the function of the instrument and probe.

Equipment Required

- Interface or Water Level Meter
- Water pump or bailer
- Nitrile Gloves
- Bucket and/or Graduated Cylinder
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. Review sampling plan and monitoring well locations with project manager
- 2. Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Determine what equipment and supplies are required.
- 4. Obtain necessary sampling and monitoring equipment.
- 5. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 6. Calibrate pH and Conductivity on the YSI 63 Hand-held System as follow:
 - a. Prior to Calibration
 - i. Ensure all sensors are immersed in calibration solutions. The top vent hole of the conductivity sensor must be immersed.

	Terrapro	be Inc.	
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E 5P5	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-	(705) 670-0460 Fax: 670-0558
	www.terrap	probe.ca	

- ii. Fill a bucket with ambient temperature water to rinse the probe module between calibration solutions. Prepare clean, absorbent paper towels or cotton cloth available to dry probe module between rinses. This reduces carry-over contamination and increase accuracy of the calibration.
- b. pH Calibration (pH calibration on YSI 63 <u>MUST</u> be performed before taking pH measurements)
 - i. Accessing the calibration screen from the main menu by pressing <u>up arrow and down</u> <u>arrow</u> at the same time.
 - ii. Calibration may be performed at 1, 2 or 3-points (at pH 7, 4 and 10, or at pH 6.86, 4.01 and 9.18). Perform a 1-point calibration (at pH 7 or at pH 6.86) ONLY if a previous 2 or 3-point calibration has been performed recently. In most cases, a 2-point pH calibration will be sufficient for accurate pH measurements, but if the general range of pH in the sample is not known, a 3-point calibration may be necessary. Enter the calibration standard of choice.
 - iii. First calibration must be either pH 7 or pH 6.86.
 - iv. Place 30 to 35 mL of the pH buffer you have chosen to calibrate the system with (pH 7 or 6.86) in the 100 mL graduated cylinder. The graduated cylinder minimizes the amount of solution needed.
 - v. Exit the calibrate menu and rinse the probe module and sensors in tap or purified water and dry. Repeat step ii to iv for 2- and 3-point buffers using the corresponding pH buffer solutions.
- c. Conductivity Calibration (system calibration is rarely required because of the factory calibration of YSI 63)
 - i. Accessing the calibration screen from the main menu.
 - ii. It is recommended that the conductivity standard chosen should be within the same conductivity range as the samples to be measured (fresh water = 1 mS/cm; brackish water = 10 mS/cm; seawater = 50 mS/cm).
 - Carefully immerse the sensor end of probe module into the solution. Do not use 100 mL graduated cylinder because the diameter of the cylinder is too small for accurate conductivity measurements.
 - iv. Move the probe vigorously from side to side to dislodge any air bubbles from the electrodes.
 - v. Be sure to enter the value in mS/cm at 25°C and allow at least one minute for temperature equilibration before proceeding.
 - vi. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
 - vii. Press the <u>up arrow and down arrow</u> and the same time to record calibration and rinse the probe module and sensors in tap or purified water and dry.
- 7. Coordinate with project manager and clients, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Identify and mark all sampling locations.
- 10. Start sampling at the least contaminated monitoring well.
- 11. Remove locking well cap, note location time of day, and date in your notebook

- 12. Remove well casing cap.
- 13. Lower water level measuring device or equivalent into well until water surface is encountered.
- 14. Measure distance from water surface to reference measuring point on well casing and in field notebook. Alternatively, if there is no reference point, note that water level measurement is from top of steel casing, top of PVC riser pipe, from ground surface.
- 15. Measure total depth of well. Repeat at least twice to confirm measurement and record in field notebook.
- 16. Calculate the volume of water in the well and record in field notebook.
- 17. Select the appropriate purging and sampling equipment.
- 18. Lower the pump into the well. Make sure the pump is deep enough so that purging does not evacuate all the water and that the pump is located at the depth of the well screen
- 19. Attach power supply, and purge well until field parameters (such as temperature, pH, conductivity, etc.) have stabilized. Field parameters are measured by placing the YSI 63 Hand-held system in a measuring container (bucket or 100 ml cylinder). When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, lower the pump further into the well, and continue pumping.
 - a. If the calculated purge volume is small, the measurements should be taken frequently to provide a sufficient number of measurements to evaluate stability (every ¹/₄ casing volume). If the purge volume is large, measurements taken every ¹/₂ to 1 casing volume may be sufficient.
 - b. Stabilization occurs when:
 - i. <u>Conductivity</u> $(\pm 3\%)$,
 - ii. <u>Temperature</u> $(\pm 3\%)$,
 - iii. <u>pH</u> (\pm 0.1 unit),
 - iv. <u>Salinity</u> (determined automatically from conductivity and temperature readings).
 - c. If after three well volumes have been removed, the chemical parameters have not stabilized according to the above criteria, additional well volumes should be removed.
 - d. If the field parameters have not stabilized within five volumes, contact the project manager to determine whether or not to collect a sample or to continue purging.

20. Collect and dispose of purge waters as specified in the site-specific sampling plan.

- Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, U.S.EPA, April 1996
- *Field Sampling guidance Document # 1220 Groundwater Well Sampling*, U.S.EPA, September 2004
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011
- YSI 63 MPS Operations Manual, YSI Environmental, January 2007

STANDARD OPERATING PROCEDURE – FIELD MEASUREMENT OF WATER QUALITY INDICATORS

YSI 63 Hand-held System

Introduction

Stabilization of parameters (pH, D.O., conductivity, temperature, etc.) and turbidity of the purged water are monitored before a sample is taken. The YSI 63 Hand-held system can be used with all ground water sampling methods (manual or low-flow).

YSI 63's micro-processor allows the system to be easily calibrated with the press of a few keys. Additionally, the micro-processor performs a self-diagnostic routine each time the instrument is turned on. The self-diagnostic routine provides useful information about the function of the instrument and probe.

Equipment Required

- Interface or Water Level Meter
- Water pump or bailer
- Nitrile Gloves
- Bucket and/or Graduated Cylinder
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. Review sampling plan and monitoring well locations with project manager
- 2. Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Determine what equipment and supplies are required.
- 4. Obtain necessary sampling and monitoring equipment.
- 5. Decontaminate or pre-clean equipment, and ensure that it is in working order.
- 6. Calibrate pH and Conductivity on the YSI 63 Hand-held System as follow:
 - a. Prior to Calibration
 - i. Ensure all sensors are immersed in calibration solutions. The top vent hole of the conductivity sensor must be immersed.

	Terrapro	be Inc.	
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E 5P5	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-	(705) 670-0460 Fax: 670-0558
	www.terrap	probe.ca	

- ii. Fill a bucket with ambient temperature water to rinse the probe module between calibration solutions. Prepare clean, absorbent paper towels or cotton cloth available to dry probe module between rinses. This reduces carry-over contamination and increase accuracy of the calibration.
- b. pH Calibration (pH calibration on YSI 63 <u>MUST</u> be performed before taking pH measurements)
 - i. Accessing the calibration screen from the main menu by pressing <u>up arrow and down</u> <u>arrow</u> at the same time.
 - ii. Calibration may be performed at 1, 2 or 3-points (at pH 7, 4 and 10, or at pH 6.86, 4.01 and 9.18). Perform a 1-point calibration (at pH 7 or at pH 6.86) ONLY if a previous 2 or 3-point calibration has been performed recently. In most cases, a 2-point pH calibration will be sufficient for accurate pH measurements, but if the general range of pH in the sample is not known, a 3-point calibration may be necessary. Enter the calibration standard of choice.
 - iii. First calibration must be either pH 7 or pH 6.86.
 - iv. Place 30 to 35 mL of the pH buffer you have chosen to calibrate the system with (pH 7 or 6.86) in the 100 mL graduated cylinder. The graduated cylinder minimizes the amount of solution needed.
 - v. Exit the calibrate menu and rinse the probe module and sensors in tap or purified water and dry. Repeat step ii to iv for 2- and 3-point buffers using the corresponding pH buffer solutions.
- c. Conductivity Calibration (system calibration is rarely required because of the factory calibration of YSI 63)
 - i. Accessing the calibration screen from the main menu.
 - ii. It is recommended that the conductivity standard chosen should be within the same conductivity range as the samples to be measured (fresh water = 1 mS/cm; brackish water = 10 mS/cm; seawater = 50 mS/cm).
 - Carefully immerse the sensor end of probe module into the solution. Do not use 100 mL graduated cylinder because the diameter of the cylinder is too small for accurate conductivity measurements.
 - iv. Move the probe vigorously from side to side to dislodge any air bubbles from the electrodes.
 - v. Be sure to enter the value in mS/cm at 25°C and allow at least one minute for temperature equilibration before proceeding.
 - vi. It is stabilized when it shows no significant change for approximately 30 seconds. You can then press enter to record the calibration.
 - vii. Press the <u>up arrow and down arrow</u> and the same time to record calibration and rinse the probe module and sensors in tap or purified water and dry.
- 7. Coordinate with project manager and clients, as required, for site access.
- 8. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 9. Identify and mark all sampling locations.
- 10. Start sampling at the least contaminated monitoring well.
- 11. Remove locking well cap, note location time of day, and date in your notebook

- 12. Remove well casing cap.
- 13. Lower water level measuring device or equivalent into well until water surface is encountered.
- 14. Measure distance from water surface to reference measuring point on well casing and in field notebook. Alternatively, if there is no reference point, note that water level measurement is from top of steel casing, top of PVC riser pipe, from ground surface.
- 15. Measure total depth of well. Repeat at least twice to confirm measurement and record in field notebook.
- 16. Calculate the volume of water in the well and record in field notebook.
- 17. Select the appropriate purging and sampling equipment.
- 18. Lower the pump into the well. Make sure the pump is deep enough so that purging does not evacuate all the water and that the pump is located at the depth of the well screen
- 19. Attach power supply, and purge well until field parameters (such as temperature, pH, conductivity, etc.) have stabilized. Field parameters are measured by placing the YSI 63 Hand-held system in a measuring container (bucket or 100 ml cylinder). When field parameters are measured record the measurements, the elapsed time, the flow rate and the water level in the monitoring well. Do not allow the pump to run dry. If the pumping rate exceeds the well recharge rate, lower the pump further into the well, and continue pumping.
 - a. If the calculated purge volume is small, the measurements should be taken frequently to provide a sufficient number of measurements to evaluate stability (every ¹/₄ casing volume). If the purge volume is large, measurements taken every ¹/₂ to 1 casing volume may be sufficient.
 - b. Stabilization occurs when:
 - i. <u>Conductivity</u> $(\pm 3\%)$,
 - ii. <u>Temperature</u> $(\pm 3\%)$,
 - iii. <u>pH</u> (\pm 0.1 unit),
 - iv. <u>Salinity</u> (determined automatically from conductivity and temperature readings).
 - c. If after three well volumes have been removed, the chemical parameters have not stabilized according to the above criteria, additional well volumes should be removed.
 - d. If the field parameters have not stabilized within five volumes, contact the project manager to determine whether or not to collect a sample or to continue purging.

20. Collect and dispose of purge waters as specified in the site-specific sampling plan.

- Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, U.S.EPA, April 1996
- *Field Sampling guidance Document # 1220 Groundwater Well Sampling*, U.S.EPA, September 2004
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011
- YSI 63 MPS Operations Manual, YSI Environmental, January 2007

STANDARD OPERATING PROCEDURE – WELL INSTALLATION

Introduction

All wells are to be constructed with flush-thread joints and factory-slotted screen. Terraprobe monitoring wells are 2-inch (50 mm) inside diameter PVC unless otherwise stipulated or required by site specific standards or sampling requirements. Other possible well diameters and materials include:

- 1-inch (25 mm) PVC,
- 1.5 -- inch (37 mm) PVC,
- 4-inch (100mm) steel,
- 6 inch (150 mm) steel, •
- 10 inch (255 mm) steel and; •
- 3 foot (915 mm) concrete. •

Water washed silica sand is used for the filter pack, bentonite is used to create a seal above the screen to just below the surface and sand is added to ground level. Well casings are installed using cement to secure them.

Notes:

- Monitoring wells are to be installed by a licenced well driller only.
- The installation procedures outlined in this document are for reference only to insure • familiarization with the process.
- The installation procedures outlined in this document are for the installation of a typical 2-inch • PVC monitoring well.
- Maximum length of well screen allowed under O.Reg. 153/04 is 3 m (10 feet)
- A MOE Well Record is required under O.Reg. 903 if: •
 - The monitoring well is greater than 3 m (10 feet) and/or 0
 - The monitoring well will be in place longer than 30 days 0
- Well Records can be either for a single well or a group of wells (cluster).
- A well cluster record can be written only if all the wells are within the same property, or adjacent properties owned by the same owner.

Terraprobe Inc.

Greater Toronto 11 Indell I ane Brampton, Ontario L6T 3Y3

Hamilton – Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E 5P5 Barrie, Ontario L4N 4Y8 (905) 796-2650 Fax: 796-2250 (905) 643-7560 Fax: 643-7559 www.terraprobe.ca

Central Ontario 220 Bayview Drive, Unit 25 (705) 739-8355 Fax: 739-

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

Equipment Required

- Interface or Water Level Meter
- Field Notebook and/or Field Sheets
- Well Keys/Locks or Tools Required
- PVC Pipe (risers/casing)
- PVC Screen
- J-Plugs
- Flush Mount Casing or Above Grade Casing
- Bentonite
- Silica Sand
- Sampling Plan (from project manager)
- Access Agreements (if required)

- 1. After borehole completion, measure total depth before riser casing and screen are installed and before the augers are removed. This confirms drilling depths are accurate.
- 2. Decontaminate screen and casing (typically done off-site by water well driller), check that casing sections are straight and not cracked or damaged.
- 3. Verify and record diameter and lengths of casings and screen.
- 4. The casing/screen will be installed by:
 - a. Placing an end cap on the screen section
 - b. Attaching a section of riser to the screen and lowering into the borehole
 - c. Additional sections of riser will be added and lowered into the borehole until the desired screened interval is reached
- 5. Record the length of screen and riser pipe used for the monitoring well.
- 6. Verify and record that the proper filter (sand) pack has been selected.
- 7. The sand is poured into the space around the screen. Ensure it fills the hole to at least two feet above the screen.
 - a. In hollow stem auger wells, the sand pack must be poured down the hollow stem of the augers. Augers are then pulled out of the borehole in 2-1/2 to 5 feet increments, sand is poured and level measured with a weighted tape.
- 8. Use a weighted tape and take continuous measurements while the sand is being poured to ensure proper installation. Pack the sand down to verify.
- 9. Record how much sand is used.
- 10. A bentonite seal is placed directly above the sand pack, minimum two feet thick, and should extend into the next soil strata.
- 11. Record how much bentonite is used.
- 12. A grout seal is then placed above the bentonite and can be a mixture of cement, bentonite, sand and water.

- 13. Surface completion is to be completed one of two ways.
 - a. Above grade: Locking well cover sticking above grade, secured by lock and key.
 - b. At grade: Flush mount casing, lock with ratchet bolts or allen key.
- 14. Each casing is installed over the PVC pipe and cemented into place.
- 15. Record GPS coordinates and measure stick up (if above grade).
- 16. Confirm that a well record will be completed for the monitoring well. Confirm the information to be submitted on the well record or the cluster of wells.
- 17. Survey the completed monitoring well to a geodetic or recoverable benchmark

- Geotechnical Field Investigations, Terraprobe Ltd, July 26, 1990
- Ontario Water Resources Act R.R.O. 1990 Regulation 903 Wells
- Environmental Protection Act Ontario Regulation 153/04

STANDARD OPERATING PROCEDURE – SOIL SAMPLING

VOC

Introduction

To properly screen for VOC and PHC F1 that may be present in the soil, it is necessary to preserve ALL samples. Upon retrieval of soil samples from borehole and test pit investigations, soil should be placed in methanol vials as quickly as possible (within 10 to 15 seconds after retrieval). Temporary storage of soil in split spoons, jars or ziplock bags is not permitted.

Field screening may still be used to decide which samples will be submitted for analysis but all potential samples must be immediately chemically preserved. Once the VOC or PHC F1 sample has been collected the remaining portion of the sample can be placed into plastic bags and sealed tightly with a nominal head space. Upon completion of each borehole, gas tech or PID readings can be taken of each sample collected to determine which sample(s) will be submitted for chemical analysis.

In addition to samples collected in methanol vials, a separate container must be collected to determine moisture content. The same jars that are used to collect other soil samples are appropriate containers (60ml or 120ml).

Equipment Required

- Nitrile Gloves
- Field Parameter Measurement Device (Gastech, PID)
- Laboratory Sample Bottles
- Terracores or sampling syringes (sampler)
- Field Notebook and/or Field Sheets
- Sampling Plan (from project manager)
- Access Agreements (if required)
- Ice

Procedure

- 1. Review sampling plan and sampling locations with project manager
- 2. Determine what equipment and supplies are required.

Terraprobe Inc.

Greater Toronto
11 Indell Lane
Brampton, Ontario L6T 3Y3
(905) 796-2650 Fax: 796-2250

Hamilton – NiagaraCentral Ontario903 Barton Street, Unit 22220 Bayview Drive, Unit 25Stoney Creek, Ontario L8E 5P5Barrie, Ontario L4N 4Y8(905) 643-7560 Fax: 643-7559(705) 739-8355 Fax: 739-www.terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

- 3. Obtain necessary sampling and monitoring equipment.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all sampling locations.
- 7. Assemble the appropriate laboratory supplied bottles.
- 8. Collect the sample to be analyzed
 - a. Borehole split spoon, sample from spoon
 - b. Test pit, collect sample in bag from excavator bucket, then sample immediately
- 9. Push the sampler into the soil to retrieve the sample.
- 10. Remove the sampler from the soil.
- 11. Clean off loose soil that may be on the outside of the sampler and remove extra soil if applicable.
- 12. Place the mouth of the sampler into the 40ml methanol vial.
- 13. Ensure vial is at an angle to reduce the chance of splashing chemical.
- 14. Collect samples in the laboratory supplied bottle
- 15. Log all samples in the site logbook and label all samples.
- 16. Package samples and complete necessary paperwork.
- 17. Transport sample to staging area for preparation for transport to analytical laboratory.

- Field Sampling guidance Document # 1210 Soil Sampling for Volatile Compounds, U.S.EPA,
- Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, Ontario Ministry of the Environment, July 2011

STANDARD OPERATING PROCEDURE – WELL DEVELOPMENT

Introduction

Monitoring well development is necessary to ensure that complete hydraulic connection is made and maintained between the well and the aquifer material surrounding the well screen and filter pack. It also serves to restore the groundwater properties disturbed during drilling.

Most common techniques at Terraprobe include 'surging', and bailing, often used together. Other development methods that may be used include jetting, airlift, and submersible pump methods. Jetting is typically not used as a development method for environmental investigations, but is commonly used for water resource monitoring wells or drinking water wells. Generally a phased process is used to develop wells, starting with a gentle bailing phase to remove sand, followed by a surging phase, and finally a pumping phase after the well begins to clear up.

After a well is first installed, and in fact, often before the bentonite pellet seal is set, gentle bailing is used to remove water and sand from the well. Bailing can be accomplished through the use of dedicated bailers or Waterra inertia pumps. The purpose of this technique is used to settle the sand pack. After further well sealant materials have been added and allowed to set for approximately 48 hours, bailing is resumed as part of well development. The purpose of bailing is to remove any fine material that may have accumulated in the well, and start pulling in natural material into the sand pack. Bailing is often conducted until the sand content in the removed water begins to decrease.

After the sand content begins to decrease, surging is conducted. A surge block is used to move sediments from the filter pack into the well casing. All surge blocks will be constructed of materials that will not introduce contamination into the well. Surge blocks should have some manner of allowing pressure release to prevent casing collapse. Terraprobe uses Waterra surge blocks which fit onto Waterra inertia pumps. The surge block is moved up and down the well screen interval and then removed, followed by a return to bailing to remove any sand brought into the well by the surging action. Care should be taken to not surge too strongly with subsequent casing deformation or collapse; the well screen interval is often the weakest part of a well. Surging should be followed by additional bailing to remove fine materials that may have entered the well during the surging effort.

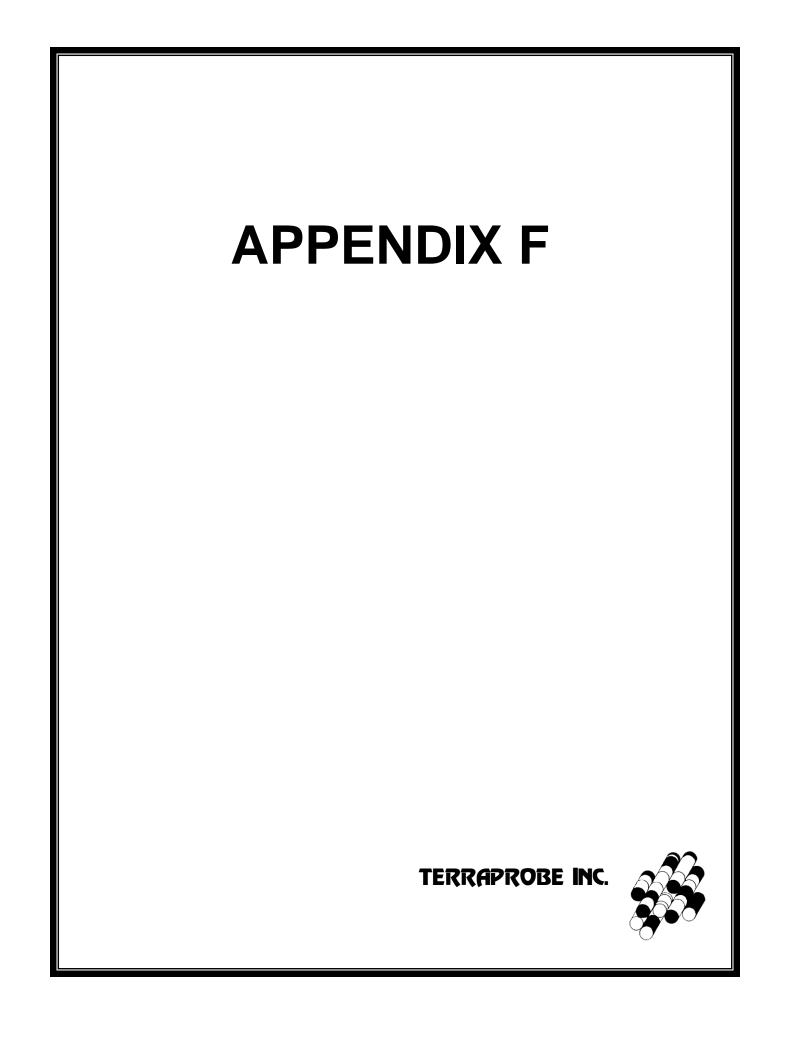
After surging has been completed and the sand content of the bailed water has decreased, a submersible pump or inertia pump is used to continue well development. The pump should be moved up and

	Terrapro	be Inc.	
Greater Toronto	Hamilton – Niagara	Central Ontario	Northern Ontario
11 Indell Lane	903 Barton Street, Unit 22	220 Bayview Drive, Unit 25	1012 Kelly Lake Rd., Unit 1
Brampton, Ontario L6T 3Y3	Stoney Creek, Ontario L8E 5P5	Barrie, Ontario L4N 4Y8	Sudbury, Ontario P3E 5P4
(905) 796-2650 Fax: 796-2250	(905) 643-7560 Fax: 643-7559	(705) 739-8355 Fax: 739-	(705) 670-0460 Fax: 670-0558
	www.terrap	probe.ca	

down the well screen interval until the obtained water is relatively clear. Well development will continue until the water in the well clarifies and monitoring parameters such as pH, specific conductivity, and temperature stabilize as defined in the project-specific planning documents. It should be noted that where very fine-grained formations are present at the screened interval, continued well development until clear water is obtained might be impossible. Decisions regarding when to cease development where very fine-grained conditions exist should be made between the field supervisor and project manager.

During well development pH, specific conductivity, temperature, and turbidity should be monitored frequently to establish natural conditions and evaluate whether the well has been completely developed. The main criterion for well development is clear water (Nephelometric turbidity units or NTU of less than 5). As mentioned above, clear water can often be impossible to obtain with environmental monitoring wells. A further criterion for completed well development is that the other water quality parameters mentioned above stabilize to within 10 percent between readings over one well volume. The minimum volume of water purged from the well during development will be approximately a minimum of 3 borehole volumes (wells will typically not reach stabilization of water quality parameters before this condition is achieved and may not have reached stability even after this threshold has been achieved).

Equipment Required


- Interface or Water Level Meter
- Nitrile Gloves
- Water Quality Meter (EC, pH, Temperature)
- Bucket
- Field Notebook and/or Field Sheets
- Well Keys or Tools Required
- Waterra
- Waterra cutters (avoid using knives)
- Surge Blocks (if required)
- Foot valves
- Storage for contaminated (or suspected contaminated) water.
- Access Agreements (if required)

- 1. Review monitoring well locations with project manager
- 2. Review borehole logs and determine monitoring well depths and well screen locations.
- 3. Obtain Waterra tubing, foot valves and surge blocks.
- 4. Coordinate with project manager and clients, as required, for site access.
- 5. Perform a general site survey in accordance with any applicable site-specific health and safety plans.
- 6. Identify and mark all monitoring wells.

- 7. Open the monitoring well and take initial readings (ie; head space air monitor readings, water level, well depth) and record in the field notebook.
- 8. Organize equipment.
- 9. Bailing the monitoring well:
 - a. Calculate casing volume to determine the ideal amount to be purged (three casing volumes).
 - b. Attach foot valve to that end of Waterra
 - c. Slowly lower Waterra down the well. Once it hits the bottom, leave some extra Waterra above the top of the well to easily handle pumping and cut the Waterra.
 - d. Slowly remove three casing volumes from the monitoring well.
 - e. Dispose of purged water in barrels if known or suspected contaminates are of concern, or however the project manager instructs.
- 10. Surging the monitoring well
 - a. Slip surge block onto the end of the Waterra and reattach the foot valve, securing the surge block
 - b. Place surge block and Waterra back into the monitoring well
 - c. Raise and lower the surge block along the screen. (Should be able to feel location of the well screen)
 - d. Continue surging for 5-10 minutes.
- 11. Final purge of the monitoring well
 - a. Remove surge block from Waterra
 - b. Lower the Waterra back down the well. Begin pumping water out of the well, taking care to note water quality and appearance (smell, clarity, etc.).
 - c. Continue to purge the monitoring well until the following water quality parameters have stabilized:
 - i. <u>Turbidity</u> (\pm 10% for values greater than 5 NTU; if three Turbidity values are less than 5 NTU, consider the values as stabilized),
 - ii. <u>Conductivity</u> $(\pm 3\%)$,
 - iii. <u>Temperature</u> $(\pm 3\%)$,
 - iv. <u>pH</u> (\pm 0.1 unit),
 - d. Dispose of purged water in barrels if known or suspected contaminates are of concern, or however the project manager instructs.
- 12. Record final measurements in field book, record date, water level before and after development, quantity of water removed, equipment used and techniques (surge and purge, or purge only).

- ASTM Standard Practice and Installation of Ground Water Monitoring Wells in Aquifers
- EPA SOP#2044 Well Development March 10, 199

roj	ect N	o. : 1-19-0660-01	Clie	ent	: 0	CVH (NO. 6	LP								Origin	ated by:SM
ate	e star	ted : October 29, 2019	Pro	ject	t :6	5 Wa	ard Str	eet								Com	oiled by : AR
he	et No	o. :1 of 1	Loc	atio	on : F	Port H	lope, C	Intario								Cheo	cked by :
ositi	on :	E: 717532, N: 4870488 (UTM 17T)				Elevati	on Datu	n : Geodet	ic								-
g ty	/pe :	Track-mounted				-	Method										
(111)		SOIL PROFILE		:	SAMP		Scale	Penetration Te (Blows / 0.3m) X Dynamic C		s		Mo	oisture / F	Plasticity	ace	ent	Lab Data ডু ু and
	Elev Depth (m)	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation So (m)	10 Undrained Sh O Unconfine Pocket Pe	2 <u>03</u> ear Stren	gth (kPa + Fiel r ■ Lab) d Vane Vane	Plastic Limit PL 1.0	Water Co	al Liquic ontent Limi	Headspace Vapour (ppm)	Instrument Details	Comments Territorial Comments GRAIN SIZE DISTRIBUTION (* (MIT)
	100.4 100.2	150mm TOPSOIL	<u>, 14</u>			0)		40	50 12	.0 10	0		20				GR SA SI
	0.2	FILL, clayey silt, trace to some sand, trace organics, trace rootlets, firm to stiff blackish brown to brown, moist		1	SS	4	100 -						0		-PID: 0		
				2	SS	12	-							0	-PID: 0		
	98.9 1.5	CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		3	SS	32	99 -			>			0		-PID: 0		0 18 44
				4	SS	15	98 -	<						0	-PID: 0		
	97.4 3.0	SILTY SAND, trace to some clay, trace gravel, very dense, brown, moist (GLACIAL TILL)		5	SS	50/ 150mm	97 -					0			-PID: 0		
			φ 				- 96 –										
		grey below	0	6	<u>ss</u>	50/ 100mm						0			-PID: 0		
							95 -										
			9 1														
				7	SS	50/ \50mm	94 -					0			-PID: 0		wet sampler
			9				-										Ā
			關於				93 -										
			•	8	SS	50/						0					

END OF BOREHOLE

Unstabilized water level measured at 7.2 m below ground surface; borehole was open upon completion of drilling.

LOG OF BOREHOLE 2

Originated by : SM Compiled by : AR

Checked by :

Date started : October 31, 2019

:1 of 1

: 1-19-0660-01

Project No.

Sheet No.

Project : 65 Ward Street

: CVH (NO. 6) LP

Location : Port Hope, Ontario

Client

Posit		: E: 717560, N: 4870475 (UTM 17T)			I	levati	on Datu	n : Geode	IC								
Rig ty	ype	: Track-mounted			[Drilling	Method			0							-
Ê		SOIL PROFILE		5	Sampl		e	Penetration T (Blows / 0.3m	est Valu	es		Moi	sture / Plasti	citv	e	ŧ	Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 101.2		Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic C 10 Undrained Sh O Unconfine Pocket Po	one 20 ear Stre d netromet	3 <u>0</u> ngth (kP + Fie er ■ La	, eld Vane	Plastic Limit PL 10	Natural Water Content MC	Liquid	Headspace Vapour (ppm)	Instrument Details	Balance and Comments Comments GRAIN SIZE DISTRIBUTION (% (MIT)
-0	101.2	85mm ASPHALT				0)						10					GR SA SI C
	100.8		0	5 1	SS	24	101 -					0			PID: 0.2		
-	0.4	FILL, sand and gravel, trace silt,					_										
-1	0.8	CLAYEY SILT, trace to some sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		2	SS	22	100 -						o		-PID: 0.3		
	99.7			$\left - \right $					$ \rangle$								
-2	1.5	SILTY SAND, trace to some clay, trace gravel, dense to very dense, brown, moist (GLACIAL TILL)	0 0 0	3	SS	34	-					0			-PID: 0.2		
_			 	4	SS	76 /	99 –					0			PID: 0.3		
						250mm	-										
-3	<u>98.1</u> 3.1		⁰ 	5	SS	50 / 100mm						0			-PID: 0.2		$\overline{\Delta}$

END OF BOREHOLE

Unstabilized water level measured at 3.0 m below ground surface; borehole was open upon completion of drilling.

roje	ect N	lo. : 1-19-0660-01	Clie	nt	: C	VH (NO. 6)	LP							Origina	ated by:SN
ate	e star	rted : November 1, 2019	Proj	ject	t:6	5 Wa	ard Str	eet							Comp	oiled by :AF
hee	et No	p. :1 of 1	Loc	atic	on : F	ort H	lope, C	Ontario)						Chec	ked by :
siti	on :	E: 717559, N: 4870462 (UTM 17T)			I	Elevati	on Datu	m :Ge	eodetic							
g ty	pe :	Track-mounted				-	Method	_	olid stem au	-						1
	Elev Depth	SOIL PROFILE	Graphic Log	Number	Type Type	SPT 'N' Value	Elevation Scale (m)	X Dyn 1,0 Undrain O Ur	ed Shear Stre	3 <u>0</u> ength (kP: + Fie	, eld Vane	Plastic N	e / Plasticity Natural Liquic er Content Limi	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comment Internet Distribution (MIT)
Š	(m) 100.8	GROUND SURFACE		_		SP1	Ш	● Po 40	cket Penetrome 80		ib Vane 60	10	20 30			(MIT) GR SA SI
	100.5 0.3	300mm TOPSOIL FILL, clayey silt, trace to some sand, trace organics, trace rootlets, soft to firm,		1	SS	5	-					0		-PID: 0		
		blackish brown to brown, wet		2	SS	4	100 -						0	-PID: 0		
	99.3 1.5	SILTY SAND, trace to some clay, trace gravel, compact to very dense, brown, moist (GLACIAL TILL)		3	SS	20	99 –					0		-PID: 0	Ţ	
				4	SS	100 / 150mm	- 					0		-PID: 0	¥	
		grey below	0		SS		98 -									
			(0) (0)	5		69	97					0		-PID: 0		
			•			100 /	-									
			0 	6	SS	125mm	96 -					0		-PID: 0		
							95 –							_		
			<u></u>	7	SS	100 / 125mm						0		-PID: 0		
							94 -									Ţ
			اټ ا	1											I ⊟ ·	

END OF BOREHOLE

Unstabilized water level measured at 7.0 m below ground surface; borehole was open upon completion of drilling.

 WATER LEVEL READINGS

 Date
 Water Depth (m)
 Elevation (m)

 Nov 14, 2019
 1.5
 99.3

 Nov 19, 2019
 2.7
 98.1

 Dec 9, 2019
 1.6
 99.2

50 mm dia. monitoring well installed.

file: 1-19-0660-01 bh logs.gpj

oj	ect N	No. : 1-19-0660-01	Clie	nt	: C	VH (NO. 6	LP									Origin	ated by:SN
ate	e stai	rted : October 31, 2019	Proj	ject	t:6	5 Wa	ard Str	eet									Comp	oiled by:AR
Sheet No. : 1 of 1					on : F	ort H	lope, C	Ontar	io						Cheo	ked by :		
siti	ion :	: E: 717546, N: 4870461 (UTM 17T)			I	Elevati	on Datu	m : C	Geodetic	;								
g ty	/pe :	: Track-mounted					Method	_	Solid ste		<u> </u>							
	Elev Depth (m)	SOIL PROFILE Description	Graphic Log	Number	SAMPI adk	SPT 'N' Value	Elevation Scale (m)	X Dy Undra	ration Tes s / 0.3m) ynamic Con 10 20 ined Shea Jnconfined Pocket Pen	e 1 3 ar Strer	3 <u>0</u> 4 ngth (kPa ╋ Fie	Id Vane	M Plasti Limit	Water Conter	Liquid	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comment GRAIN SIZE GRAIN SIZE DISTRIBUTION
	100.9		ğ			SP	Ĕ		40 80		er∎La 20 10		1	0 20	30			(MIT) GR SA SI
	100.1	70mm ASPHALT 730mm AGGREGATE		1	SS	22	-			•			þ			-PID: 0		
	0.8	FILL, sand, trace silt, loose, brown, wet		2	SS	8	100 -						0			-PID: 0		
	_ <u>99.4</u> 1.5	FILL, clayey silt, trace to some sand, trace gravel, trace organics, firm, brown, wet	💥	3	SS	5	99 -	L						0		-PID: 0	₹ Ž	
	98.6 2.3	SILTY SAND, trace clay, trace gravel, compact to very dense, brown, moist (GLACIAL TILL)		4A 4B	SS	23	-						0	0		-PID: 0	Ţ	
		grey below		5	SS	100 / 150mm	98 -						0			-PID: 0		at 3.0m, auger grinding
			6				97 -									_		
				6	SS	100 / 150mm	- 96						0			-PID: 0		•
			9				-											
				7	SS	100 / 150mm	95 -						0			-PID: 0		· · ·
							94 -											
	93.1			8	SS	100 /	-						0			-PID: 0		. ⊻

END OF BOREHOLE

Unstabilized water level measured at 7.3 m below ground surface; borehole was open upon completion of drilling.

 WATER LEVEL READINGS

 Date
 Water Depth (m)
 Elevation (m)

 Nov 14, 2019
 2.1
 98.8

 Nov 19, 2019
 2.3
 98.7

 Dec 9, 2019
 2.1
 98.8

50 mm dia. monitoring well installed.

file: 1-19-0660-01 bh logs.gpj

heet osition g type	t No	ted : October 29, 2019				· ·	NO. 6)									0	ated by :SM
osition g type			Pro	jec	t:6	5 Wa	ard Stro	eet								Com	piled by :AR
g typ	n :	. :1 of 1	Loc	atio	on : F	ort H	ope, C	Intario								Che	cked by :
		E: 717549, N: 4870436 (UTM 17T)				Elevati	on Datur	n : Geo	detic								-
	e :	Track-mounted				Drilling	Method		l stem au								
		SOIL PROFILE		1	SAMPI		Scale		n Test Valu 3m)			Mo	oisture /	Plasticity	e _	, ut	Lab Data যুক্ত and
	<u>Elev</u> epth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	O Unco	2 ₀ Shear Stre	ength (kPa + Fie	0 a) eld Vane b Vane	Plastic Limit Pl	Water (Content Limit	Headspace Vapour (ppm)	Instrument Details	and Comment GRAIN SIZE O STRIBUTION (MIT)
1	01.2	GROUND SURFACE				SP	Ŭ	40		120 16		10) 20	<u>30</u>			GR SA SI
	01.0	150mm TOPSOIL FILL, clayey silt, trace to some sand, trace organics, trace rootlets, firm, blackish brown to brown, moist		1	ss	4	101						0		-PID: 0.6		
				2	SS	7	100 —						0		-PID: 0.9		
	99.7 1.5	CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		3	SS	20	- 99 –						c	D	-PID: 0.7	¥ ¥	
				4	SS	40	- 99					0			-PID: 0.9	<u>*</u>	
	98.2 3.0	SILTY SAND, trace to some clay, trace gravel, very dense, brown, moist (GLACIAL TILL)		5	SS	50 / (150mm)	98 —					0			-PID: 1.2		
							97 –								-		
		grey below	0	6	<u>ss</u>	50 / 75mm	-					0			-PID: 0.7		at 4.6m, sample at 4.6m, sample
			0 				96 —										
			φ φ φ φ	7	SS	50 / 125mm	95 —					0			-PID: 2.2		
			9				-										
	93.5		0	8	SS	50/	94 —					0					

Unstabilized water level measured at 7.6 m below ground surface; borehole was open upon completion of drilling.

 WATER LEVEL READINGS

 Date
 Water Depth (m)
 Elevation (m)

 Nov 14, 2019
 2.0
 99.2

 Nov 19, 2019
 2.3
 98.9

 Dec 9, 2019
 2.3
 98.9

50 mm dia. monitoring well installed.

roj	ect N	o. : 1-19-0660-01	Clie	ent	: 0	CVH (NO. 6) LP			Originated by : SM
)ate	e star	ted : October 31, 2019	Pro	jec	t :6	5 Wa	ard Str	reet			Compiled by : AR
he	et No	o. :1 of 1	Loc	atio	on : F	Port H	lope, (Ontario			Checked by :
osit	on :	E: 717590, N: 4870358 (UTM 17T)						m : Geodetic			
ig ty	pe :	Track-mounted				Drilling	Method	d : Solid stem augers			
Ē		SOIL PROFILE	_		SAMP		Scale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	e.	E Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m) 102.2	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) O Unconfined + Field Vane 40 80 120 160	Plastic Natural Liquid Limit Water Content Limit PL MC LL I 0 20 30	Headspace Vapour (ppm)	Lab Data and contraction contr
)	102.0	200mm TOPSOIL	<u>x 1/2</u>	1			102 -				
	0.2	FILL, clayey silt, trace to some sand, trace organics, trace rootlets, firm to stiff, blackish brown to brown, moist		1	SS	7	- 102		0	PID: 2.5	
				2	SS	13	101 -		o	-PID: 1.2	
	100.7 1.5	SILTY SAND, trace to some clay, trace gravel, compact to very dense, brown, moist (GLACIAL TILL)		3	ss	19	-		0	-PID: 1.3	
				4	SS	85 / 275mm	100 -		0	-PID: 1.6	
			-0	5	SS	50 / 125mm	99 -		0		¥ ¥
							- 98 –				
		grey below		6	SS	50 / 125mm	-		0	-PID: 1.3	
			9				97 -				
				7	SS	100 / 125mm	96 -		0	-PID: 1.9	
			0				-				
						100/	95 -				

Borehole was dry and open upon completion of drilling.

file: 1-19-0660-01 bh logs.gpj

50 mm dia. monitoring well installed.

WAT	FER LEVEL READIN	IGS
Date Date	Water Depth (m)	Elevation (m)
Nov 14, 2019	3.1	99.2
Nov 19, 2019	3.5	98.7
Dec 9, 2019	3.0	99.2

basilion : E: 717546, N: 4870401 (UTM 17T) : Elevation Datum : Geodetic : Solid stem augers : Track-mounted : Solid PROFILE : Solid stem augers :	roj	ect N	lo. : 1-19-0660-01	Clie	nt	: C	VH ((NO. 6) LP									Origin	ated by : S
thete No. 1 of 1 Location: Port Hope, Ontario Execution: Execution: Execution: unitary Fight No. Tack-mounted Execution: Execution: Solid execution: Solid execution: unitary fight No. Tack-mounted Image: No. Image: No. </th <th>ate</th> <th>e stai</th> <th>rted : October 29, 2019</th> <th>Pro</th> <th>ject</th> <th>t:6</th> <th>5 Wa</th> <th>ard Str</th> <th>eet</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Com</th> <th>oiled by :A</th>	ate	e stai	rted : October 29, 2019	Pro	ject	t:6	5 Wa	ard Str	eet									Com	oiled by :A
calitor::::E:717546,N:4870401 (UTM 1TT):::::::::::::::::::::::::::::::::::	he	et No	b. :1 of 1	Loc	atic	on : F	ort ⊦	lope, (Ontari	0								Cheo	cked by :
ig type Track-mounted Dolling Method Sold stam auges Image: Sold PROFILE SAMPLES Image: Sold stam auges Image: Sold PROFILE Image								-			;							-	5
Base Description Boold of the second of the						I	Drilling	g Method	: 5	olid ste	m au	gers							
Bit Description Call Discription Call Discription Call Discription Call Discription Call Discription Call Discription Discription <thdiscripion< th=""> <thdiscripion< th=""> Discripi</thdiscripion<></thdiscripion<>	Ê.		SOIL PROFILE		:	SAMPI		ale	Penetr (Blows	ation Tes / 0.3m)	t Value	es		Moi	sture / F	lasticity	e	I	Lab Dat
In 1 GROUND SUPFACE Image: State of the served superation in the served superation in the served superation in the served superation is the served superation in the served superation is the served superation in the served superation is the	cale (_		Log	er	n	Value	n Sc				3 <u>0</u> 4	ļ0		Natur Water Co	al Liqui ontent Lim	dsba bour	ume etails	and Even
3 3 3 3 6 0	nud:	Depth	Description	aphic	Mumb	Typ	Ż	vatio (n	01	Inconfined		+ Fie	eld Vane	PL	MĊ		Hea Va	Det	GRAIN SIZ
1010 150m 250m			GROUND SURFACE		2		SPT	Ele						10	20	30			(MIT) GR SA S
Interesting of the contract state routies, firm, blacksh brown to brown, moist Image: state routies, firm, blacksh brown to brown, moist Image: state routies, firm, blacksh brown, moist Image: state routies, firm, moist Image: state routies, firm, blacksh brown, moist Image: state routies, firm, moist								101 -											
99.7 1.5 CLAYEY SILT, trace to some sand, trace gravel, very stiff, brown, moist (CLACIAL TILL) 3 SS 15 99 0 PD: 0 PD: 0 98.5 2.3 SILTY SAND, trace to some clay, trace gravel, compact to very dense, brown, moist (CLACIAL TILL) 4 SS 12 99 0 PD: 0 PD: 0 98.5 2.3 SILTY SAND, trace to some clay, trace gravel, compact to very dense, brown, moist (CLACIAL TILL) 4 SS 12 98 0 PD: 0			trace organics, trace rootlets, firm,		1	SS	6	_							0		-PID: 0		
99.7 1.5 CLAYEY SILT, trace to some sand, trace gravel, very stiff, brown, moist (CLACIAL TILL) 93.3 2.3 SILTY SAND, trace to some clay, trace gravel, compact to very dense, brown, (GLACIAL TILL) 1. grey below 1. grey below					2	SS	8										-PID: 0		
1.5 CLAYEY SILT, trace to some sand, trace gravel, very silf, brown, moist (GLACIAL TILL) 3 SS 15 99 0 +00.0 +00.0 2.3 SILTY SAND, trace to some clay, trace moist (GLACIAL TILL) 4 SS 12 0 +00.0 +00.0 2.3 SILTY SAND, trace to some clay, trace moist (GLACIAL TILL) 4 SS 12 0 -0 +00.0 4 SS 12 98 0 0 +00.0 +00.0 grey below 6 SS 99 0 0 +00.0 +00.0 7 SS 39 96 0 0 +00.0 +00.0		99.7						100 -											
98.9		1.5	trace gravel, very stiff, brown, moist		3	SS	15								0		-PID: 0		
$\left[\begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $. ,					99 -									_		
grey below grey below		2.3	gravel, compact to very dense, brown, moist		4	SS	12			L				0			-PID: 0		
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			(GLACIAL TILL)					-											
grey below 9 -				0	5	SS	62	98 -						0			-PID: 0		
grey below 9 -				-0 				-	-										
$\left[\begin{array}{c c c c c c c c c c c c c c c c c c c $				Ð				97 -									_		
96 96 1			grey below				00	-											
9 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>33</td> <td>- 96 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FID. 0</td> <td></td> <td></td>							33	- 96 -									FID. 0		
95- 95- 7 SS 39 - 96 - - - - - - - - - - - - - - - - - - -																			
Image: Contract of the second seco									-										⊻
								95 -											
94				461 471 471	7	SS	39							C)		-PID: 0		
													$\left \right\rangle$						
								94 -											
				•	9	90	89	-											at 7.6m, wet sampler
								94 -									_		

Unstabilized water level measured at 5.9 m below ground surface; borehole was open upon completion of drilling.

file: 1-19-0660-01 bh logs.gpj

-	ect N		Clie	ent	: 0	CVH (NO. 6) LP				-	ited by :SM
		rted : October 30, 2019		-			ard Str						iled by:AR
	et No		Loc	atic			-	Ontario				Chec	ked by :
Posit		E: 717535, N: 4870415 (UTM 17T)					on Datu Method	m : Geodetic I : Solid stem augers					
	/pe .	SOIL PROFILE			SAMP	-		Penetration Test Values (Blows / 0.3m)					Lab Data
Depth Scale (m)	<u>Elev</u> Depth (m)	Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	X Dynamic Cone <u>10</u> 20 30 40 Undrained Shear Strength (kPa) ○ Unconfined + Field ● Pocket Penetrometer ■ Lab) d Vane	Moisture / Plasticity lastic Natural Liquid mit Water Content Limit PL MC LL 10 20 30	Headspace Vapour (ppm)	Instrument Details	and Comments GRAIN SIZE DISTRIBUTION ((MIT)
0	100.7 100.5	GROUND SURFACE 150mm TOPSOIL		-		N N	ш	40 80 120 160	0	10 20 30			GR SA SI
	0.2	FILL, clayey silt, trace to some sand, trace organics, trace rootlets, firm to very stiff, blackish brown to brown, moist	- 🕅	1	SS	4	- 100 -			0	PID: 3		
1				2	SS	16	-			0	-PID: 4.2		
2				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SS	9	99 -			с	 -PID: 1.4		
	98.4 2.3	SILTY SAND, trace to some clay, trace gravel, dense to very dense, brown, moist (GLACIAL TILL)		4	SS	40	- 98			5	-PID: 0.9	V	
3				5	SS	100				o	PID: 1.1	¥ ⊻	7 48 31
1			9 				97 -						
_		grey below	1997 1997 1997 1997 1997 1997 1997 1997	6	SS	160	96 -		с)	-PID: 0.9		
5			9				-						Ā
6		wet		7	SS	100 / 150mm	95 -			0	-PID: 0.8		at 6.1m, sampler wet
7			0 				94 -						
						100 /	-						
	92.8 7.9		•	8	SS	100 / 150mm	93 -			0	-PID: 0.6		
	7.9	END OF BOREHOLE Unstabilized water level measured at 5.5 m below ground surface; borehole caved to 7.3 m below ground surface upon completion of drilling.							ER LEVEL <u>Water De</u> 2.8 3.1 2.9	97.9 97.6	<u>m)</u>		

Project No.

Sheet No.

LOG OF BOREHOLE 9

Originated by : SM Compiled by : AR

Checked by :

Date started : October 29, 2019

:1 of 1

: 1-19-0660-01

Project : 65 Ward Street

: CVH (NO. 6) LP

Location : Port Hope, Ontario

Client

Positi	ion	: E: 717524, N: 4870359 (UTM 17T)				Elevati	on Datu	m : Geodetic		
Rig ty	/pe	: Track-mounted				Drilling	Method	: Solid stem augers		
(m)		SOIL PROFILE		:	SAMP		Scale	Penetration Test Values (Blows / 0.3m)	Moisture / Plasticity	Lab Da
Depth Scale (m)	<u>Elev</u> Depth (m) 101.2	Description GROUND SURFACE	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	X Dynamic Cone 10 20 30 40 Undrained Shear Strength (kPa) 0 Unconfined + Field Vane ● Pocket Penetrometer ▲ Lab Vane 40 80 120 160	Moisture / Plasticity Plastic Natural Liquid Limit Water Content Limit PL MC LL 10 20 30	(b) Lab Da and Lab Da and Comme GRAIN SI GRAIN SI Comme GRAIN SI Comme GRAIN SI Comme GRAIN SI Comme GRAIN SI Comme
0		50mm ASPHALT	/ a. O.				101 -			
	100.8	350mm AGGREGATE	o (ý 1	SS	7	101-		O -PID: 0.4	4 0 18 5
	0.4	FILL, clayey silt, trace to some sand,								
		trace organics, trace rootlets, firm, blackish brown to brown, moist		}						
1				2	SS	8	100 -		O -PID: 0.8	5
	99.7			-			-			
2	1.5	CLAYEY SILT, trace to some sand, trace gravel, stiff to very stiff, brown, moist (GLACIAL TILL)	0	3	SS	22			O -PID: 0.4	;
							99 -			
		wet		4	SS	22			O -PID: 0.5	;
.3	98.2						1			
-	3.0	SILTY SAND, trace to some clay, trace gravel, compact, brown, moist (GLACIAL TILL)	0 	5	SS	24	98 -		O -PID: 0."	sampler wet

END OF BOREHOLE

Borehole was dry and open upon completion of drilling.

	3	Terraprobe											LC) CG	of I	BOR	EH	OLE 10
Proj	ect N	lo. : 1-19-0660-01	Clie	nt	: 0	CVH (NO. 6) LP									Origin	ated by:SM
Date	e sta	rted : October 29, 2019	Proj	jec	t :6	5 Wa	ard Str	eet									Com	piled by:AR
She	et No	p. :1 of 1	Loc	atio	on : F	Port H	lope, (Ontar	io								Cheo	cked by :
Posit	on	: E: 717517, N: 4870387 (UTM 17T)				Elevati	on Datu	m : (Geodet	ic								
Rig ty	ре	: Track-mounted		-		-	Method		Solid st		-							
Depth Scale (m)	Elev Depth (m)	SOIL PROFILE	Graphic Log	Number	SAMP Jhe	'N' Value	Elevation Scale (m)	X D Undra O	ined She Unconfine	one 20 3 ear Strei d	30 ngth (kP + F	ield Vane	Mo Plastic Limit	Disture / Pl. Natura Water Cor	Liquid	Headspace Vapour (ppm)	Instrument Details	Lab Data and Comments restrict GRAIN SIZE DISTRIBUTION (%)
-0	100.9	GROUND SURFACE	<u>5</u>			SPT	Ш		Pocket Pe 40 8			ab vane 60	1		30			(MIT) GR SA SI CL
-	<u>100.7</u> 0.2	150mm TOPSOIL FILL, clayey silt, trace to some sand, trace organics, trace rootlets, firm to stiff, blackish brown to brown, moist		1	ss	5								0		-PID: 0		
- 1	99.4			2	SS	10	100 -								0	PID: 0.2		
-2	1.5	CLAYEY SILT, trace to some sand, trace gravel, very stiff to hard, brown, moist (GLACIAL TILL)		3	SS	31	99 -			\setminus	>			C)	PID: 0.2		
- 3	97.9			4	SS	18	- 98 -		<						0	-PID: 0		
-	3.0	SILTY SAND, trace to some clay, trace gravel, dense to very dense, brown, moist (GLACIAL TILL)	e e	5	SS	40		_					0			-PID: 0.2	¥	at 3.0m, auger grinding ∑_
- 4	96.3		9				97 -											
-5	4.6	SAND, trace to some gravel, trace silt, very dense, brown, wet		6	ss	50	96 -						(
							95 -									_		
-				7	ss	53		_					0			-PID: 0.2		· · ·
-7							94 -									_		· · · ·
	93.3 7.6 93.1 7.8	SILTY SAND, trace to some clay, trace gravel, very dense, brown, moist (GLACIAL TILL)	\$ 	8	SS	50 / 75mm]						0			-PID: 0.6		
		END OF BOREHOLE								Da	te	Wate	r Depth	EADINGS	levation (<u>m)</u>		
		Unstabilized water level measured at 3.7 m below ground surface: borehole							1	Nov 14 Nov 19 Dec 9,	, 2019		3.6 3.6 3.6		97.4 97.3 97.3			

Unstabilized water level measured at 3.7 m below ground surface; borehole caved to 4.6 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed.

file: 1-19-0660-01 bh logs.gpj

Terraprobe
Terraprobe

LOG OF BOREHOLE 11

Originated by : SM Compiled by : AR

Checked by :

Project No. : 1-19-0660-01 Date started : October 29, 2019

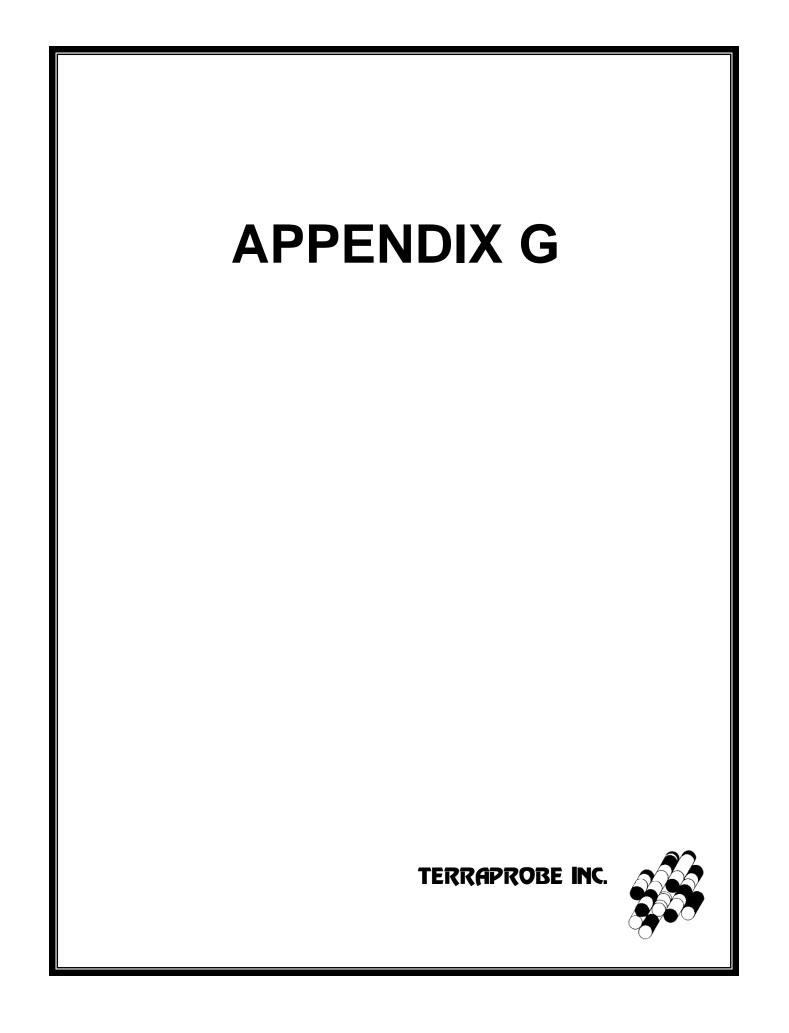
:1 of 1

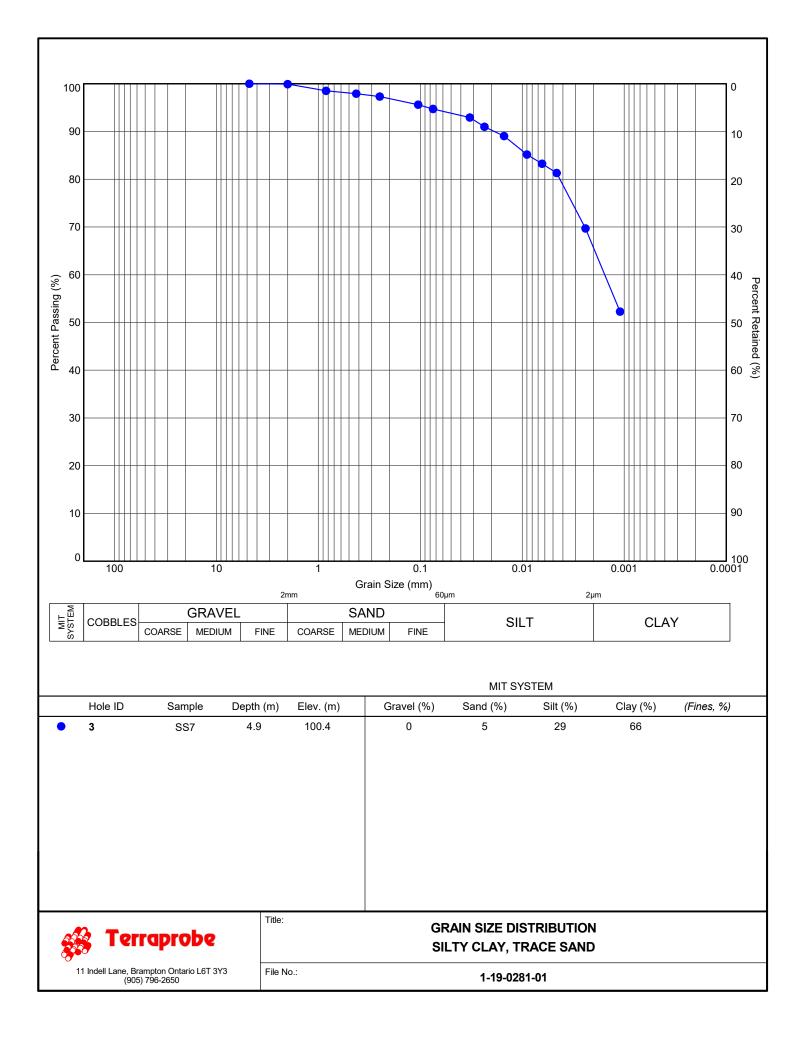
Sheet No.

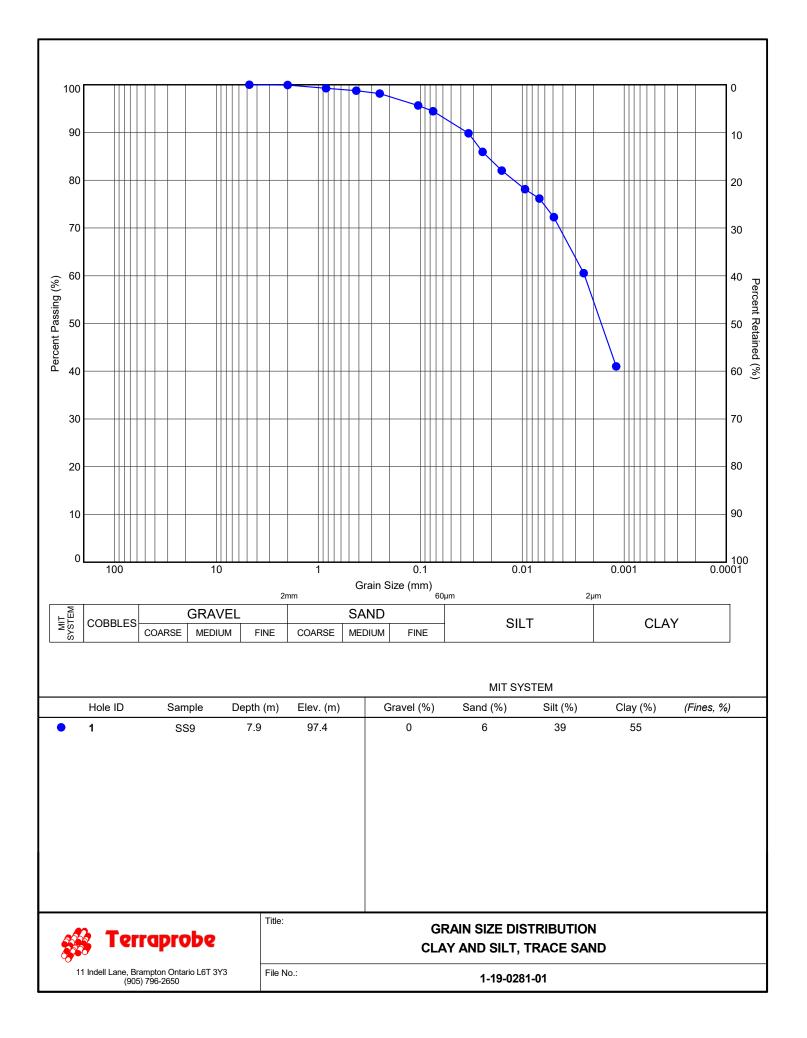
Project : 65 Ward Street

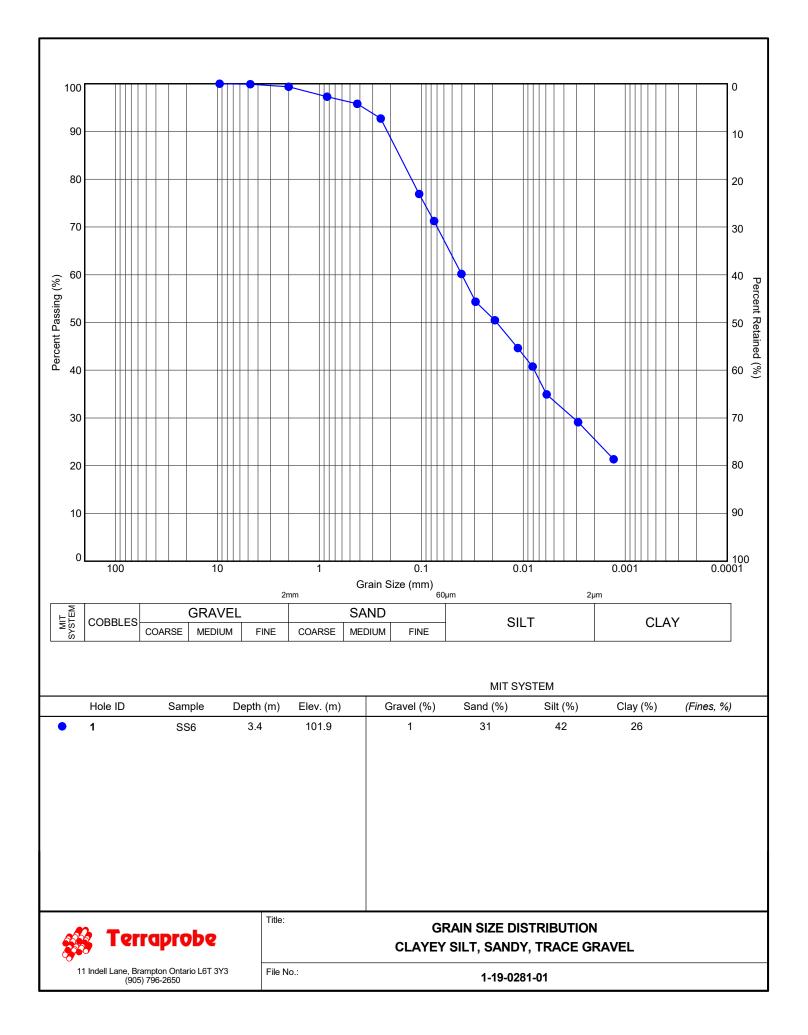
Client : CVH (NO. 6) LP

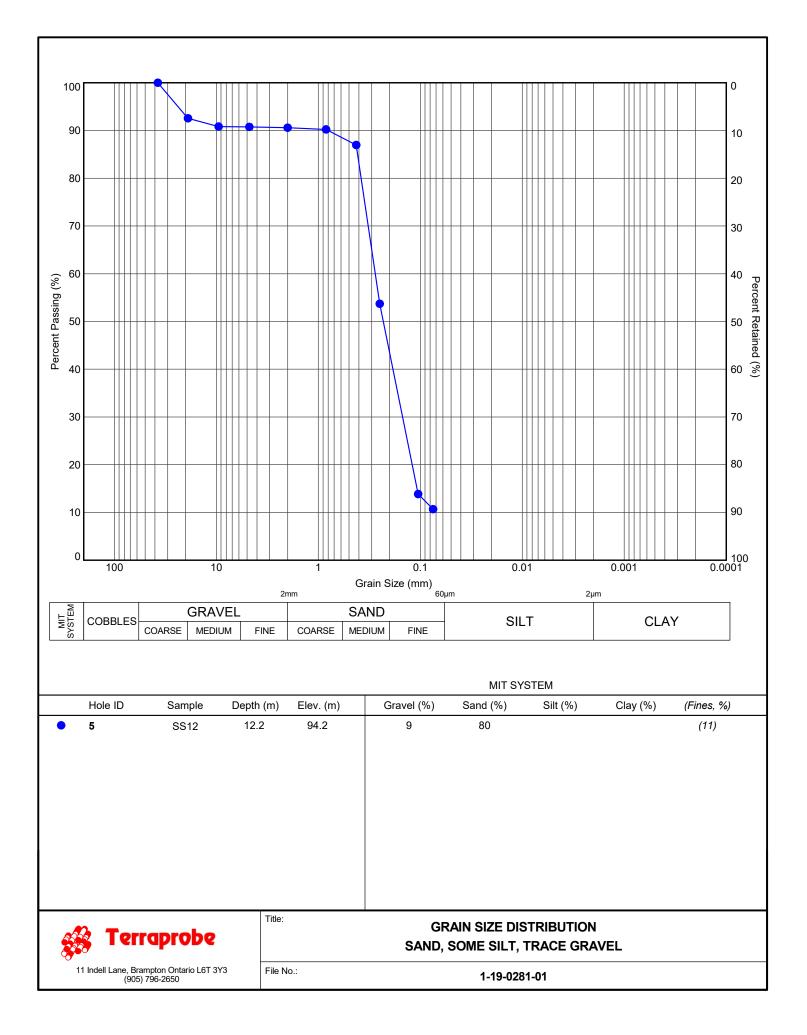
Location : Port Hope, Ontario

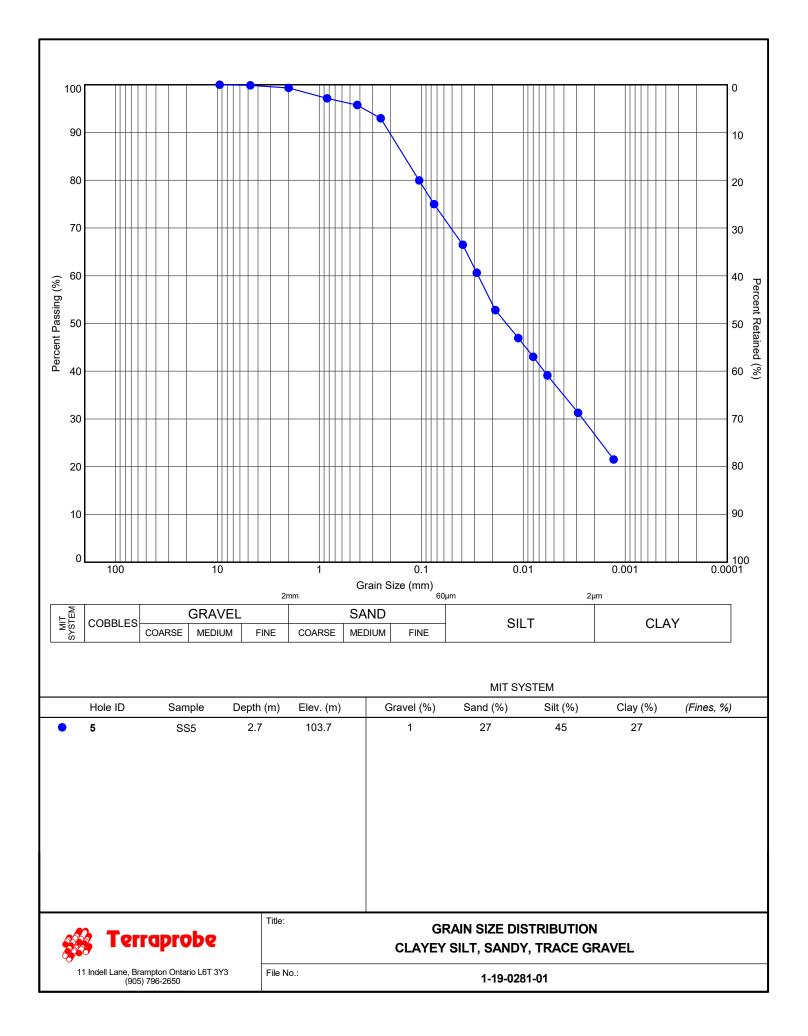

Posi	ion	: E: 717512, N: 4870398 (UTM 17T)				Elevati	on Datu	m :	Geode	ic									
Rig t	ype	: Track-mounted				Drilling	Method	:	Solid s	tem au	gers								
Ê		SOIL PROFILE			SAMPI	-	le	Pene (Blov	tration T s / 0.3m	est Valu)	es		М	oisture /	Plastici	itv	é	Ħ	Lab Data
Depth Scale (m)	Elev Depth (m) 100.6		Graphic Log	Number	Type	SPT 'N' Value	Elevation Scale (m)	Undr	ained Sh Unconfin Pocket P	20 ear Stre ed enetromet	3 <u>0 4(</u> ngth (kPa + Fiel er ■ Lab 20 16) Id Vane Vane	Plastic Limit PI	× Na Water	tural Content	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	GRAIN SIZE DISTRIBUTION (%) (MIT) GR SA SI CL
Γ	100.4 0.2	150mm TOPSOIL	XXXX				-	-											
-	0.2	FILL, clayey silt, trace to some sand, trace organics, trace rootlets, soft to firm, blackish brown to brown, moist		1	SS	3	100 -							0			-PID: 0		
							-												
-1				2	SS	6										0	-PID: 0		
ŀ	98.9			3A			99 –									0	PID: 0		
-2	1.7	CLAYEY SILT , trace to some sand, trace gravel, very stiff, brown, moist (GLACIAL TILL)		3B	SS	15			$\left \right\rangle$						o	0	FID. 0		
				\vdash					'										
-				4	SS	21	98 -							C			-PID: 0		
-3	97.6 3.0						.				$N \mid$								
		SILTY SAND, trace to some clay, trace gravel, dense, brown, moist (GLACIAL TILL)		5	SS	42							0				-PID: 0		
	96.9 3.7		1 ⁰ 1	1			97 -	<u> </u>		1	1 1						-		

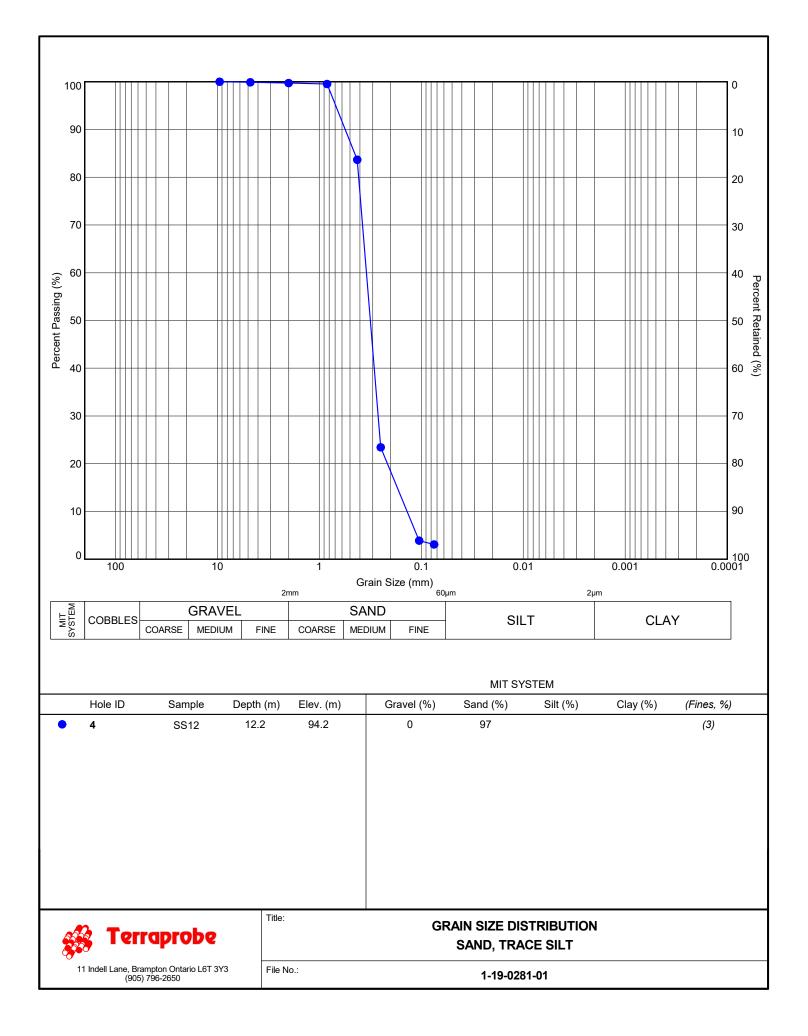

END OF BOREHOLE

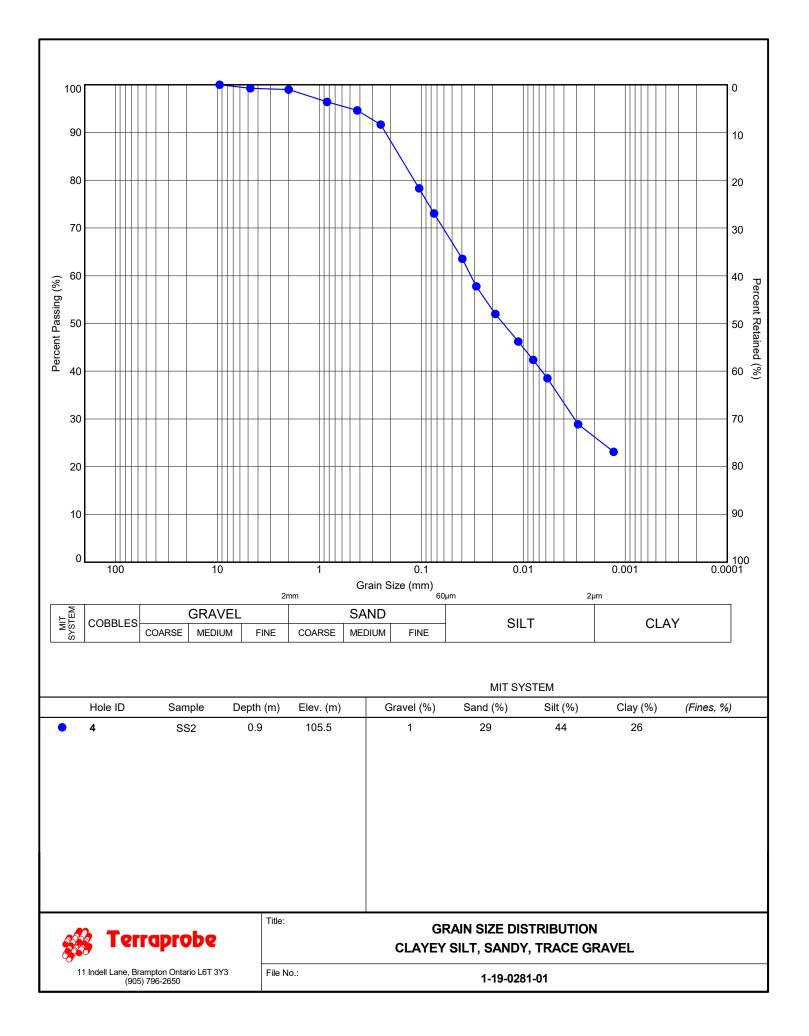

Borehole was dry and open upon completion of drilling.

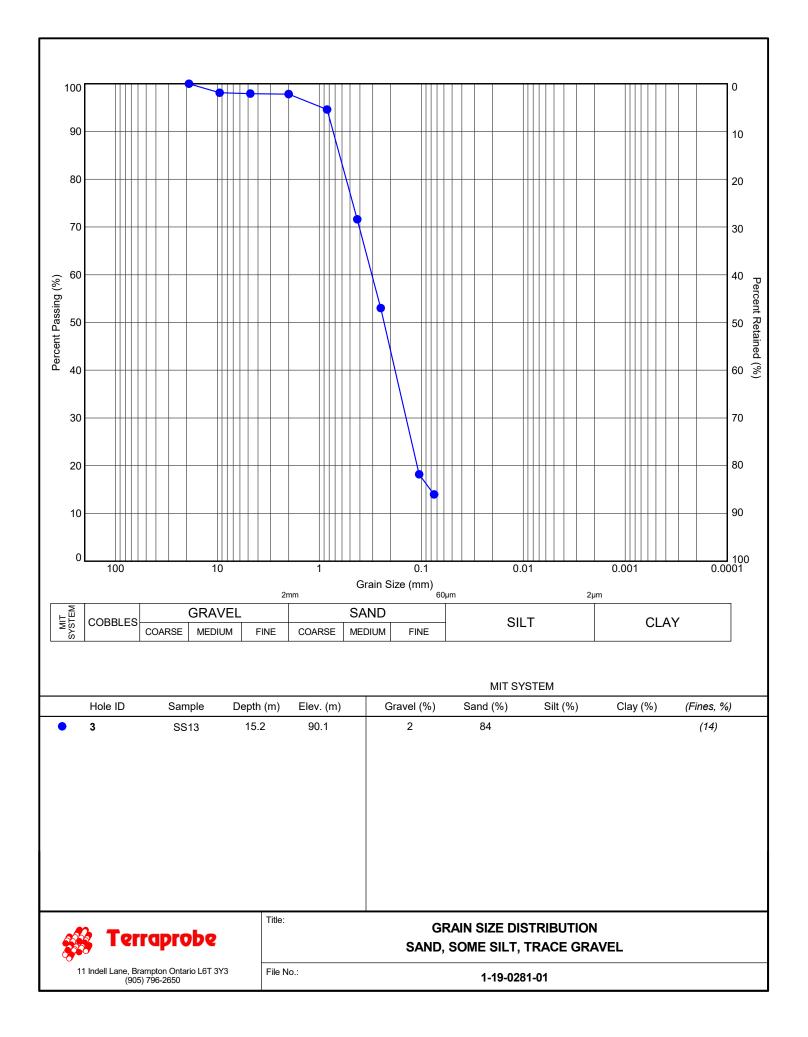

ject	No. : 1-19-0660-01	Clie	ent	: 0	CVH (NO. 6) LP								Origin	ated by:SM
te sta	arted :October 29, 2019	Pro	ject	t :6	5 Wa	ard Str	eet								Com	oiled by :AR
eet N	No. : 1 of 1	Loc	atio	on : F	Port H	lope, (Ontario	D							Che	cked by :
ition	: E: 717503, N: 4870444 (UTM 17T)					on Datu										•
type	: Track-mounted				Drilling	Method		olid stem a			-					
	SOIL PROFILE		:	SAMP		Scale		tion Test Val ′ 0.3m)	ues	-	Mois	sture / Plasti	city	8.	ŧ	Lab Data
<u>Elev</u> Depti (m)	h Description	Graphic Log	Number	Type	SPT 'N' Value	Elevation Sc (m)	1,0 Undrain O Ur	ed Shear Str nconfined ocket Penetrom	+ I eter ■ I	Field Vane Lab Vane	Plastic Limit PL 10	- $ -$	Liquid Limit	Headspace Vapour (ppm)	Instrument Details	Comment GRAIN SIZE GRAIN SIZE DISTRIBUTION (MIT)
99 .9	7 150mm TOPSOIL	<u>x 1/x</u> .	1		0		40	0 00	120	160	10	20	30			GR SA SI
0.2	FILL, clayey silt, trace to some sand, trace organics, trace rootlets, soft to firr blackish brown to brown, moist	n,	1	SS	2							0		-PID: 0		
			2	SS	3	99 -							0			
			3	SS	6	98 -							C	PID: 0	¥	Ā
<u>97.6</u> 2.3			4	SS	17	97 -							0	-PID: 0		sampler wet
<u>96.</u>	4		5A	SS	71/ 250mm						0	0		PID: 0 PID: 0		
	SILTY SAND, trace to some clay, trace gravel, very dense, grey, moist (GLACIAL TILL)		50			96 -					0					
		9	6	SS	50/ 100mm	95 -					0			-PID: 0		· · ·
						35										
		191 191														
			7	<u>ss</u>	50/ 50mm	94 -					o			-PID: 0		
		0				93 -										
		10 10														
		19) }	8	SS	50 /											

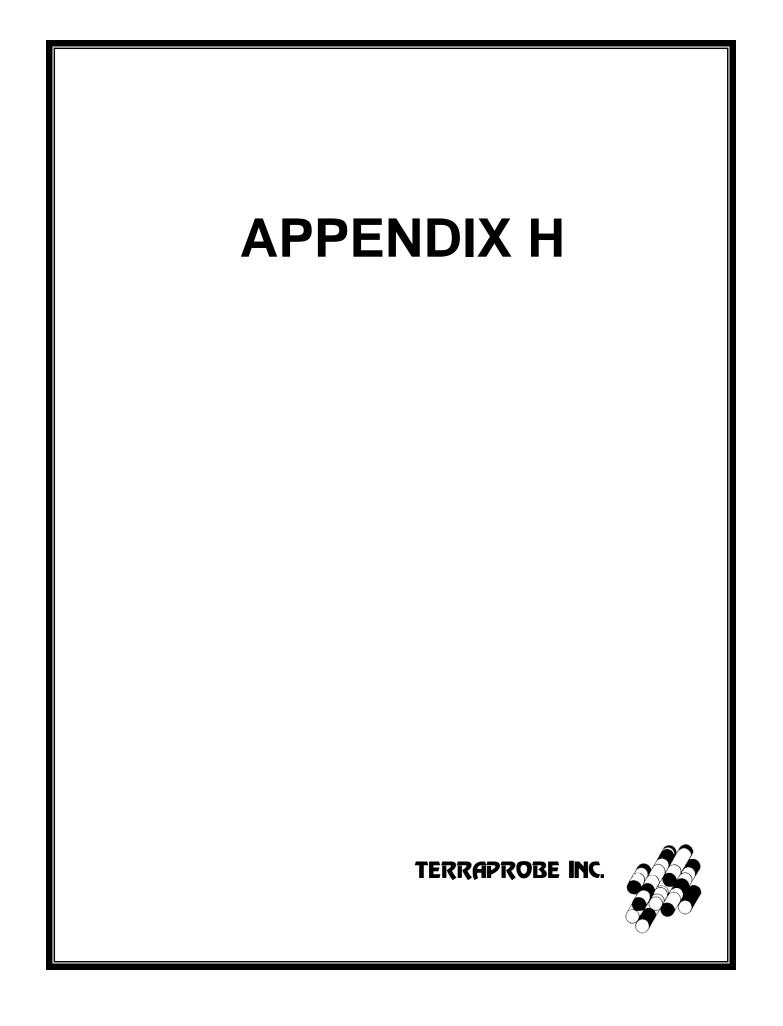

Unstabilized water level measured at 1.8 m below ground surface; borehole caved to 7.3 m below ground surface upon completion of drilling.









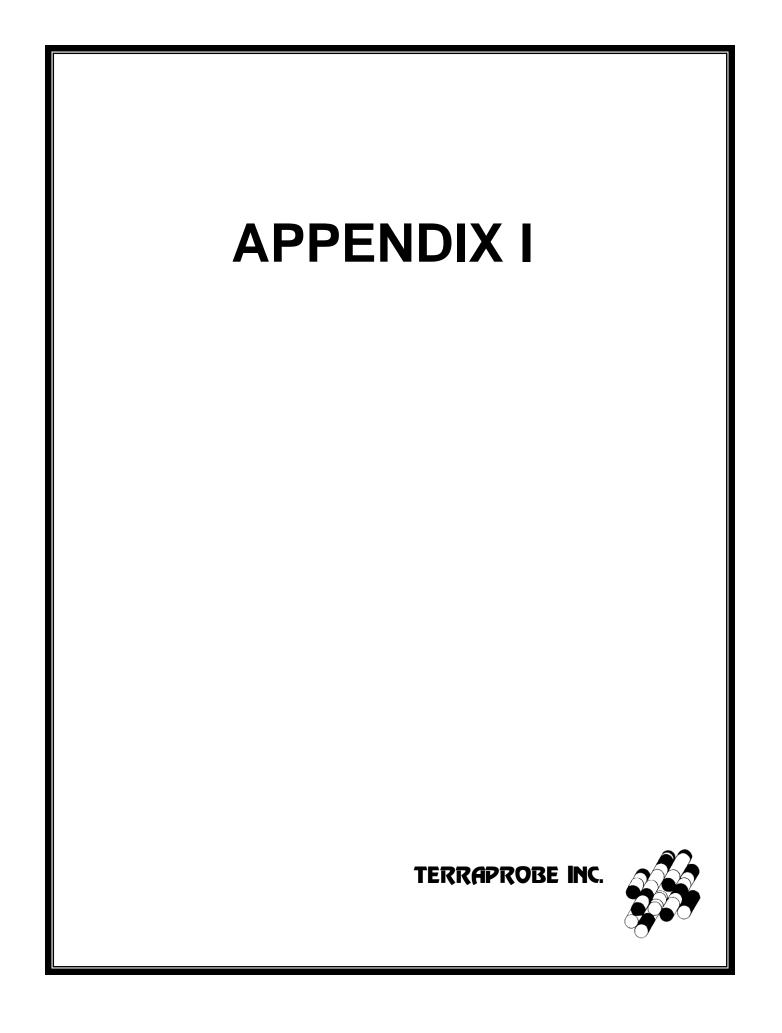


Well	Ground Elevation (m asl)	Measured Well Depth (m bgs)	Well Top of Screen Depth (m bgs)	Water Depth August 26, 2019 (m bgs)	Water Depth August 28, 2019 (m bgs)	Water Depth September 12, 2019 (m bgs)
BH3	100.80	7.62	4.57	1.50	2.70	1.60
BH4	100.90	7.62	4.57	2.10	2.30	2.10
BH5	101.20	7.62	4.57	2.00	2.30	2.30
BH6	102.20	7.62	4.57	3.10	3.50	3.00
BH8	100.70	7.62	4.57	2.80	3.10	2.90
BH10	100.90	7.62	4.57	3.60	3.60	3.60
BH12	99.90	7.62	4.57	1.80	1.80	1.90

Ground Water Depths (m below ground surface)

Ground Water Elevations (m above sea level)

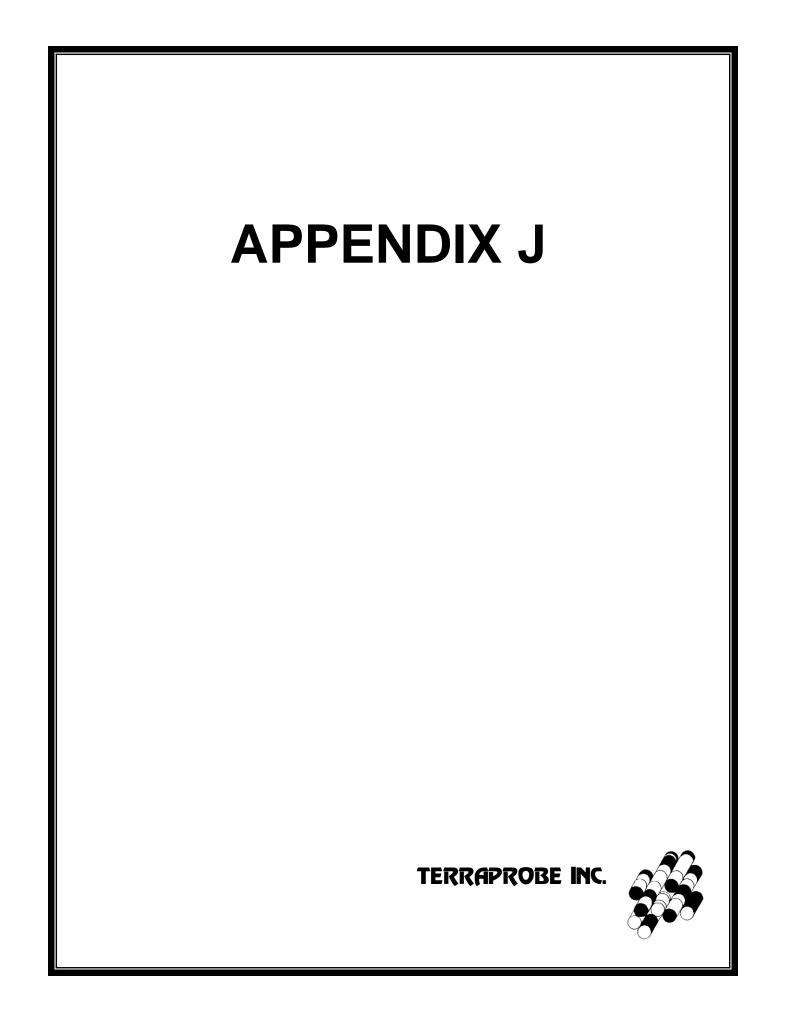
Well	Ground Elevation (m asl)	Well Screen Bottom Elevation (m asl)	Well Screen Top Elevation (m asl)	Ground Water Elevation August 26, 2019 (m asl)	Ground Water Elevation August 28, 2019 (m asl)	Ground Water Elevation September 12, 2019 (m asl)
BH3	100.80	93.18	96.23	99.30	98.10	99.20
BH4	100.90	93.28	96.33	98.80	98.60	98.80
BH5	101.20	93.58	96.63	99.20	98.90	98.90
BH6	102.20	94.58	97.63	99.10	98.70	99.20
BH8	100.70	93.08	96.13	97.90	97.60	97.80
BH10	100.90	93.28	96.33	97.30	97.30	97.30
BH12	99.90	92.28	95.33	98.10	98.10	98.00


Note: mbgs - meters below ground surface

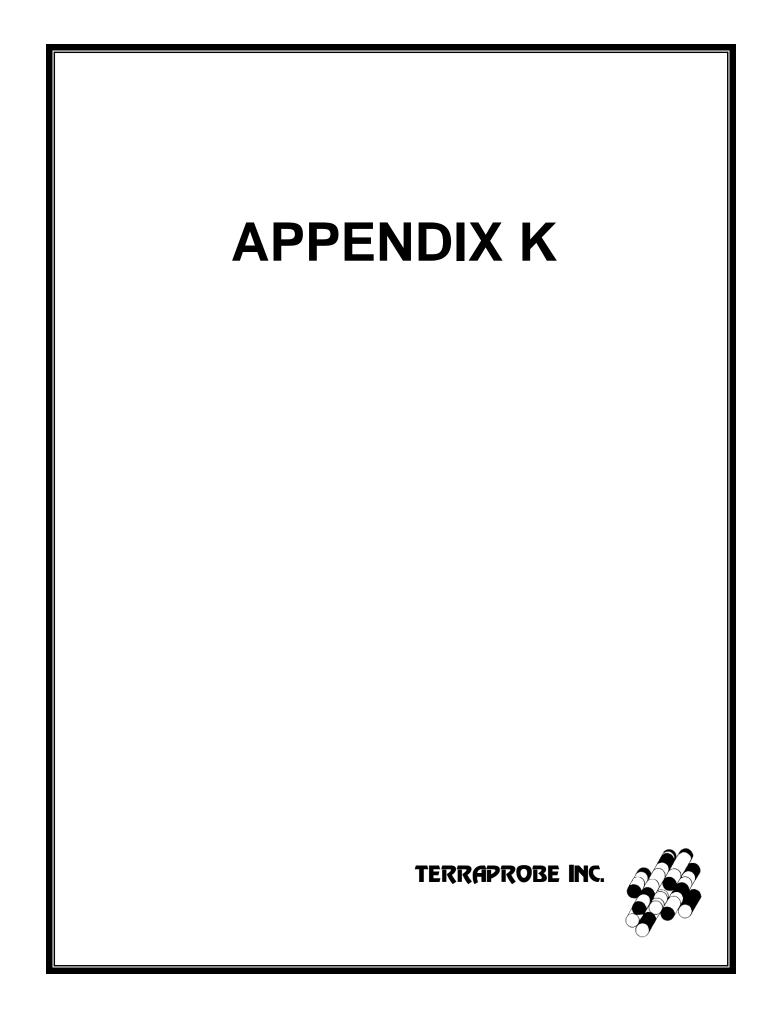
masl - meters above sea level

NA - not available

NM - not measured


WNI - well not installed

GEOLOGICAL UNITS 65 WARD STREET AND 18-20 HOPE STREET SOUTH PORT HOPE, ONTARIO PROJECT # 1-19-0660-42


		BH1			BH2			BH3			BH4			BH5			BH6	
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)															
Concrete/Aggregrate/Topsoil	100.4	100.2	0.2	101.2	100.8	0.4	100.8	100.5	0.3	100.9	100.1	0.8	101.2	101	0.2	102.2	102	0.2
Earth Fill	100.2	98.9	1.3	100.8	100.4	0.4	100.5	99.3	1.2	100.1	98.6	1.5	101	99.7	1.3	102	100.7	1.3
Clayey Silt (Glacial Till)	98.9	97.4	1.5	100.4	99.7	0.7	N	ot Encountere	ed	N	ot Encountere	ed	99.7	98.2	1.5	N	ot Encounter	ed
Silty Sand (Glacial Till)	97.4	92.6	4.8	99.7	98.1	1.6	99.3	93.0	6.3	98.6	93.1	5.5	98.2	93.5	4.7	100.7	94.1	6.6
Bedrock	N	ot Encounter	ed	N	ot Encountere	ed	Not Encountered		N	ot Encountere	ed	N	ot Encounter	ed	N	ot Encounter	ed	

		BH7			BH8			BH9			BH10			BH11			BH12	
Borehole	Elev. Top (masl)	Elev. Bottom (masl)	Thickness (m)															
Concrete/Aggregrate/Topsoil	101.2	101	0.2	100.7	100.5	0.2	101.2	100.8	0.4	100.9	100.7	0.2	100.6	100.4	0.2	99.9	99.7	0.2
Earth Fill	101	99.7	1.3	100.5	98.4	2.1	100.8	99.7	1.1	100.7	99.4	1.3	100.4	98.9	1.5	99.7	97.6	2.1
Clayey Silt (Glacial Till)	99.7	98.9	0.8	N	ot Encountere	ed	99.7	98.2	1.5	99.4	97.9	1.5	98.9	97.6	1.3	97.6	96.5	1.1
Silty Sand (Glacial Till)	98.9	93.0	5.9	105.9	94.1	11.8	98.2	97.5	0.7	97.9	93.1	4.8	97.6	96.9	0.7	96.5	92.1	4.4
Bedrock	N	ot Encounter	ed	N	ot Encountere	ed	N	ot Encountere	ed	N	ot Encountere	ed 🛛	N	ot Encounter	ed	N	ot Encounter	ed

MONITORING WELL CONSTRUCTION 65 WARD STREET AND 18-20 HOPE STREET SOUTH PORT HOPE, ONTARIO PROJECT # 1-19-0660-42

Well ID	В	Н3	B	H4	B	Н5	B	H6	B	H8	Bł	H10	BE	H12
Stick Up (m)	Stic	k-Up	Flush	Mount	Stic	k-Up	Stic	k-Up	Stic	k-Up	Flush	Mount	Sticl	k-Up
Ground Elev. (masl)	100	0.80	100	0.90	10	1.20	102	2.20	100).70	100).90	99	.90
Well Component	Depth (m)	Elev. (masl)												
Bentonite - Top	0.00	100.80	0.00	100.90	0.00	101.20	0.00	102.20	0.00	100.70	0.00	100.90	0.00	99.90
Bentonite - Bottom	3.96	96.84	3.96	96.94	3.96	97.24	3.96	98.24	3.96	96.74	3.96	96.94	3.96	95.94
Sand - Top	3.96	96.84	3.96	96.94	3.96	97.24	3.96	98.24	3.96	96.74	3.96	96.94	3.96	95.94
Screen - Top	4.57	96.23	4.57	96.33	4.57	96.63	4.57	97.63	4.57	96.13	4.57	96.33	4.57	95.33
Screen - Bottom	7.62	93.18	7.62	93.28	7.62	93.58	7.62	94.58	7.62	93.08	7.62	93.28	7.62	92.28
Sand - Bottom	7.77	93.03	7.77	93.13	7.75	93.45	8.08	94.12	7.92	92.78	7.85	93.05	7.85	92.05

Page 1 of 5

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541690

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	
<u>INOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)	AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in
	the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating
	conformity with a specified requirement

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541690 PROJECT: 1-19-0660-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - All Metals (Soil)

DATE RECEIVED: 2019-11-08

DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
		SAMPLE DESCR SAMPL DATE SA	E TYPE:	BH1/SS1 Soil 2019-11-07	BH1/SS4 Soil 2019-11-07	
Parameter	Unit	G/S	RDL	696798	696799	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	8	3	
Barium	µg/g	390	2	86	238	
Beryllium	µg/g	4	0.5	<0.5	0.5	
Boron	µg/g	120	5	<5	7	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.30	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	20	37	
Cobalt	µg/g	22	0.5	6.2	12.7	
Copper	µg/g	140	1	12	25	
Lead	µg/g	120	1	31	7	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	12	24	
Selenium	µg/g	2.4	0.4	0.5	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Uranium	µg/g	23	0.5	1.7	0.5	
Vanadium	µg/g	86	1	32	53	
Zinc	µg/g	340	5	57	78	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541690 **ATTENTION TO: Amir Karim**

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Nov 13, 2019	RPT Date: Nov 13, 2019						REFEREN		TERIAL	METHOD	BLANK		MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	Lin	ptable nits	Recovery		eptable nits
		10					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - All Metals ((Soil)														
Antimony	696476		<0.8	<0.8	NA	< 0.8	127%	70%	130%	94%	80%	120%	94%	70%	130%
Arsenic	696476		2	2	NA	< 1	109%	70%	130%	100%	80%	120%	102%	70%	130%
Barium	696476		135	138	2.1%	< 2	100%	70%	130%	97%	80%	120%	95%	70%	130%
Beryllium	696476		<0.5	<0.5	NA	< 0.5	80%	70%	130%	106%	80%	120%	81%	70%	130%
Boron	696476		<5	<5	NA	< 5	94%	70%	130%	103%	80%	120%	79%	70%	130%
Boron (Hot Water Soluble)	696476		<0.10	<0.10	NA	< 0.10	126%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	696476		<0.5	<0.5	NA	< 0.5	109%	70%	130%	100%	80%	120%	99%	70%	130%
Chromium	696476		25	25	2.7%	< 2	93%	70%	130%	103%	80%	120%	99%	70%	130%
Cobalt	696476		8.7	8.9	2.6%	< 0.5	93%	70%	130%	102%	80%	120%	96%	70%	130%
Copper	696476		17	18	3.0%	< 1	94%	70%	130%	109%	80%	120%	95%	70%	130%
Lead	696476		5	5	NA	< 1	102%	70%	130%	99%	80%	120%	96%	70%	130%
Molybdenum	696476		<0.5	<0.5	NA	< 0.5	90%	70%	130%	95%	80%	120%	95%	70%	130%
Nickel	696476		16	16	3.5%	< 1	95%	70%	130%	103%	80%	120%	94%	70%	130%
Selenium	696476		<0.4	<0.4	NA	< 0.4	97%	70%	130%	98%	80%	120%	98%	70%	130%
Silver	696476		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	696476		<0.4	<0.4	NA	< 0.4	101%	70%	130%	100%	80%	120%	96%	70%	130%
Uranium	696476		0.5	0.5	NA	< 0.5	101%	70%	130%	94%	80%	120%	97%	70%	130%
Vanadium	696476		40	41	2.4%	< 1	92%	70%	130%	96%	80%	120%	96%	70%	130%
Zinc	696476		52	53	3.1%	< 5	102%	70%	130%	109%	80%	120%	106%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	0.0%	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	696476		<0.10	<0.10	NA	< 0.10	104%	70%	130%	97%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Vivine Basily

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541690 ATTENTION TO: Amir Karim

SAMPLED BY:

SAMFLING SITE.		SAMFLED BT.											
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE										
Soil Analysis			•										
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES										
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER										
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS										

(Sal	AG			abor	ato	ories	Ph: 9		183(651 2,510 (5835 Coo uga, Onta) Fax 90 sbearth.a	rio ι 4 5 712	7 1Y 512	2 2	v		Order	· #:	10		onty	1.1.1	· 16	91	2
Chain of C	Custody Reco	rd If this is	a Drinking Wa	ter sample, p	lease i	se Drinking Water Chain of Custody Form (potable	water	consum	ed by huma	ins)		-					tures	3:	1.	0	į. Ll:	51	1.2
Report Inform Company:	mation: Terraprobe					Regulatory Requirements: (Please check all applicable boxes)	_					eme	nt		lusi. Votes			tact: E		Ye	s	<u> </u> [] :	K
Contact: Address: Phone: <i>Reports to be sent to:</i> 1. Email: 2. Email:	Amir Karim 11 Indell Lane, Brampton (905) 796-2650 AKarim@Terraprobe.ca	Fax:				Regulation 153/04 Sewe Table Indicate one Ind/Com San Agriculture Stor Soil Texture (check One) Region Agroarse Indicate Fine MISA	itary	_		Regulatio CCME Prov. Wate Objective: Other	er Qua s (PWC	lity		Re	egul Ish	ar T, TAT (3 Bu Days	AT Rush S USING	Surcha 255	ari(es A	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	to 7 B Busin 5,5	quire usi (R	s Days	iedu er
Project Inform Project: Site Location: Sampled By:	mation: 1-19-0660-42 65 Ward Street, Port Hop	pe			_	Is this submission for a Record of Site Condition ?		Cer		Guideli te of A l	ne o	ls				P *TAT	leas is ex	e pro Kolusi	ovide	prior f weak	notific kena	cation i	for rush ato: ny	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number mation: Terraprobe Lorena Rossi 11 Indell Lane, Brampto Irossi@Terraprobe.ca		Bill To Same:			Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Filtered - Metals, Hg, CrVI	ind Inorganics	Image: Second		Fuil Metals Scan	Regulation/Custom Metals	s: DTP DNH, D1KN DNO, DNO,+NO	: S VOC D BTEX D THM	4t 			D Total D Archipes	0.110	&I 🗆 VOCs	ise			
	ole Identification	Date Sampled	Time Sampled	# of Containers	Sam Mat	rix Special Instructions	Y/N	Metals a	X All Met	ORPs: [Cr ⁶ , [Full Met	Regulat	Nutrients: DTP DNO, DNO, D	Volatiles:	PHCs F1 - F4	ABNs	PAHS	PCBs:	Organoc	TCLP: 🗖 🗟 🗞	Sew. L			
BH1/S		2014/11/07 2019/11/07	5:35 PM 5:36 PM		SOII				X X															
Samples Relinquished By (Pr Amir Karim Samples Relinquished By (Pr	rint Name and Sign):	,	Date 2019-1 Date	1-07	r Ba	Samples Resolved By (Print Name and Sign):		N	5	/		Date Date		Ъ З		me S (ç w	an			Page	1		
Samples Relinquished By (Pr	rint Name and Sign):		Data	Time	8	Samples Received by (Print Name and Gign)						Date	1			me			11		- age			

16.08 (a) 56 (b)

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541640

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGGAT Laboratories (V1)
 Page 1 of 13

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Section of Alberta (ESAA)

 Brivinonmental Services Association of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541640 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - All M	letals (Soil)
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
		SAMPLE DES	CRIPTION:	BH3/SS1	BH3/SS3	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696507	696522	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	4	2	
Barium	µg/g	390	2	198	115	
Beryllium	µg/g	4	0.5	0.6	<0.5	
Boron	µg/g	120	5	5	5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.16	0.13	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	35	23	
Cobalt	µg/g	22	0.5	11.1	7.2	
Copper	µg/g	140	1	21	14	
Lead	µg/g	120	1	20	6	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	22	14	
Selenium	µg/g	2.4	0.4	<0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Uranium	µg/g	23	0.5	0.8	<0.5	
Vanadium	µg/g	86	1	47	33	
Zinc	µg/g	340	5	73	45	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541640 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg	. 153(511) - PAHs (Soil)
DATE RECEIVED: 2019-11-08					DATE REPORTED: 2019-11-13
		SAMPLE DESC	RIPTION:	BH3/SS5	
		SAMF	LE TYPE:	Soil	
			AMPLED:	2019-11-07	
Parameter	Unit	G/S	RDL	696531	
Naphthalene	µg/g	0.6	0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	
Moisture Content	%		0.1	7.2	
Surrogate	Unit	Acceptabl	e Limits		
Chrysene-d12	%	50-1	40	78	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696531 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541640 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-08 **DATE REPORTED: 2019-11-13** SAMPLE DESCRIPTION: BH3/SS2 BH3/SS6 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2019-11-07 2019-11-07 RDL 696512 696526 Parameter Unit G/S F1 (C6 to C10) 55 5 <5 <5 µg/g F1 (C6 to C10) minus BTEX 55 5 <5 <5 µg/g F2 (C10 to C16) µg/g 98 10 <10 <10 F3 (C16 to C34) 50 <50 300 <50 µg/g F4 (C34 to C50) 2800 50 <50 <50 µg/g Gravimetric Heavy Hydrocarbons 2800 50 NA NA µg/g Moisture Content % 0.1 19.5 7.5 Surrogate Unit Acceptable Limits % 60-140 93 104 Terphenyl Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on sample dry weight. 696512-696526 The C6-C10 fraction is calculated using toluene response factor. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541640 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				0. Ke	y. 155(511) - V	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	S	AMPLE DESC	RIPTION:	BH3/SS2	BH3/SS6	
		SAMF	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696512	696526	
Dichlorodifluoromethane	hð/ð	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	< 0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541640 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				0.10	g. 100(011)	
DATE RECEIVED: 2019-11-0)8					DATE REPORTED: 2019-11-13
	S/	AMPLE DES	CRIPTION:	BH3/SS2	BH3/SS6	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696512	696526	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
I,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
I,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
(ylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Foluene-d8	% Recovery	50-1	140	98	96	
4-Bromofluorobenzene	% Recovery	50-2	140	92	93	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696512-696526 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541640

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Nov 13, 2019			0	UPLICAT		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 15	eptable mits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - All Metals (Soi	I)														
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.0%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	703638		0.19	0.19	NA	< 0.10	127%	60%	140%	100%	70%	130%	96%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.0%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	6.5%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.0%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.0%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 13

Page 8 of 13

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541640 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			mac												
RPT Date: Nov 13, 2019			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery	l Lin	ptable nits
		la					value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	82%	60%	130%	83%	50%	140%
Chloroform	696560		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	84%	60%	130%	88%	50%	140%
1,2-Dichloroethane	696560		< 0.03	< 0.03	NA	< 0.03	98%	50%	140%	84%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	76%	60%	130%	73%	50%	140%
Carbon Tetrachloride	696560		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	76%	60%	130%	73%	50%	140%
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	82%	60%	130%	86%	50%	140%
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	84%	60%	130%	84%	50%	140%
Trichloroethylene	696560		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	100%	60%	130%	105%	50%	140%
Bromodichloromethane	696560		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%	60%	130%	75%	50%	140%
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	119%	60%	130%	77%	50%	140%
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	99%	50%	140%
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	102%	60%	130%	92%	50%	140%
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%	50%	140%	78%	60%	130%	82%	50%	140%
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541640 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

		11400	org	amou	, , ,,,,,	1,9010			uou	·/					
RPT Date: Nov 13, 2019		DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE					
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F		oil)													
F1 (C6 to C10)	697241	,	< 5	< 5	NA	< 5	84%	60%	130%	91%	85%	115%	87%	70%	130%
F2 (C10 to C16)	696515		< 10	< 10	NA	< 10	118%	60%	130%	87%	80%	120%	82%	70%	130%
F3 (C16 to C34)	696515		< 50	< 50	NA	< 50	115%	60%	130%	82%	80%	120%	88%	70%	130%
F4 (C34 to C50)	696515		< 50	< 50	NA	< 50	103%	60%	130%	89%	80%	120%	111%	70%	130%
O. Reg. 153(511) - PAHs (Soil)	1														
Naphthalene	697775		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	90%	50%	140%	84%	50%	140%
Acenaphthylene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	89%	50%	140%	87%	50%	140%
Acenaphthene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	86%	50%	140%	85%	50%	140%
Fluorene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	84%	50%	140%	87%	50%	140%
Phenanthrene	697775		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	83%	50%	140%	82%	50%	140%
Anthracene	697775		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	82%	50%	140%	95%	50%	140%
Fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	87%	50%	140%	86%	50%	140%
Pyrene	697775		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	96%	50%	140%	83%	50%	140%
Benz(a)anthracene	697775		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	85%	50%	140%	79%	50%	140%
Chrysene	697775		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	82%	50%	140%	94%	50%	140%
Benzo(b)fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	84%	50%	140%	96%	50%	140%
Benzo(k)fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	86%	50%	140%	87%	50%	140%
Benzo(a)pyrene	697775		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	84%	50%	140%	92%	50%	140%
Indeno(1,2,3-cd)pyrene	697775		< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	82%	50%	140%	84%	50%	140%
Dibenz(a,h)anthracene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	86%	50%	140%	92%	50%	140%
Benzo(g,h,i)perylene	697775		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	91%	50%	140%	83%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541640

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Soil Analysis	•	1							
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES						
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER						
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS						

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541640 ATTENTION TO: Amir Karim

		ATTENTION TO:	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270E	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541640 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS					

		5835 Coopers Avenue	Laboratory Use Cnly
Laborat	ories	Missistauga, Ontario 1,47,157 Ph: 905.712,5100 Fax: 905.712,5122	
Ohola of Osotoda Depend	e use Drinking Water Chain of Custody Form (webearth.agatlabs.com	Cooler Quantity/ Arrival Temperatures:/.0/.5/.2
Report Information: Company: Terraprobe	Regulatory Requirements: (Please check all applicable boxes)	No Regulatory Requireme	
Contact: Amir Karim	Regulation 153/04	er Use Regulation 558	Notes: <u>ICE</u>
Address: 11 Indell Lane, Brampton ON L6T 3Y3			Turnaround Time (TAT) Required:
			Regular TAT 7 5 to # Business Days
Phone: (905) 796-2650 Fax:		Prov. Water Quality Objectives (PWQO)	Rush: TAT (Rush Surcharges + apply)
Reports to be sent to: AKarim@Terraprobe.ca 1. Email:	Soil Texture (Check One) Region	ate One	3 Business 2 Business Next of International
2. Email:	☐ Fine MISA		Days L Days Days OR Date Required (Rush Surcharges May Ar phy)
Project Information:	Is this submission for a	Report Guideline on	OR Date Required (Rush Surcharges May A, PN)
Project: 1-19-0660-42	Record of Site Condition?	Certificate of Analysis	Please provide prior notification for rush TAT
Site Location: 65 Ward Street, Port Hope	Yes I No	☑ Yes □ No	*TAT is exclusive of weekends and statutory net the
Sampled By:			For 'Same Day' analysis, please contact your AGAT CPA
AGAT Quote #: PO: PO: PO: Please note: If quotation number is not provided, client will be billed full price for analysis.	Sample Matrix Legend	0. Reg 153	Sac
Invoice Information: Bill To Same: Yes 🕢 No 🗆	B Biota GW Ground Water	Adr. ges)	B B
Company: Terraprobe	O Oil	Metals, (exci Hydr etals DHg etals	
Contact: Lorena Rossi	P Paint S Soil	ered - Meta 3anics Metals (excl 3 153 Metals (H FOC D Hg	C DBTEX C DBTEX C DBTEX C DBTEX C
Address: 11 Indell Lane, Brampton, ON L6T 3Y3 Fmail: Irossi@Terraprobe.ca	SD Sediment	Iltere	
Email: Irossi(@) I erraproce.ca	SW Surface Water	Field Filtered - and Inorganics cens 0159 Metals cents 0159 Metals centers 0159 Metals 05 Metals 015 05 C 05 C 05 C 05 C 05 C 05 C 05 C 05	Ints: 0 TP 100, 0 2 - F4 1
Sample Identification	mple Comments/ atrix Special Instructions	A Field Filtere A Metals and Inorgan Metals and Inorgan Metals and Inorgan Main Metals and Inorgan 153 Metals Ditydius Metals and Iso 153 Metals ORPs: B-HWS ORPs: DB-HWS ORPs: DS-Metals Main Metals Scan Full Metals Scan Regulation/Custum	Nutrients: TP Not, TNO, TNO, TNO, TNO, TNO, TVO Volatiles: TVO VOLATILES: TVOC ABNS PAHS PAHS PCBS: T Total T Crgarmination P Crgarmination P Crgarmin
BH3/SSI 2019/11/07 15:25 1 SO	IL	X	
	I T		XX
013 023	11	X	
	11		XX
Bit3 555 11 15:25 1	11	Cust	
Samples Relinquished By (Print Name and Sign):	Samples/Received By (Print Barre and Sign)	10	to ITime
Amir Karim HCC2 2019-11-07 20.	Construction of the second state of the second	MS Nate	100 8 8100 an
Samples Relinquished By (Print Name and Sign): Date Time	Samples Received By (Print Name and Sign)	bate	Page
Samples Relinquished By (Print Name and Sign):	Samples Received By (Print Name and Sign):	Date	te Time N°:

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541637

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 14

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 14

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541637 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	BH4/SS2	BH4/SS5	
		SAM	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696554	696559	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	2	2	
Barium	µg/g	390	2	20	35	
Beryllium	µg/g	4	0.5	<0.5	<0.5	
Boron	µg/g	120	5	<5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	<0.10	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	6	9	
Cobalt	µg/g	22	0.5	2.1	2.6	
Copper	µg/g	140	1	4	5	
ead	µg/g	120	1	5	8	
Nolybdenum	µg/g	6.9	0.5	<0.5	<0.5	
lickel	µg/g	100	1	2	3	
Selenium	µg/g	2.4	0.4	<0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Jranium	µg/g	23	0.5	<0.5	<0.5	
/anadium	µg/g	86	1	12	14	
linc	µg/g	340	5	13	18	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	
/lercury	µg/g	0.27	0.10	<0.10	<0.10	
lectrical Conductivity	mS/cm	0.7	0.005	0.246	0.192	
Sodium Adsorption Ratio	NA	5	NA	1.60	1.18	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.87	7.77	

Certified By:

Nivine Basily

AGAT WORK ORDER: 19T541637 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE REPORTED: 2019-11-13

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696554-696559 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 19T541637

PROJECT: 1-19-0660-42

O. Reg. 153(511) - PAHs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
		SAMPLE DESC	RIPTION:	BH4/SS2	BH4/SS5	
		SAMP	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696554	696559	
Naphthalene	µg/g	0.6	0.05	<0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	<0.05	
Acenaphthene	µg/g	7.9	0.05	<0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	<0.05	
Phenanthrene	µg/g	6.2	0.05	<0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	
ndeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	<0.05	
Moisture Content	%		0.1	5.0	10.0	
Surrogate	Unit	Acceptable	e Limits			
Chrysene-d12	%	50-14	40	70	80	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of the soil.

696554-696559

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukoloj

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541637 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-0	8					DATE REPORTED: 2019-11-13
	Ś	SAMPLE DES	CRIPTION:	BH4/SS3	BH4/SS7	
		SAM	PLE TYPE:	Soil	Soil	
		DATE SAMPLED:		2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696557	696560	
1 (C6 to C10)	µg/g	55	5	<5	<5	
1 (C6 to C10) minus BTEX	µg/g	55	5	<5	<5	
2 (C10 to C16)	µg/g	98	10	<10	<10	
3 (C16 to C34)	hð/ð	300	50	<50	<50	
4 (C34 to C50)	hð\ð	2800	50	<50	<50	
Gravimetric Heavy Hydrocarbons	hð/ð	2800	50	NA	NA	
loisture Content	%		0.1	16.7	7.2	
Surrogate	Unit	Acceptab	le Limits			
erphenyl	%	60-1	140	110	88	
Residential/Pa Guideline valu 96557-696560 Results are ba The C6-C10 fr C6–C10 (F1 n The C10 - C10 Gravimetric H The chromato Total C6 - C50 This method c	rkland/Institutional F es are for general re sed on sample dry v action is calculated inus BTEX) is a cal 6, C16 - C34, and C3 gram has returned to results are corrected	Property Use - eference only. weight. using toluene culated param 34 - C50 fractua are not include are not include o baseline by t ed for BTEX co ference Metho	Coarse Text The guideling response fac eter. The cal ons are calcu ad in the Tota the retention ontribution.	ured Soils es provided may tor. culated value is F ilated using the a il C16-C50 and a time of nC50. S PHC and is val	or may not be relevant 1 minus BTEX. verage response facto	ic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - t for the intended use. Refer directly to the applicable standard for regulatory interpretation. or for n-C10, n-C16, and n-C34. he chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541637 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				0. Ke	g. 155(511) - V	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	5	SAMPLE DESC	RIPTION:	BH4/SS3	BH4/SS7	
		SAMF	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696557	696560	
Dichlorodifluoromethane	hð\ð	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541637 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

nir Karim

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

SAMPLED BY:

					9	
DATE RECEIVED: 2019-11-08	}					DATE REPORTED: 2019-11-13
	SA	AMPLE DES	CRIPTION:	BH4/SS3	BH4/SS7	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696557	696560	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	140	98	99	
4-Bromofluorobenzene	% Recovery	50-1	140	92	90	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696557-696560 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541637

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Nov 13, 2019			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery		eptable nits
		lu	-				value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)	1													
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.0%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	703638		0.19	0.19	NA	< 0.10	127%	60%	140%	100%	70%	130%	96%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.0%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	6.5%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.0%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.0%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Cyanide	694385		<0.040	<0.040	NA	< 0.040	93%	70%	130%	91%	80%	120%	105%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%
Electrical Conductivity	703638		0.226	0.230	1.8%	< 0.005	100%	90%	110%						
Sodium Adsorption Ratio	689385		2.29	2.27	0.9%	NA									
pH, 2:1 CaCl2 Extraction	694385		7.67	7.68	0.1%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 8 of 14

Page 9 of 14

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541637

ATTENTION TO: Amir Karim

SAMPLED BY:

			Trac	e Or	ganio	cs An	alysi	is								
RPT Date: Nov 13, 2019			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	RIX SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery		ptable nits	Recoverv		eptable mits	
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper	
O. Reg. 153(511) - PAHs (Soil)																
Naphthalene	697775		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	90%	50%	140%	84%	50%	140%	
Acenaphthylene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	89%	50%	140%	87%	50%	140%	
Acenaphthene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	86%	50%	140%	85%	50%	140%	
Fluorene	697775		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	84%	50%	140%	87%	50%	140%	
Phenanthrene	697775		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	83%	50%	140%	82%	50%	140%	
Anthracene	697775		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	82%	50%	140%	95%	50%	140%	
Fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	87%	50%	140%	86%	50%	140%	
Pyrene	697775		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	96%	50%	140%	83%	50%	140%	
Benz(a)anthracene	697775		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	85%	50%	140%	79%	50%	140%	
Chrysene	697775		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	82%	50%	140%	94%	50%	140%	
Benzo(b)fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	84%	50%	140%	96%	50%	140%	
Benzo(k)fluoranthene	697775		< 0.05	< 0.05	NA	< 0.05	104%		140%	86%	50%	140%	87%	50%	140%	
Benzo(a)pyrene	697775		< 0.05	< 0.05	NA	< 0.05	114%		140%	84%	50%	140%	92%	50%	140%	
Indeno(1,2,3-cd)pyrene	697775		< 0.05	< 0.05	NA	< 0.05	103%		140%	82%	50%	140%	84%	50%	140%	
Dibenz(a,h)anthracene	697775		< 0.05	< 0.05	NA	< 0.05	111%		140%	86%	50%	140%	92%	50%	140%	
Benzo(g,h,i)perylene	697775		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	91%	50%	140%	83%	50%	140%	
O. Reg. 153(511) - VOCs (Soil)																
Dichlorodifluoromethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%	
Vinyl Chloride	696560	696560	< 0.02	< 0.02	NA	< 0.02	75%		140%	75%	50%	140%	93%	50%	140%	
Bromomethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	104%		140%	89%	50%	140%	87%	50%	140%	
Trichlorofluoromethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	85%		140%	80%	50%	140%	81%	50%	140%	
Acetone	696560	696560	< 0.50	< 0.50	NA	< 0.50	90%		140%	74%	50%	140%	85%	50%	140%	
1,1-Dichloroethylene	696560	696560	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%	
Methylene Chloride	696560	696560	< 0.05	< 0.05	NA	< 0.05	100%		140%	105%	60%	130%	107%	50%	140%	
Trans- 1,2-Dichloroethylene	696560	696560	< 0.05	< 0.05	NA	< 0.05	111%		140%	87%	60%	130%	88%	50%	140%	
Methyl tert-butyl Ether	696560	696560	< 0.05	< 0.05	NA	< 0.05	100%		140%	85%	60%	130%	97%	50%	140%	
1,1-Dichloroethane	696560	696560	< 0.02	< 0.02	NA	< 0.03	86%		140%	77%	60%	130%	91%	50%	140%	
Methyl Ethyl Ketone	696560	696560	< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%	
		696560	< 0.02	< 0.02	NA	< 0.02	97%		140%	83% 82%	60%	130%	83%	50%	140%	
Cis- 1,2-Dichloroethylene	696560															
Chloroform	696560	696560	< 0.04	< 0.04	NA	< 0.04	92%		140%	84%		130%	88%	50%	140%	
1,2-Dichloroethane 1,1,1-Trichloroethane	696560 696560	696560 696560	< 0.03 < 0.05	< 0.03 < 0.05	NA NA	< 0.03 < 0.05	98% 85%		140% 140%	84% 76%	60% 60%	130% 130%	89% 73%	50% 50%	140% 140%	
Carbon Tetrachloride	696560	696560	< 0.05	< 0.05	NA	< 0.05	92%	50%		76%		130%	73%		140%	
Benzene	696560	696560	< 0.02	< 0.02	NA	< 0.02	103%	50%		82%		130%	86%		140%	
1,2-Dichloropropane	696560	696560	< 0.03	< 0.03	NA	< 0.03	92%	50%		84%		130%	84%	50%	140%	
Trichloroethylene	696560	696560	< 0.03	< 0.03	NA	< 0.03	82%	50%		100%		130%	105%		140%	
Bromodichloromethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%	60%	130%	75%	50%	140%	
Methyl Isobutyl Ketone	696560	696560	< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%	

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541637 ATTENTION TO: Amir Karim SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Nov 13, 2019				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery		ptable nits	Recovery	Lin	ptable nits
		iu					value	Lower	Upper	-	Lower	Upper		Lower	Upper
1,1,2-Trichloroethane	696560	696560	< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560	696560	< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560	696560	< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560	696560	< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560	696560	< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560	696560	< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560	696560	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560	696560	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560	696560	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560	696560	< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560	696560	< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	119%	60%	130%	77%	50%	140%
o-Xylene	696560	696560	< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	99%	50%	140%
1,3-Dichlorobenzene	696560	696560	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560	696560	< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560	696560	< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	102%	60%	130%	92%	50%	140%
1,3-Dichloropropene	696560	696560	< 0.04	< 0.04	NA	< 0.04	78%	50%	140%	78%	60%	130%	82%	50%	140%
n-Hexane	696560	696560	< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(-BTEX) (S	ioil)													
F1 (C6 to C10)	696560	696560	< 5	< 5	NA	< 5	78%	60%	130%	91%	85%	115%	94%	70%	130%
F2 (C10 to C16)	694338		< 10	< 10	NA	< 10	123%	60%	130%	93%	80%	120%	89%	70%	130%
F3 (C16 to C34)	694338		< 50	< 50	NA	< 50	119%	60%	130%	85%	80%	120%	104%	70%	130%
F4 (C34 to C50)	694338		< 50	< 50	NA	< 50	88%	60%	130%	81%	80%	120%	91%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 14

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541637

ATTENTION TO: Amir Karim

SAMPLING SITE:65 Ward Street, P		SAMPLED BY:	1
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
_ead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
√anadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES
oH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541637 ATTENTION TO: Amir Karim

SAMPLING SITE:65 Ward Street, Po	rt Hope	SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis	·	·									
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270E	BALANCE								
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS								
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID								
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID								
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID								
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE								
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE								
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID								
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1.2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Benzene	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,2-Dichloropropane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Trichloroethylene	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Bromodichloromethane	VOL-91-5002 VOL-91-5002										
		EPA SW-846 5035 & 8260D	(P&T)GC/MS								
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS								

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541637 ATTENTION TO: Amir Karim

SAMPLING SITE:65 Ward Street, P	ort Hope	SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS							

	AG		f La	abor	ato	5335 Cooper Avenue Mississeriga, Ontario C. 172 Ph: 905,712,5100 Fax: 905,712,5122 webearth.agatlabs.com								w	Laboratory Use Only Worn Order #: 1975 41637 Cooler Quantity:										
Chain of C	ustody Reco	rd If this is	a Drinking Wa	ter sample, j	please u	se Drinking Water Chain of Custody Form	potable	water	consum	ed by huma	ns)			A	rival	Temp	ierati	ures:	-	1.	5	11-	0	1 -	2
Report Inform Company:	Тегтаргове					Regulatory Requirements: (Please check all applicable boxes)		No F	Regula	atory R e	quir	emer	nt		ustod; otes:		il Inta 1 C		[/ /0°	3		24 Ç	4	Z
Contact: Address: Phone: Reports to be sent to: 1. Email:	Amir Karim 11 Indell Lane, Brampto (905) 796-2650 AKarim@Terraprobe.ca	Fax:				Regulation 153/04 Sewc Table Indicate one Ind/Com Sar Res/Park Sto Agriculture Sto Soil Texture (check one) Region Xaree Indicate one	itary			Regulation CCME Prov. Wate Objectives Other	er Qua	lıty		Turnaround Time (TAT) Required: Regular TAT Image: Start (Rush Surcharges Apply) Image: Start S											
2. Email: Project Inform Project: Site Location: Sampled By:	nation: 1-19-0660-42 65 Ward Street, Port Ho	pe				Is this submission for a Record of Site Condition ? Yes INO		Ce		Indices Guideli ate of Ar	neo	ls			*	PI TAT i:	ease s exc	prov Iusiv	l de p e of v	orlor week	notific ends	ation f	or rust Tulor y	1 TAT	= •M1
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quetation number nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampto Irossi@Terraprobe.ca		Bill To Same:		>	Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Fielc Filtered - Metals, Hg, CrVI	and Inorganics	G 153 Metals (exol. Hydrides) kals □ 153 Metals (incl. Hydrides)	HWS DCI DCN FOC DHg	Full Metals Scan	istore Met	LS: LTP LINH, LITKN DINO; DINO; HIO;	S: EVUC DRIEN DIHM	1 - F.4			🗆 Tote i 🗖 Allacters	kunocitiorine Providitos	🗆 M&I 🗖 VO – 🖾 ABNS 🔲 B(a)P 🕞 CRS	Use				
Sampl	e Identification	Date Sampled	Time Sampled	# of Containers	Sam Mat		Y/N	Mctals	D All Metats [ORPs:	Full Me	Regula		Volatiles:	PHCs F1 -	ABNS	PAHs	PCEs: [OLL IO	TCLP: 🗆	Sewer I				
BI	47 / SS 2 14 / SS 3 4 / SS 5 4 / SS 5 4 / SS 7	20F111107 " "	15:50 15:30 15:50 15:55	1212	SOIL () () 1			××						×	××		X								1
Samples Relinquished By (Pri Amir Karim Samples Relinquished By (Pri Samples Relinquished By (Pri	nt Name and Sign):		Date 2019-1 Date Date	1-07	ne Ma ne	Samples Received () (Print Name and Sign): Samples Received () (Print Name and Sign): Samples Received By (Print Name and Sign):		1	2	5		Date Date	V ·	g g	Tir Tir Tir	ne 8	60	lar			e: ge	i i	_ 10 _		

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541634

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 12

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541634 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - All	Metals (Soil)
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	5	SAMPLE DES	CRIPTION:	BH5/SS1	BH5/SS3	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696563	696662	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	5	2	
Barium	µg/g	390	2	128	195	
Beryllium	µg/g	4	0.5	<0.5	<0.5	
Boron	µg/g	120	5	5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.42	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	23	32	
Cobalt	µg/g	22	0.5	7.4	10.7	
Copper	µg/g	140	1	18	22	
Lead	µg/g	120	1	91	8	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	14	20	
Selenium	µg/g	2.4	0.4	0.4	<0.4	
Silver	µg/g	20	0.2	0.3	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Jranium	µg/g	23	0.5	0.8	0.5	
/anadium	µg/g	86	1	34	47	
Zinc	µg/g	340	5	83	65	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Mercury	µg/g	0.27	0.10	0.24	<0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

AGAT WORK ORDER: 19T541634 PROJECT: 1-19-0660-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVE	D: 2019-11-08						DATE REPORTED: 2019-11-13
		5	SAMPLE DES	CRIPTION:	BH5/SS2	BH5/SS6	
1			SAM	PLE TYPE:	Soil	Soil	
			DATE S	SAMPLED:	2019-11-07	2019-11-07	
Parar	neter	Unit	G/S	RDL	696623	696664	
F1 (C6 to C10)		µg/g	55	5	<5	<5	
F1 (C6 to C10) mir	us BTEX	µg/g	55	5	<5	<5	
F2 (C10 to C16)		µg/g	98	10	<10	<10	
F3 (C16 to C34)		µg/g	300	50	<50	<50	
F4 (C34 to C50)		µg/g	2800	50	<50	<50	
Gravimetric Heavy	Hydrocarbons	μg/g	2800	50	NA	NA	
Moisture Content	•	%		0.1	21.8	7.4	
Surro	gate	Unit	Acceptab	le Limits			
Terphenyl	-	%	60-1	40	63	62	
Comments: 696623-696664	Residential/Parklan Guideline values ar Results are based of The C6-C10 fraction C6-C10 (F1 minus The C10 - C16, C10 Gravimetric Heavy The chromatogram Total C6 - C50 resu This method compli nC6 and nC10 resp nC10, nC16 and nC	d/Institutional F e for general re on sample dry v n is calculated BTEX) is a call 6 - C34, and C Hydrocarbons has returned to alts are correcte ies with the Re oonse factors ar C34 response fa	Property Use - sference only. weight. using toluene r culated parame 34 - C50 fractic are not include b baseline by th do for BTEX co ference Methor re within 30% c actors are within	Coarse Text The guideline esponse fac eter. The cale ons are calcu d in the Tota ne retention to ntribution. d for the CW of Toluene re n 10% of the	ured Soils es provided may of tor. culated value is F lated using the ar I C16-C50 and ar time of nC50. S PHC and is val sponse factor. eir average.	or may not be relevan 1 minus BTEX. verage response facto	ric Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Int for the intended use. Refer directly to the applicable standard for regulatory interpretation. Interpretation or for n-C10, n-C16, and n-C34. Interpretation of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Interpretation of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. Interpretation of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
	C50 response facto Linearity is within 18 Extraction and hold	5%.			/erage.		

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541634 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				0. Ke	g. 155(511) - v	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	Ś	SAMPLE DESCF	RIPTION:	BH5/SS2	BH5/SS6	
		SAMPL	E TYPE:	Soil	Soil	
		DATE SA	MPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G / S	RDL	696623	696664	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541634 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				•••••	9. 100(011)	
DATE RECEIVED: 2019-11-0	08					DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	BH5/SS2	BH5/SS6	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696623	696664	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-2	140	99	98	
4-Bromofluorobenzene	% Recovery	50-2	140	94	91	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696623-696664 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541634

ATTENTION TO: Amir Karim

SAMPLED BY:

Soil Analysis															
RPT Date: Nov 13, 2019			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - All Metals (Soil	l)														
Antimony	696476		<0.8	<0.8	NA	< 0.8	127%	70%	130%	94%	80%	120%	94%	70%	130%
Arsenic	696476		2	2	NA	< 1	109%	70%	130%	100%	80%	120%	102%	70%	130%
Barium	696476		135	138	2.2%	< 2	100%	70%	130%	97%	80%	120%	95%	70%	130%
Beryllium	696476		<0.5	<0.5	NA	< 0.5	80%	70%	130%	106%	80%	120%	81%	70%	130%
Boron	696476		<5	<5	NA	< 5	94%	70%	130%	103%	80%	120%	79%	70%	130%
Boron (Hot Water Soluble)	703638		0.19	0.19	NA	< 0.10	127%	60%	140%	100%	70%	130%	96%	60%	140%
Cadmium	696476		<0.5	<0.5	NA	< 0.5	109%	70%	130%	100%	80%	120%	99%	70%	130%
Chromium	696476		25	25	0.0%	< 2	93%	70%	130%	103%	80%	120%	99%	70%	130%
Cobalt	696476		8.7	8.9	2.3%	< 0.5	93%	70%	130%	102%	80%	120%	96%	70%	130%
Copper	696476		17	18	5.7%	< 1	94%	70%	130%	109%	80%	120%	95%	70%	130%
Lead	696476		5	5	0.0%	< 1	102%	70%	130%	99%	80%	120%	96%	70%	130%
Molybdenum	696476		<0.5	<0.5	NA	< 0.5	90%	70%	130%	95%	80%	120%	95%	70%	130%
Nickel	696476		16	16	0.0%	< 1	95%	70%	130%	103%	80%	120%	94%	70%	130%
Selenium	696476		<0.4	<0.4	NA	< 0.4	97%	70%	130%	98%	80%	120%	98%	70%	130%
Silver	696476		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	696476		<0.4	<0.4	NA	< 0.4	101%	70%	130%	100%	80%	120%	96%	70%	130%
Uranium	696476		0.5	0.5	NA	< 0.5	101%	70%	130%	94%	80%	120%	97%	70%	130%
Vanadium	696476		40	41	2.5%	< 1	92%	70%	130%	96%	80%	120%	96%	70%	130%
Zinc	696476		52	53	1.9%	< 5	102%	70%	130%	109%	80%	120%	106%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	696476		<0.10	<0.10	NA	< 0.10	104%	70%	130%	97%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 6 of 12

Page 7 of 12

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541634 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

		gani	ics Analysis												
RPT Date: Nov 13, 2019	RPT Date: Nov 13, 2019						REFEREN	NCE MA	TERIAL	METHOD	BLANK		MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable hits	Recovery	Lir	ptable nits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	82%	60%	130%	83%	50%	140%
Chloroform	696560		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	84%	60%	130%	88%	50%	140%
1,2-Dichloroethane	696560		< 0.03	< 0.03	NA	< 0.03	98%	50%	140%	84%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	76%	60%	130%	73%	50%	140%
Carbon Tetrachloride	696560		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	76%	60%	130%	73%	50%	140%
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	82%	60%	130%	86%	50%	140%
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	84%	60%	130%	84%	50%	140%
Trichloroethylene	696560		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	100%	60%	130%	105%	50%	140%
Bromodichloromethane	696560		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%	60%	130%	75%	50%	140%
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	119%	60%	130%	77%	50%	140%
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	99%	50%	140%
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	102%	60%	130%	92%	50%	140%
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%	50%	140%	78%	60%	130%	82%	50%	140%
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541634

ATTENTION TO: Amir Karim

SAMPLED BY:

RPT Date: Nov 13, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recoverv		ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Uppe
	-4 (-BTEX) (So	oil)													

O. Reg. 153(511) - PHCs	s F1 - F4 (-BTEX) (Soil)										
F2 (C10 to C16)	694338	< 10	< 10	NA	< 10	123%	60% 130	% 93%	80% 12	0% 89%	70% 130%
F3 (C16 to C34)	694338	< 50	< 50	NA	< 50	119%	60% 130	% 85%	80% 12	0% 104%	70% 130%
F4 (C34 to C50)	694338	< 50	< 50	NA	< 50	88%	60% 130	% 81%	80% 12	0% 91%	70% 130%

Certified By:

NPopukoli

Page 8 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541634

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis								
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES					
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER					
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541634

ATTENTION TO: Amir Karim SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		-	
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541634

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

	AG	A1	F La	abor	rato	ries	Ph: 90		s nasau 2.5100	835 Coopers A ega, Ontario Le Fax: 905.712 bearth agatlab	Z 1Y2 5122		Labo Work Or Cooler (rder #	10				16	,3L	+	
Chain of C	ustody Recor	d If this is	a Drinking Wat	er sample, j	please use	e Drinking Water Chain of Custody Form (otable	water c	onsume	ed by humans)			Arrival	Tempe	rature	es:	-	1.5	11-	0	1.	2
Report Inform Company:	Теггаргове					Regulatory Requirements: (Please check all applicable boxes)	1	No R	egula	tory Requir	ement		Custody Notes:			t:		es]	_] 4c		×
Contact: Address:	Amir Karim 11 Indell Lane, Brampton	ON L6T 3Y3			_	✓ Regulation 153/04 □ Sewe Table 3 □Ind/Com □San				Regulation 558 CCME			urnaı egula				-		-			
Priorie.	(905) 796-2650 AKarim@Terraprobe.ca	Fax:				Res/Park Agriculture Soil Texture (check One)		_		^p rov. Water Qua Objectives (PW0 Other			ush T.		sh Surc	harges	Apply)	Busin		ss Days		. 1.155
2. Email:							te One		-	Indicate One				Days			()ays		s May A		, // TS
Project Inform Project: Site Location: Sampled By:	ation: 1-19-0660-42 65 Ward Street, Port Hop	e			=	Is this submission for a Record of Site Condition ? Yes No		Cer		Guideline o te of Analys	is			TAT is	exclu	sive a	(war	kends	n0 : c	for rus i Intulory E you 1.	hst t	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: if quotation number l ation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton Irossi@Terraprobe.ca		Bill To Same:		• □ 	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	nd Inorganics	iis □153 Me:als (excl Hydrides) O Metals □153 Metals (incl Hydrides)	WS DCI DCN DFOC DHg Can	Regulation/Cuslom Metals Nutrients: DTP DNH, DTKN		st u.			iouar Li Arociors						
Sample	Identification	Date Sampled	Time Sampled	# of Containers	Sample		Y/N	Metals a	🙀 All Metals 🛛	ORPs: DB- Cr ^{AL} DEC Dp!! DSAF Full Metals	Regulation/Custon Nutrients: D TP C	Volatiles:	FHCs F .	ABNs	PAHs	Úrganoctio 12	TCLP:	Sew in Us				
817 8175 8175		11/107	16:13 16:15 16:19	12	SOIL 11				×			+										
BHS	5/556		16:20	2								7	< 'X									
samples Relinquished By (Prin Amir Karim Samples Relinquished By (Prin	Aca		Date 2019-1 Date					1	5		Date Date	18		me §! (Da	~						
Semples Relinquished By (Prin			Date		0:00 10:00	Samples Received By (Print Name and Sign):					Date	_	ħ	me			N. S	Page	<u>A</u> 77	UI ,]		

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541689

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOT	TES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 5

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Subscription of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541689 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - All N	Metals (Soil)
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
		SAMPLE DES	CRIPTION:	BH6/SS1	BH6/SS4	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G / S	RDL	696794	696796	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	7	2	
Barium	µg/g	390	2	55	25	
Beryllium	µg/g	4	0.5	<0.5	<0.5	
Boron	µg/g	120	5	<5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.20	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	17	7	
Cobalt	µg/g	22	0.5	5.6	2.1	
Copper	µg/g	140	1	9	3	
Lead	µg/g	120	1	26	3	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	9	3	
Selenium	µg/g	2.4	0.4	<0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Jranium	µg/g	23	0.5	1.9	<0.5	
/anadium	µg/g	86	1	28	12	
Zinc	µg/g	340	5	50	14	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541689

ATTENTION TO: Amir Karim

SAMPLED BY:

Soil Analysis															
RPT Date: Nov 13, 2019				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - All Metals (S	oil)														
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.0%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	696476		<0.10	<0.10	NA	< 0.10	126%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.0%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	6.5%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.0%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.0%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 3 of 5

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541689

ATTENTION TO: Amir Karim

SAMPLING SITE:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		I	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS

	AG		J La	abor	atc	5835 Coopers Avenue Mississauga, Ontario 142 1Y2 Ph: 905,712,5100 Fax: 905,712,5122 webearth.agatlabs.com							2	Laboratory Use Only Work Order #: 19TS 41689 Coole / Quantity:										
Chain of C Report Inform	ustody Recor	d If this is a	a Drinking Wat	er sample, p	lease us	Regulatory Requirements:			_			eme	nt		rival ' ustodi				-]Yes	2	_/. 		<u> . L</u>
Company: Contact: Address:	Terraprobe Amir Karim 11 Indell Lane, Brampton (905) 796-2650	ON L6T 3Y3			-	(Please check all applicable boxes)	r Use itary			Regulation CCME	n 558			Notes: ICE Turnaround Time (TAT) Requires Regular TAT Image: Star Table Star Star Star Star Star Star Star Star										
Phone: Reports to be sent to: 1. Email: 2. Email: Project Inform Project:	AKarim@Terraprobe.ca	Fax:			Image: Provide Synamic all storm Image: Storm Image: Provide Store Image: ProvideStore Image: Provide Store							Rush TAT (Rush Surcharges Apply) 3 Business 2 Share Days 0, ys OR Date Required (Rush S + charges May Apply) Please provide prior notification for rush TAT *TAT is exc., the of meetionds of since the since												
Site Location: Sampled By:	65 Ward Street, Port Hop	e				🗆 Yes 🛛 No			Yes	5										, pice.			n sny Weine The ne	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number nation: Terraprobe Lorena Rossi 11 Indell Lane, Bramptor Irossi@Terraprobe.ca		ill be billed full price			Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	and Inorganics	tels 153 Metuls (excl. Hydrides) e Metals 153 Metals (lisel. Hydrides)	WS D	tals Scan	ן Met		S: B VOC D DTEX DTHM	F1 P4			Total Darcelors	shurine Pos	🛛 VOCs 🗆 ABNs 🗂 2(a)P 🗇 CBS	454			
Sample	eldentification	Date Sampled	Time Sampled	# of Containers	Samp Matri		Y/N	Metals	X All Metals	ORPs:	Full Metals	Regulat	Nutrien No.	Volatiles:	FHCs F	ABNs	PAHs	PCBs:	Urganoci	TCLP: D	Sc		-	
BH6 BN6/	/ <u>55 1</u> 55 4	Nov Zha	Gillem Gillem	1	SOIL				X X															
Samples Relinquished By (Prir	t Name and Sign):		Data		10	Samples Regelived By (Print Name and Sign);			w	-		Date				me								
Amir Karim Samples Relinquished By (Prir Semples Relinquished By (Prir			2019-1 Date		2010			1	Ď			Date	w <u>y</u>	5	Tir Tir		100	Zan	NR NR		age_	1	of	

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541646

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 13

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Section of Alberta (ESAA)

 Benvironmental Services Association of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541646 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - All	Metals (Soil)
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	;	SAMPLE DES	CRIPTION:	BH7/SS2	BH7/SS4	
		SAM	PLE TYPE:	Soil	Soil	
1		DATE SAMPLED:		2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696476	696477	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	2	2	
Barium	µg/g	390	2	135	28	
Beryllium	µg/g	4	0.5	<0.5	<0.5	
Boron	µg/g	120	5	<5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	<0.10	<0.10	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	25	9	
Cobalt	µg/g	22	0.5	8.7	2.6	
Copper	µg/g	140	1	17	5	
Lead	µg/g	120	1	5	2	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	16	3	
Selenium	µg/g	2.4	0.4	<0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Jranium	µg/g	23	0.5	0.5	<0.5	
/anadium	µg/g	86	1	40	13	
Zinc	µg/g	340	5	52	18	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

AGAT WORK ORDER: 19T541646 PROJECT: 1-19-0660-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PAHs (Soil) DATE RECEIVED: 2019-11-08 **DATE REPORTED: 2019-11-13** SAMPLE DESCRIPTION: BH7/SS4 SAMPLE TYPE: Soil DATE SAMPLED: 2019-11-07 RDL 696477 Parameter Unit G/S Naphthalene 0.6 0.05 < 0.05 µg/g Acenaphthylene 0.15 0.05 < 0.05 µg/g Acenaphthene µg/g 7.9 0.05 < 0.05 Fluorene 62 0.05 < 0.05 µg/g Phenanthrene 6.2 0.05 < 0.05 µg/g Anthracene µg/g 0.67 0.05 < 0.05 Fluoranthene µg/g 0.69 0.05 < 0.05 Pyrene µg/g 78 0.05 < 0.05 0.5 0.05 < 0.05 Benz(a)anthracene µg/g Chrysene 7 0.05 µg/g < 0.05 Benzo(b)fluoranthene µg/g 0.78 0.05 < 0.05 Benzo(k)fluoranthene 0.78 0.05 µg/g < 0.05 Benzo(a)pyrene 0.3 0.05 < 0.05 µg/g Indeno(1,2,3-cd)pyrene 0.38 0.05 < 0.05 µg/g Dibenz(a,h)anthracene 0.1 0.05 < 0.05 µg/g Benzo(g,h,i)perylene µg/g 6.6 0.05 < 0.05 2-and 1-methyl Naphthalene µg/g 0.99 0.05 < 0.05 Moisture Content % 0.1 10.0 Surrogate Unit Acceptable Limits Chrysene-d12 % 50-140 81 Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of the soil.

696477

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukolof

Certified By:

AGAT WORK ORDER: 19T541646 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-08					DATE REPORTED: 2019-11-13
		SAMPLE DESCRIP	TION: BH7/SS2	BH7/SS7	
		SAMPLE	TYPE: Soil	Soil	
		DATE SAMP	PLED: 2019-11-07	2019-11-07	
Parameter	Unit	G/S R	DL 696476	696479	
1 (C6 to C10)	µg/g	55	5 <5	<5	
1 (C6 to C10) minus BTEX	µg/g	55	5 <5	<5	
2 (C10 to C16)	µg/g	98	10 <10	<10	
-3 (C16 to C34)	µg/g	300	50 <50	<50	
F4 (C34 to C50)	µg/g	2800	50 <50	<50	
Gravimetric Heavy Hydrocarbons	µg/g	2800	50 NA	NA	
loisture Content	%	().1 21.0	10.4	
Surrogate	Unit	Acceptable Lir	nits		
erphenyl	%	60-140	111	82	
				ble 3: Full Depth Gene	ric Site Condition Standards in a Non-Potable Ground Water Condition - Soil -
		Property Use - Coar			at far the internal of the Defending the testing between and for some laters, internated in
	0	, ,	juidelines provided may	or may not be releval	nt for the intended use. Refer directly to the applicable standard for regulatory interpretation.
		weight. I using toluene respo	nse factor		
			The calculated value is	F1 minus BTEX.	
The C10 - C16, C	16 - C34, and C	34 - C50 fractions a	re calculated using the	average response fact	or for n-C10, n-C16, and n-C34.
Gravimetric Heavy	/ Hydrocarbons	are not included in t	he Total C16-C50 and a	are only determined if	the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
		to baseline by the re			
		ted for BTEX contribu			
			the CWS PHC and is va	alidated for use in the	aboratory.
		factors are within 10	uene response factor.		
		6 of nC10 + nC16 + i			
Lipoprity is within			1004 average.		

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541646 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				0. Keį	y. 153(511) - \	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
		SAMPLE DESC	RIPTION:	BH7/SS2	BH7/SS7	
		SAMP	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696476	696479	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T541646 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				0.100	9.100(011)	
DATE RECEIVED: 2019-11-08	3					DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	BH7/SS2	BH7/SS7	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696476	696479	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	140	98	97	
4-Bromofluorobenzene	% Recovery	50-7	140	95	95	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696476-696479 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541646

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Nov 13, 2019			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	Recovery		eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - All Metals (Soi	l)														
Antimony	696476	696476	<0.8	<0.8	NA	< 0.8	127%	70%	130%	94%	80%	120%	94%	70%	130%
Arsenic	696476	696476	2	2	NA	< 1	109%	70%	130%	100%	80%	120%	102%	70%	130%
Barium	696476	696476	135	138	2.2%	< 2	100%	70%	130%	97%	80%	120%	95%	70%	130%
Beryllium	696476	696476	<0.5	<0.5	NA	< 0.5	80%	70%	130%	106%	80%	120%	81%	70%	130%
Boron	696476	696476	<5	<5	NA	< 5	94%	70%	130%	103%	80%	120%	79%	70%	130%
Boron (Hot Water Soluble)	696476	696476	<0.10	<0.10	NA	< 0.10	126%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	696476	696476	<0.5	<0.5	NA	< 0.5	109%	70%	130%	100%	80%	120%	99%	70%	130%
Chromium	696476	696476	25	25	0.0%	< 2	93%	70%	130%	103%	80%	120%	99%	70%	130%
Cobalt	696476	696476	8.7	8.9	2.3%	< 0.5	93%	70%	130%	102%	80%	120%	96%	70%	130%
Copper	696476	696476	17	18	5.7%	< 1	94%	70%	130%	109%	80%	120%	95%	70%	130%
Lead	696476	696476	5	5	0.0%	< 1	102%	70%	130%	99%	80%	120%	96%	70%	130%
Molybdenum	696476	696476	<0.5	<0.5	NA	< 0.5	90%	70%	130%	95%	80%	120%	95%	70%	130%
Nickel	696476	696476	16	16	0.0%	< 1	95%	70%	130%	103%	80%	120%	94%	70%	130%
Selenium	696476	696476	<0.4	<0.4	NA	< 0.4	97%	70%	130%	98%	80%	120%	98%	70%	130%
Silver	696476	696476	<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	696476	696476	<0.4	<0.4	NA	< 0.4	101%	70%	130%	100%	80%	120%	96%	70%	130%
Uranium	696476	696476	0.5	0.5	NA	< 0.5	101%	70%	130%	94%	80%	120%	97%	70%	130%
Vanadium	696476	696476	40	41	2.5%	< 1	92%	70%	130%	96%	80%	120%	96%	70%	130%
Zinc	696476	696476	52	53	1.9%	< 5	102%	70%	130%	109%	80%	120%	106%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	696476	696476	<0.10	<0.10	NA	< 0.10	104%	70%	130%	97%	80%	120%	95%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 13

Page 8 of 13

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541646 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			nac	e Oi	yann	cs Ar	larys	15							
RPT Date: Nov 13, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Accep Lim		Recovery	Lin	ptable nits	Recovery		ptable nits
							value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	82%	60%	130%	83%	50%	140%
Chloroform	696560		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	84%	60%	130%	88%	50%	140%
1,2-Dichloroethane	696560		< 0.03	< 0.03	NA	< 0.03	98%	50%	140%	84%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	76%	60%	130%	73%	50%	140%
Carbon Tetrachloride	696560		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	76%	60%	130%	73%	50%	140%
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	82%	60%	130%	86%	50%	140%
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	84%	60%	130%	84%	50%	140%
Trichloroethylene	696560		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	100%	60%	130%	105%	50%	140%
Bromodichloromethane	696560		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%	60%	130%	75%	50%	140%
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	119%	60%	130%	77%	50%	140%
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	99%	50%	140%
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	102%	60%	130%	92%	50%	140%
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%	50%	140%	78%	60%	130%	82%	50%	140%
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541646 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

		11400	Org	amos	, , ,,,,,	1,9010			ucc	''					
RPT Date: Nov 13, 2019			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	1 15	eptable mits	Recovery	1.10	eptable nits
		Iŭ					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (-BTEX) (Sc	oil)													
F1 (C6 to C10)	696560	,,	< 5	< 5	NA	< 5	78%	60%	130%	91%	85%	115%	94%	70%	130%
F2 (C10 to C16)	696515		< 10	< 10	NA	< 10	118%	60%	130%	87%	80%	120%	82%		130%
F3 (C16 to C34)	696515		< 50	< 50	NA	< 50	115%	60%	130%	82%	80%	120%	88%		130%
F4 (C34 to C50)	696515		< 50	< 50	NA	< 50	103%	60%	130%	89%	80%	120%	111%	70%	130%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	698158		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	75%	50%	140%	80%	50%	140%
Acenaphthylene	698158		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	89%	50%	140%	95%	50%	140%
Acenaphthene	698158		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	83%	50%	140%	88%	50%	140%
Fluorene	698158		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	94%	50%	140%	102%	50%	140%
Phenanthrene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	96%	50%	140%	108%	50%	140%
Anthracene	698158		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	92%	50%	140%	103%	50%	140%
Fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	106%	50%	140%	94%	50%	140%
Pyrene	698158		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	104%	50%	140%	91%	50%	140%
Benz(a)anthracene	698158		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	106%	50%	140%	98%	50%	140%
Chrysene	698158		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	109%	50%	140%	100%	50%	140%
Benzo(b)fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	103%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	92%	50%	140%	77%	50%	140%
Benzo(a)pyrene	698158		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	108%	50%	140%	96%	50%	140%
Indeno(1,2,3-cd)pyrene	698158		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	84%	50%	140%	83%	50%	140%
Dibenz(a,h)anthracene	698158		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	97%	50%	140%	93%	50%	140%
Benzo(g,h,i)perylene	698158		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	98%	50%	140%	87%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 13

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541646

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	I		1
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541646 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270E	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	(P&T)GC/MS (P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	()
			(P&T)GC/MS (P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541646 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

A and												5005	0			-	l	Lab	ora	nto	ry	Us	e 0	nly	,					
4.55F	(A C	(a1	Γ La	abor	ate	or	ries	Ph: 9		liosias: . 2.51 0	5835 auga, C 10 Fax	ntarı 905	0 712	וֹ 1) 512	2 2	v	Work	Orde	er#	:]	9		5	4	16	54	6		
									_	_	w	ebear	negi	atiab	5.CO	n 			er Qu				_		/	1			. 1	1
Chain of C	ust	ody Reco	If this is a	a Drinking Wat	ter sample, p	lease	use D	Drinking Water Chain of Custody Form	(potable	water	consun	ned by h	uman	5)				Arriv	al Tei	mpe	ratu	res	1		.5	4	1.	0		.2
Report Inform Company:		n: probe					(Pi	Regulatory Requirements: Nease check all applicable boxes)		No F	Regul	atory	Red	quin	eme	ent		Cust Note	ody S Is:	Seal		act:	E	L) (s	25		[]			×
Contact:		Karim	0111 (7 01/2					Regulation 153/04	er Use	Ĩ		Regul	ation	558					_				-	-						
Address:	II In	dell Lane, Brampto	on ON L61 3Y3				11	Table	nitary			CCME										IIm					uire			
	(905)	796-2650				-		□Ind/Com ☐Res/Park □Sto	- دش			Prov. \	Votor	0	1164			-	ılar						to 7	. 46	1.00	<u></u> 23		
Priorie.			Fax:			-						Objec					R	ush	TAT	(Ru	sh Su	ircha	Ers -	, راتوبر						
1. Email:	AKa	im@Terraprobe.ca	1				So	oil Texture (Check One) Region Indic	ate One	-		Other								Busi iys	ines	S	- [.		2 Busi Days	INGS:	3		Nex	12 ⁻¹⁰ 12
2. Email;						_		Fine MISA				In	dicate	One						-	ate i	Reqi					or; es			
Project Inform	atio	n:					1	Is this submission for a	1	R	eport	Guid	elin	eo	1															
-		-0660-42						Record of Site Condition?				ate o															tion fo			
Site Location:	65 W	ard Street, Port Ho	ope					🗆 Yes 🗹 No	1	7	Yes	s		N	0	-		For									nd star			10 NG 20
Sampled By:							-				0.0	eg 153	-	-	-		L	TU	J	Ter			ilysi	7 10		T	tact y	oura	GAT C	araa Rengere
AGAT Quote #:	Ph	ase note: If quotation numbe	er la not provided, client w	ill be billed full price	e for analysia.		S B	ample Matrix Legend	ر ر CrVI	F	, i	a l												90 E 4						
Invoice Inform				Bill To Same:	Yes 🗹 No			W Ground Water	ils, Hg,		D -					O, DIKN	THM							D B(a)P		E		1		
Company: Contact:		probe na Rossi					0 P	Oil Paint	Metals, I		(excl		аў Н		ctals	ις, ο	EX L					÷.	105	C ABNs		4	1			
		dell Lane, Brampto	on, ON L6T 3Y3			_	s	Soil	red -	anics	Aethis 53 Ma				n Me	D NH, D	D BIEX					Aroch 45	1	Ū,			1			
Email:	lross	@Terraprobe.ca				_	S		Field Filtered -	nd inorg	N 0 153 N	SWH-8	SAR LIT	els Scan	Regulation/Custom Metals	INO, D	VOC	E A				🛛 Teter 🔲	orine F	Sel DVC	Use	-		-		
Sample	Ident	ification	Date Sampled	Time Sampled	# of Containers	Sam Ma	nple itrix	Comments/ Special Instructions	Y/N	Metals a	All Meta			Full Metals Scan	Regulation	Nutrients: DTP DNO, DNO, D	Vo!atiles:	PHCs E1	ABNs		PAHs	PCBs: 🗆	16,000	TCLP: D M&I	Sevier Us					
BH	71	SSZ	5019/11/07	16:10	3	SOI	IL.				X						x	X				E				1	1			
BH	τj	JS4	ц	16:40	2	0	9				X	1			-				it.	12	X									
BH	<u> </u>	55-7	u	16:40	2	1	L				_						X	X	2								+	-		
														_													1		-	
									-																					
				.*					. 80								-				_				1					_
	_		_			-				-		-		_		_		-	-	-	_	1000		-	4	-	-	-		4
					-		_		- 10				_					-		1	_				-	_	-	-	-	-
	_				-	-					-						-	-		-	-			3 -	1	1	-	-		
Samples Relinquished By (Print	Name	od Sign)		Date	1.			Camples Depting Pulling Name and Pulling			-				16				Direct				Ļ		1		8			_
Amir Karim		ficer		2019-1	1-07		30		N	7	5				A.	Jov 9	$\boldsymbol{\zeta}$		1100	81	00	ian	5							
Samples Relinquished By (Print	Name a	nd Sign):		Date		20:				0					Dat	e	-		Turne				T		Pa	je l		. vi _		
Samples Belinguished By (Print	Name a	nd Sign):		Date	Tim	IE		Samples Received By (Print Name and Sign).							Dai	e			Time				N	1°*		17234				

2.3 St 2

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541642

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGGAT Laboratories (V1)
 Page 1 of 15

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Section of Alberta (ESAA)

 Environmental Services Association of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2019-11-08

DATE RECEIVED. 2019-11-00)					DATE REPORTED. 2019-11-13
	S	AMPLE DESC	RIPTION:	BH8/SS1	BH8/SS4	
		SAMF	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696485	696488	
Antimony	µg/g	7.5	0.8	<0.8	<0.8	
Arsenic	µg/g	18	1	9	2	
Barium	µg/g	390	2	110	34	
Beryllium	µg/g	4	0.5	<0.5	<0.5	
Boron	µg/g	120	5	<5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.26	0.13	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	
Chromium	µg/g	160	2	23	8	
Cobalt	µg/g	22	0.5	7.3	2.9	
Copper	µg/g	140	1	21	6	
ead	µg/g	120	1	246	5	
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5	
Nickel	µg/g	100	1	14	4	
Selenium	µg/g	2.4	0.4	0.5	<0.4	
Silver	µg/g	20	0.2	0.4	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	
Jranium	µg/g	23	0.5	1.6	<0.5	
/anadium	µg/g	86	1	35	14	
Zinc	µg/g	340	5	131	17	
Chromium VI	µg/g	8	0.2	<0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	<0.10	
Electrical Conductivity	mS/cm	0.7	0.005	0.194	0.130	
Sodium Adsorption Ratio	NA	5	NA	0.145	0.289	
oH, 2:1 CaCl2 Extraction	pH Units		NA	7.32	7.82	

Nivine Basily

DATE REPORTED: 2019-11-13

Certified By:

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2019-11-08

DATE REPORTED: 2019-11-13

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696485-696488 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Certified By:

Nivine Basily

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

DATE REPORTED: 2019-11-13

SAMPLED BY:

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2019-11-08

	S	SAMPLE DESCRIPTION	BH8/SS2	BH8/SS4
1		SAMPLE TYPE	: Soil	Soil
		DATE SAMPLED	: 2019-11-07	2019-11-07
Parameter	Unit	G/S RDL	696486	696488
Aroclor 1242	hð/ð	0.1	<0.1	<0.1
Aroclor 1248	µg/g	0.1	<0.1	<0.1
Aroclor 1254	hð/ð	0.1	<0.1	<0.1
Aroclor 1260	µg/g	0.1	<0.1	<0.1
Polychlorinated Biphenyls	hð/ð	0.35 0.1	<0.1	<0.1
Moisture Content	%	0.1	22.2	20.9
Surrogate	Unit	Acceptable Limits		
Decachlorobiphenyl	%	60-140	72	96

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 696486-696488 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-08 **DATE REPORTED: 2019-11-13** SAMPLE DESCRIPTION: BH8/SS2 BH8/SS7 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2019-11-07 2019-11-07 RDL 696486 696489 Parameter Unit G/S F1 (C6 to C10) 55 5 <5 <5 µg/g F1 (C6 to C10) minus BTEX 55 5 <5 <5 µg/g F2 (C10 to C16) µg/g 98 10 <10 <10 F3 (C16 to C34) 50 <50 300 <50 µg/g F4 (C34 to C50) 2800 50 <50 <50 µg/g Gravimetric Heavy Hydrocarbons 2800 50 NA NA µg/g Moisture Content % 0.1 22.2 9.6 Surrogate Unit Acceptable Limits % 60-140 94 100 Terphenyl Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on sample dry weight. 696486-696489 The C6-C10 fraction is calculated using toluene response factor. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				U. Re	g. 155(511) - V	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	S	SAMPLE DESC	RIPTION:	BH8/SS2	BH8/SS7	
		SAMP	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696486	696489	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

teus

AGAT WORK ORDER: 19T541642 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				•••••	9. 100(011)	
DATE RECEIVED: 2019-11-0	8					DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	BH8/SS2	BH8/SS7	
		SAM	PLE TYPE:	Soil	Soil	
		DATES	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696486	696489	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
Kylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
I,3-Dichloropropene	hð\ð	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	140	98	95	
4-Bromofluorobenzene	% Recovery	50-7	140	89	91	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696486-696489 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Certified By:

	<mark>A@AT</mark>	Laboratorie	AGAT WORK ORDER: 19T5416 PROJECT: 1-19-0660-42			MISSIS	OOPERS AVENUE SAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 /www.agatlabs.com
CLIENT NAME	: TERRAPROBE INC.			ATTENTION TO: Amir I	Karim	nup.,	,
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
696485	BH8/SS1	ON T3 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Lead	hð/ð	120	246

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541642

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	5								
RPT Date: Nov 13, 2019	T Date: Nov 13, 2019			UPLICATI	Ξ		REFERE	NCE MA	TERIAL	METHOD	BLANK		MAT	IKE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery		ptable nits	Recovery		eptable mits
		iù					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inc	organics (Soil)														
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.0%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	696476		<0.10	<0.10	NA	< 0.10	126%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.0%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	6.5%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.0%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.0%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Cyanide	694385		<0.040	<0.040	NA	< 0.040	93%	70%	130%	91%	80%	120%	105%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%
Electrical Conductivity	703638		0.226	0.230	1.8%	< 0.005	100%	90%	110%						
Sodium Adsorption Ratio	703638		1.63	1.63	0.0%	NA									
pH, 2:1 CaCl2 Extraction	694385		7.67	7.68	0.1%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 15

Page 10 of 15

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541642 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

RPT Date: Nov 13, 2010	Date: Nov 13, 2019			UPLICATI			REFEREN		TERIAI	METHOD		SPIKE	MATRIX SPIKE				
RFT Date. Nov 13, 2019			L	OFLICATI	<u> </u>	Method	REFEREN		ptable	WIETHOD		ptable	IMAT		ptable		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Blank	Measured Value		nits I	Recovery		nits	Recovery		nits T		
O. Reg. 153(511) - VOCs (Soil)											1			·			
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%		
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%		
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%		
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%		
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%		
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%		
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%		
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%		
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%		
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%		
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%		
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	82%	60%	130%	83%	50%	140%		
Chloroform	696560		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	84%	60%	130%	88%	50%	140%		
1,2-Dichloroethane	696560		< 0.03	< 0.03	NA	< 0.03	98%	50%	140%	84%	60%	130%	89%	50%	140%		
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	76%	60%	130%	73%	50%	140%		
Carbon Tetrachloride	696560		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	76%	60%	130%	73%	50%	140%		
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	82%	60%	130%	86%	50%	140%		
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	84%	60%	130%	84%	50%	140%		
Frichloroethylene	696560		< 0.03	< 0.03	NA	< 0.03	82%	50%	140%	100%	60%	130%	105%	50%	140%		
Bromodichloromethane	696560		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%	60%	130%	75%	50%	140%		
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%		
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%		
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%		
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%		
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%		
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%		
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%		
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%		
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%		
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%		
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%		
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%		140%	97%	60%	130%	93%	50%	140%		
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%		140%	119%	60%	130%	77%		140%		
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%		140%	100%	60%		99%		140%		
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%		
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%		140%	98%	60%		90%		140%		
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%		140%	102%	60%	130%	92%		140%		
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%		140%	78%		130%	82%		140%		
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%		

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO http://www.agatlabs.com

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541642 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

PT Date: Nov 13, 2019		DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank				Recovery	1 1 1 10		Recovery		ptable nits	
	Ia					Value	Lower	Upper			Upper		Lower	Upper	
(-BTEX) (So	il)														
696560		< 5	< 5	NA	< 5	78%	60%	130%	91%	85%	115%	94%	70%	130%	
696515		< 10	< 10	NA	< 10	118%	60%	130%	87%	80%	120%	82%	70%	130%	
696515		< 50	< 50	NA	< 50	115%	60%	130%	82%	80%	120%	88%	70%	130%	
696515		< 50	< 50	NA	< 50	103%	60%	130%	89%	80%	120%	111%	70%	130%	
685028		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%	
685028		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%	
685028		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%	
685028		< 0.1	< 0.1	NA	< 0.1	NA	60%	140%	NA	60%	140%	NA	60%	140%	
685028		< 0.1	< 0.1	NA	< 0.1	97%	60%	140%	97%	60%	140%	90%	60%	140%	
	(-BTEX) (So 696560 696515 696515 696515 685028 685028 685028 685028 685028	(-BTEX) (Soil) 696560 696515 696515 696515 696515 685028 685028 685028 685028 685028	Batch Sample Id Dup #1 (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD Method Blank (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acce Lir Lower (-BTEX) (Soil) 696560 < 5	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Lower Recovery Acce Lin Lower (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Measured Value Acceptable Limits Recovery Acceptable Limits Acceptable Limits (-BTEX) (Soil) 696560 < 5	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Recovery Acceptable Limits Acceptable Limits Recovery Acceptable Limits Aco	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Recovery Acceptable Limits Acceptable Acceptable	

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

ug

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 11 of 15

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541642

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Soil Analysis	1	1										
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES									
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER									
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER									
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS									
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER									
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES									
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER									

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541642

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Aroclor 1242	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Aroclor 1248	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Aroclor 1254	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Aroclor 1260	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Polychlorinated Biphenyls	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082A	GC/ECD
Moisture Content		MOE E3139	BALANCE
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE

AGAT WORK ORDER: 19T541642

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

	abora	ato	5835 Coopers Avenue Missiesauga, Ontario 142 1 Y2 Ph: 905.712.5100 Fax: 905.712.5120 webearth.agattabs.com						Laboratory Use Uniy Work Order #: 197541642 Cooler Quantity:														
chain of Custody Recor	d If this is a	a Drinking Wat	ter sample, pl	lease u	se Drinking Water Chain of Custody Form (po	table v	vater co	onsume	d by humar	ns)			A	rrival	Temp	perati	ures.	0	1.0	1	.5	$\frac{1}{1}$	• 1
Report Information: Company: Terraprobe					Regulatory Requirements: INo Regulatory Requirement (Please check all applicable coves)								ustoa lotes:		al Inta	1000		Yes		E) vo	;	X	
Contact: Amir Karim	11 Indell Lane, Brampton ON L6T 3Y3				Regulation 153/04 Sewer Table Indicate One		Regulation 558			1	Tu	ima	rou	nd '		6 (1)	() R	.əq	11. E.				
Phone: (905) 796-2650 Reports to be sent to:	Fax:				Indy Com Zres/Park Storm Agriculture			Prov. Water Quality Objectives (PWQO)				egula Isli 1			urchar			Eccin	ess Day				
AKarim@Terraprobe.ca AKarim@Terraprobe.ca Email:	ion:			S	Soil Texture (Check One) Coarse Fine Region Indicate MISA	One	-		her Indicate	One			3 Busines: 2 Pust Days OR Date Required (Rush Screharges May 2										
Project Information: Project: 1-19-0660-42 Site Location: 65 Ward Street, Port Hop Sampled By:					Is this submission for a Record of Site Condition?		Cert		Guidelin te of An		sis				*TAT	is exp	clusiv	c c' vo	eekend	2° 11 S	26.0	ush TAT Siytkar D Kaza Ca	
AGAT Quote #: Please note: If quotation number I Invoice Information: Company: Contact: Address: Email: Indell Lane, Brampton Irossi@Terraprobe.ca		Bill To Same:			Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Fittered - Metals, Hg. CrVI	Metals and Inorganics	als 🗌 153 Metals (excl hydrides) O (Metals 🗍 153 Metals (incl Hydrides)	ORPs: □B-HWS □Cr □CN [21 □Cr ^{ee} □ EC □FOC □ Hg	als Scan	Regulation/Custein Metals	Nutrients: DTP DNH, DTKN DNC, DNO, DNO,+NO,	S: BYOC BTEX DTHM	1 F4			D. U. Aruciors	and fusticida.	Mai Livucs Liabh. Luraig Lipebs Jsg				
Sample Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr		Y/N	Metals	D All Me	ORPs: DCr ⁶ ·	Full Metals	Regula	Nutrien DNC	Volatiles:	PHCs F1	ABNs	PAHS	PCBs:		Sever			-	
BH8 SS BH8 SS 2 BH8 SS 4	20Fililot	17:00	37	SOIL 11			××						×	X			××						
BHS JS7	75	13	2	ų									×	X									
amples Relinquished By (Print Name and Sign): Amir Karim Amples Relinquished By (Print Name and Sign):	/	Date 2019-1 Date		 <mark>ຊຸ່</mark> 3 "2ອ`ະ		1	2	5			Date Date	ω	z		ime G	,00	an		123	ga 1	of		
amples Relinquished By (Print Name and Sign): Done Time			-	Samples Received By (Print Name and Sign)								т	018			ppe.					i		

e e ² e e e e e

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541653

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 12

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541653 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

SAMELING STE.05 Waru S		Je				SAMFLED BT.	
				O. Reg.	153(511) - All	l Metals (Soil)	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13	
	S	AMPLE DES	CRIPTION:	BH10/SS1	BH10/SS3		
		SAM	PLE TYPE:	Soil	Soil		
		DATE S	SAMPLED:	2019-11-07	2019-11-07		
Parameter	Unit	G/S	RDL	696727	696754		
Antimony	µg/g	7.5	0.8	<0.8	<0.8		
Arsenic	µg/g	18	1	5	2		
Barium	µg/g	390	2	47	222		
Beryllium	µg/g	4	0.5	<0.5	<0.5		
Boron	µg/g	120	5	<5	6		
Boron (Hot Water Soluble)	hð/ð	1.5	0.10	0.20	0.11		
Cadmium	µg/g	1.2	0.5	<0.5	<0.5		
Chromium	µg/g	160	2	12	36		
Cobalt	µg/g	22	0.5	3.6	12.3		
Copper	µg/g	140	1	8	24		
Lead	µg/g	120	1	17	6		
Molybdenum	µg/g	6.9	0.5	<0.5	<0.5		
Nickel	µg/g	100	1	6	23		
Selenium	µg/g	2.4	0.4	<0.4	<0.4		
Silver	µg/g	20	0.2	<0.2	<0.2		
Thallium	µg/g	1	0.4	<0.4	<0.4		
Uranium	µg/g	23	0.5	0.8	0.5		
Vanadium	hð/ð	86	1	18	54		
Zinc	hð/ð	340	5	35	76		
Chromium VI	hð/ð	8	0.2	<0.2	<0.2		
Mercury	µg/g	0.27	0.10	<0.10	<0.10		

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541653 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-08 **DATE REPORTED: 2019-11-13** SAMPLE DESCRIPTION: BH10/SS2 BH10/SS6 SAMPLE TYPE: Soil Soil DATE SAMPLED: 2019-11-07 2019-11-07 RDL 696753 696755 Parameter Unit G/S F1 (C6 to C10) 55 5 <5 <5 µg/g F1 (C6 to C10) minus BTEX 55 5 <5 <5 µg/g F2 (C10 to C16) µg/g 98 10 <10 <10 F3 (C16 to C34) 50 <50 300 <50 µg/g F4 (C34 to C50) 2800 50 <50 <50 µg/g Gravimetric Heavy Hydrocarbons 2800 50 NA NA µg/g Moisture Content % 0.1 22.8 14.1 Surrogate Unit Acceptable Limits % 60-140 105 87 Terphenyl Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on sample dry weight. 696753-696755 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541653 PROJECT: 1-19-0660-42

O. Reg. 153(511) - VOCs (Soil)

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				0.110	9. 100(011)	
DATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-13
	5	SAMPLE DES	CRIPTION:	BH10/SS2	BH10/SS6	
		SAM	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696753	696755	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T541653 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:65 Ward Street, Port Hope

ATTENTION TO: Amir Karim

SAMPLED BY:

					5 - (-)	()
DATE RECEIVED: 2019-11-0	8					DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	BH10/SS2	BH10/SS6	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696753	696755	
Bromoform	ug/g	0.27	0.05	<0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-	140	99	99	
4-Bromofluorobenzene	% Recovery	50-	140	98	93	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696753-696755 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Certified By:

NPopukolof

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541653

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Nov 13, 2019			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - All Metals (Soi	I)														
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.8%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	703638		0.19	0.19	NA	< 0.10	127%	60%	140%	100%	70%	130%	96%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.7%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	2.0%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.7%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.4%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	0.0%	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

Page 6 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 7 of 12

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541653

ATTENTION TO: Amir Karim

SAMPLED BY:

			Trac	e Or	ganio	cs Ar	alys	is							
RPT Date: Nov 13, 2019				UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recoverv	1 1 1 1	ptable nits	Recovery	Lir	eptable mits
		ld					Value	Lower	Upper	1 ··· · /	Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%		140%	82%	60%	130%	83%	50%	140%
Chloroform	696560		< 0.02	< 0.02	NA	< 0.02	92%		140%	84%	60%	130%	88%	50%	140%
1,2-Dichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	92 % 98%		140%	84%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%		140%	76%	60%	130%	73%	50%	140%
Carbon Tetrachloride	000500		. 0. 05	0.05	NIA	0.05	000/	F00/	4 4 0 0 /	700/	c.00/	4000/	700/	500/	1400/
	696560		< 0.05	< 0.05	NA	< 0.05	92%		140%	76%	60%	130%	73%	50%	140%
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%		140%	82%	60%	130%	86%	50%	140%
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92% 82%		140%	84%	60%	130%	84%	50%	140%
Trichloroethylene Bromodichloromethane	696560 696560		< 0.03 < 0.05	< 0.03 < 0.05	NA NA	< 0.03 < 0.05	o∠% 81%		140% 140%	100% 80%	60% 60%	130% 130%	105% 75%	50% 50%	140% 140%
Bromodomoromotiano	000000		0.00	0.00	1.0.1	\$ 0.00	0170	0070	11070	0070	0070	10070	1070	0070	11070
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%		140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%		119%			77%	50%	140%
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%		140%	100%		130%	99%	50%	140%
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%	50%		102%		130%	92%		
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%		140%	78%	60%		82%	50%	140%
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%		110%		130%	85%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541653

ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Nov 13, 2019			Г		-												
				DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	ank Measured		lank Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	ptable nits
		ld					value	Value Lower	Upper	,	Lower	Upper		Lower	Upper		
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (So	il)															
F1 (C6 to C10)	696560	,	< 5	< 5	NA	< 5	78%	60%	130%	91%	85%	115%	94%	70%	130%		
F2 (C10 to C16)	696515		< 10	< 10	NA	< 10	118%	60%	130%	87%	80%	120%	82%		130%		
F3 (C16 to C34)	696515		< 50	< 50	NA	< 50	115%	60%	130%	82%	80%	120%	88%	70%	130%		
F4 (C34 to C50)	696515		< 50	< 50	NA	< 50	103%	60%	130%	89%	80%	120%	111%	70%	130%		

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

Page 8 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541653

SAMPLING SITE:65 Ward Street, Port	Норе	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:65 Ward Street, Port Hope

AGAT WORK ORDER: 19T541653

ATTENTION TO: Amir Karim

SAMPLED BY:

SAMPLING SITE:65 Ward Street, Por	поре	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541653

ATTENTION TO: Amir Karim

SAMPLING SITE:65 Ward Street, Port Ho	ре	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Chain of C	ustody Recor					ries	Custody Form (_	5.712	2.5100 we	835 Coo ga, Onta Fax: 90 bearth.ag d by huma	rio 1472 5.712.9 Jotlabs	1Y2 5 122	м с	.abo /ork Or Cooler (arrival ⁻	rder f Quan	tity:	9	TS			1.5	3	2
Report Inform Company: Contact:	-				[]	Regulatory Requ	irements:		-	egula	tory Re	quire	ment		lusto ly lotes:					25	[X		× _
Address:	11 Indell Lane, Brampton (905) 796-2650					Regulation 153/04 Table <u>3</u> Indicate One Ind/Com Res/Park	Sewe	itary			Regulation			Re	egula	ir TA	Т		I 5		equiry Enconic I	od: Ja Da		
Phone: Reports to be sent to: 1. Email: 2. Email:	AKarim@Terraprobe.ca	Fax:			s	☐Agriculture Soil Texture <i>(Check One)</i> 反Coarse ☐Fine	Region	to One	-		Prov. Wate Objectives Other	(PWQC		Rı		3 Bus Days	iness			2 Busin Days		□ ∩ □ □		
Project Inform Project: Site Location: Sampled By:	1-19-0660-42 65 Ward Street, Port Hop	e				Is this submissio Record of Site Co Yes	n for a	1.00	Cer		Guideli te of A i	ne on			*	Plo TAT is	ease p exclu	orovic usive	le prio of wee	r notif l ekends	ication Lone St	for rush tatutory t your Al	h TAT holic	≥M
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number i nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton Irossi@Terraprobe.ca		Bill To Same:			Sample Matrix Leg B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	gend	Field Filtered - Metals, Hg, CrVI	and Inorganics	ais 🗌 153 Mctals (excl. Hydrides) O	ORPs: DB-HWS DCI DCN DCA* DEC DFOC DHg Druh Texe	Full Metals Scan	Regulation/Custom Motals Nutrients: DTP DNH, DTKN	s: B VOC DETEX DTHM	F4			0	Sanor Torne Processor					
	eldentification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	e Commen Special Instru	-	Y/N	Metals		ORPs: OCr ⁶⁺	Full Me	Regulat Nutrien	Volatiles:	PHCs F1	ABNS	PAHS		TCLP:	Sewor L				
BH K BH K	0)552 0)552 0)6553 0)6553 556	10000000000000000000000000000000000000	17:40 11 11 11	1 1 2	SOIL N II II					×				×	×									
Samples Reilinquished By (Prin Amir Karim Samples Reilinquished By (Prin	ACCI		Date 2019-1 Date	1-07	19:30 20:00	- K K	nt Name and Sign):			N	~		Date Nov Date	8	Tin	114 8	000	2						
Samples Refinduished By (Prin	t Name and Sign):		Date	Ťin	20 02	Samples Received By (Pri	nt Name and Sign)						Date		Tin	ne			N ⁰ :	Fage	<u>, 1</u>	_ 01		_

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541687

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		
INDIES		
1		
1		
1		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 5

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Subscription of Alberta (ESAA)
 AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation Inc. (CALA) for specific citests listed on the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541687 PROJECT: 1-19-0660-42

 \bigcirc Pog. 153(511) - All Motole (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

ATE RECEIVED: 2019-11-08						DATE REPORTED: 2019-11-1
		SAMPLE DES	CRIPTION:	BH12/SS1	BH12/SS6	
		SAM	PLE TYPE:	Soil	Soil	
		DATE	SAMPLED:	2019-11-07	2019-11-07	
Parameter	Unit	G/S	RDL	696765	696766	
ntimony	µg/g	7.5	0.8	<0.8	<0.8	
rsenic	µg/g	18	1	6	2	
arium	µg/g	390	2	108	33	
eryllium	µg/g	4	0.5	<0.5	<0.5	
oron	µg/g	120	5	<5	<5	
oron (Hot Water Soluble)	µg/g	1.5	0.10	0.20	<0.10	
admium	µg/g	1.2	0.5	<0.5	<0.5	
hromium	µg/g	160	2	27	8	
obalt	µg/g	22	0.5	7.6	2.3	
opper	µg/g	140	1	15	4	
ead	µg/g	120	1	31	2	
lolybdenum	µg/g	6.9	0.5	<0.5	<0.5	
lickel	µg/g	100	1	14	3	
elenium	µg/g	2.4	0.4	<0.4	<0.4	
ilver	µg/g	20	0.2	<0.2	<0.2	
hallium	µg/g	1	0.4	<0.4	<0.4	
Iranium	µg/g	23	0.5	1.4	<0.5	
anadium	µg/g	86	1	40	13	
inc	µg/g	340	5	64	14	
hromium VI	µg/g	8	0.2	<0.2	<0.2	
lercury	µg/g	0.27	0.10	<0.10	<0.10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Nivine Basily

Certified By:

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541687

ATTENTION TO: Amir Karim

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Nov 13, 2019				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - All Metals (S	oil)														
Antimony	689385		<0.8	<0.8	NA	< 0.8	128%	70%	130%	97%	80%	120%	102%	70%	130%
Arsenic	689385		2	2	NA	< 1	106%	70%	130%	99%	80%	120%	126%	70%	130%
Barium	689385		20	20	0.0%	< 2	101%	70%	130%	100%	80%	120%	98%	70%	130%
Beryllium	689385		<0.5	<0.5	NA	< 0.5	78%	70%	130%	101%	80%	120%	98%	70%	130%
Boron	689385		<5	<5	NA	< 5	72%	70%	130%	98%	80%	120%	87%	70%	130%
Boron (Hot Water Soluble)	696476		<0.10	<0.10	NA	< 0.10	126%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	689385		<0.5	<0.5	NA	< 0.5	107%	70%	130%	105%	80%	120%	99%	70%	130%
Chromium	689385		8	8	NA	< 2	91%	70%	130%	104%	80%	120%	94%	70%	130%
Cobalt	689385		1.8	1.9	NA	< 0.5	96%	70%	130%	101%	80%	120%	97%	70%	130%
Copper	689385		9	9	0.0%	< 1	95%	70%	130%	110%	80%	120%	96%	70%	130%
Lead	689385		16	15	6.5%	< 1	106%	70%	130%	104%	80%	120%	97%	70%	130%
Molybdenum	689385		<0.5	<0.5	NA	< 0.5	92%	70%	130%	95%	80%	120%	96%	70%	130%
Nickel	689385		4	4	NA	< 1	94%	70%	130%	103%	80%	120%	96%	70%	130%
Selenium	689385		<0.4	<0.4	NA	< 0.4	112%	70%	130%	98%	80%	120%	101%	70%	130%
Silver	689385		<0.2	<0.2	NA	< 0.2	84%	70%	130%	96%	80%	120%	87%	70%	130%
Thallium	689385		<0.4	<0.4	NA	< 0.4	99%	70%	130%	104%	80%	120%	97%	70%	130%
Uranium	689385		<0.5	<0.5	NA	< 0.5	101%	70%	130%	97%	80%	120%	98%	70%	130%
Vanadium	689385		10	10	0.0%	< 1	90%	70%	130%	98%	80%	120%	99%	70%	130%
Zinc	689385		39	39	0.0%	< 5	102%	70%	130%	109%	80%	120%	101%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	NA	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Mercury	689385		<0.10	<0.10	NA	< 0.10	109%	70%	130%	101%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 3 of 5

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541687

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	I		
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS

	AG		F La	abor	ato	ories	Ph: 9		.2.510	5835 Coo uga, Onta) Fax: 90 ebearth, ug	ric . 5.712	2 1 Y 512	2	W		Order	#:	19		snly S	4	16	87	}	
Chain of Cu	stody Recor	d If this is	a Drinking Wat	ter sample, p	olease u	se Drinking Water Chain of Custody For	m (potable	water	consum	ed by huma	ns)			A	rrival	Tem	pera	tures	5:	1-	0	1_1	.5		.2
	erraprobe				_	Regulatory Requirement (Please check all applicable boxes)	s: 🗌	No F	Regula	atory Re	quir	eme	ent		usid: lotes:		al In	tact:	1		;	<u> </u>)u.:		×
	amir Karim I Indell Lane, Brampton	ON L6T 3Y3				Table 3 Indicate One	ewer Use Sanitary			Regulation CCME	n 558				irna egul			Tin		-		quire asar - 1			
Penorts to be sent to:	005) 796-2650 Karim@Terraprobe.ca	Fax:			_	Agriculture Soil Texture (Check One) Region	Slorm	_	_	Prov. Wate Objectives Other				Ru	ish :	CAT (3 Bu Days	Jsine		arges Ap	.ppiy)	Busine			Next L	j ÷
2. Email:						Fine M	SA	ļ		Indica;								e Req	ured			harges		Dey Y	
	tion: -19-0660-42 5 Ward Street, Port Hop	e			_	Is this submission for a Record of Site Condition ?	-	Cer		Guideli I te of A l		is				*TAT	is ex	clusi	n of	week	ends		atutory	h TAT r holi .GAT CF	
Contact: <u>I</u> Address: <u>1</u>	Please note: If quotation number tion: erraprobe corena Rossi 1 Indell Lane, Brampton rossi@Terraprobe.ca		Bill To Same:		,	Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Filtered - Metals, Hg, CrVI	and Inorganics	(oxol Hydrides) tals (hol Hydrides)	OC DHg	tels Scan	Regulation/Custoin Metals	Nutrients: DTP DNH, DTKN DNo, DNO, DNO,+NO,	S: B VOC DITEX DTHM	- F4			:⊡Total ⊡ Arq¢lors	ganothiorine Pesticidas	□ M&I □ VOC。 □ ABMs □ B(a)P □F-0.05	Use				
Sample Io	lentification	Date Sampled	Time Sampled	# of Containers	Samp Matr		Y/N	Metals	All Me	ORPs: Cr ⁶ - 1	Full Metals	Regula	Nutrien	Volatiles:	CHCs F.	ABNS	PAHS	PCBs:	C. gano	TCLP:	Sawerl				
	2/551	Fo(11)Fist	18:00	1	SOIL				×																
		-						1-																	
Samples Relinquished By (Print Na Amir Karim Samples Relinquished By (Print Na Samples Relinquished By (Print Na	Ime and Sign);		Date 2019-1 Date Date	Tim	18 20:01 18	Samples Received By (Print Name and Sig	0	a	5			Date		8		ime 4 imo ime	100	59.0	2 510	_	Pa (e	1	-u -		

.....

- 1.0

- 21

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541684

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 13, 2019

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 15

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2019-11-08

DATE RECEIVED: 2019-11-08	3				DATE REPORTED: 2019-11-13
	SA	AMPLE DESC	RIPTION:	DUP-1	
		SAMP	LE TYPE:	Soil	
			AMPLED:	2019-11-07	
Parameter	Unit	G/S	RDL	696907	
Antimony	µg/g	7.5	0.8	<0.8	
Arsenic	µg/g	18	1	2	
Barium	µg/g	390	2	26	
Beryllium	µg/g	4	0.5	<0.5	
Boron	µg/g	120	5	<5	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.11	
Cadmium	µg/g	1.2	0.5	<0.5	
Chromium	µg/g	160	2	8	
Cobalt	µg/g	22	0.5	2.3	
Copper	µg/g	140	1	4	
₋ead	µg/g	120	1	13	
Molybdenum	µg/g	6.9	0.5	<0.5	
Nickel	µg/g	100	1	3	
Selenium	µg/g	2.4	0.4	<0.4	
Silver	µg/g	20	0.2	<0.2	
Fhallium	µg/g	1	0.4	<0.4	
Uranium	µg/g	23	0.5	<0.5	
/anadium	µg/g	86	1	11	
Zinc	µg/g	340	5	20	
Chromium VI	µg/g	8	0.2	<0.2	
Cyanide	µg/g	0.051	0.040	<0.040	
Mercury	µg/g	0.27	0.10	<0.10	
Electrical Conductivity	mS/cm	0.7	0.005	0.254	
Sodium Adsorption Ratio	NA	5	NA	1.81	
pH, 2:1 CaCl2 Extraction	pH Units		NA	8.01	

Nivine Basily

DATE REPORTED: 2019-11-13

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE REPORTED: 2019-11-13

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696907 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Nivine Basily

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg	153(511) - PAHs (Soil)
DATE RECEIVED: 2019-11-08					DATE REPORTED: 2019-11-13
		SAMPLE DESC	RIPTION:	DUP-1	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2019-11-07	
Parameter	Unit	G/S	RDL	696907	
Naphthalene	µg/g	0.6	0.05	<0.05	
Acenaphthylene	µg/g	0.15	0.05	<0.05	
Acenaphthene	hð/ð	7.9	0.05	<0.05	
Fluorene	µg/g	62	0.05	<0.05	
Phenanthrene	hð/ð	6.2	0.05	<0.05	
Anthracene	µg/g	0.67	0.05	<0.05	
Fluoranthene	µg/g	0.69	0.05	<0.05	
Pyrene	µg/g	78	0.05	<0.05	
Benz(a)anthracene	µg/g	0.5	0.05	<0.05	
Chrysene	µg/g	7	0.05	<0.05	
Benzo(b)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(k)fluoranthene	µg/g	0.78	0.05	<0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	
Indeno(1,2,3-cd)pyrene	µg/g	0.38	0.05	<0.05	
Dibenz(a,h)anthracene	µg/g	0.1	0.05	<0.05	
Benzo(g,h,i)perylene	µg/g	6.6	0.05	<0.05	
2-and 1-methyl Naphthalene	µg/g	0.99	0.05	<0.05	
Moisture Content	%		0.1	4.4	
Surrogate	Unit	Acceptabl	e Limits		
Chrysene-d12	%	50-1	40	80	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696907 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

DATE RECEIVED: 2019-11-08

		5	SAMPLE DESC	-	DUP-2	
			SAMF	PLE TYPE:	Soil	
			DATE S	AMPLED:	2019-11-07	
Para	ameter	Unit	G/S	RDL	696908	
F1 (C6 to C10)		µg/g	55	5	<5	
F1 (C6 to C10) m	ninus BTEX	µg/g	55	5	<5	
F2 (C10 to C16)		µg/g	98	10	<10	
F3 (C16 to C34)		µg/g	300	50	<50	
F4 (C34 to C50)		µg/g	2800	50	<50	
Gravimetric Heav	vy Hydrocarbons	µg/g	2800	50	NA	
Moisture Content	t	%		0.1	10.8	
Sur	rogate	Unit	Acceptabl	e Limits		
Ferphenyl		%	60-1	40	90	
Comments:						3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -
	Residential/Parklan					r may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
696908		e for general le			a vice henvidad mav	
50500		n sample dry v		ne guideinte	es provided may o	Thay not be relevant for the interfueu use. There directly to the applicable standard for regulatory interpretation.
	The C6-C10 traction	on sample dry v	veight.	Ū		
	C6–C10 (F1 minus	n is calculated	veight. using toluene r	esponse fac	tor.	
	C6–C10 (F1 minus The C10 - C16, C16	n is calculated (BTEX) is a calc 5 - C34, and C3	veight. using toluene r culated parame 34 - C50 fractio	esponse fac eter. The calo ns are calcu	tor. culated value is F1 lated using the av	minus BTEX. erage response factor for n-C10, n-C16, and n-C34.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy	n is calculated BTEX) is a calc 5 - C34, and C3 Hydrocarbons a	veight. using toluene r culated parame 34 - C50 fractio are not include	esponse fac eter. The calc ns are calcu d in the Tota	tor. culated value is F ¹ lated using the av I C16-C50 and are	minus BTEX.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram	n is calculated (BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by th	esponse fac eter. The calo ns are calcu d in the Tota ne retention t	tor. culated value is F ¹ lated using the av I C16-C50 and are	minus BTEX. erage response factor for n-C10, n-C16, and n-C34.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram Total C6 - C50 resu	n is calculated (BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to lts are corrected	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by the of for BTEX col	esponse fact eter. The calcuns are calcund in the Tota ne retention the tribution.	tor. culated value is F1 lated using the av I C16-C50 and are ime of nC50.	minus BTEX. erage response factor for n-C10, n-C16, and n-C34. e only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram Total C6 - C50 resu This method compli	n is calculated of BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to lts are correcte es with the Ref	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by th of for BTEX con erence Method	esponse fac eter. The cald ns are calcu d in the Tota ne retention t ntribution. d for the CW	tor. culated value is F1 lated using the av I C16-C50 and are ime of nC50. S PHC and is valid	minus BTEX. erage response factor for n-C10, n-C16, and n-C34.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram Total C6 - C50 resu This method compli nC6 and nC10 resp	n is calculated of BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to lts are correcte es with the Ref onse factors ar	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by th d for BTEX con erence Methor re within 30% c	esponse fac eter. The calc ns are calcu d in the Tota ne retention t ntribution. d for the CW f Toluene re	tor. culated value is F1 lated using the av l C16-C50 and are ime of nC50. S PHC and is valio sponse factor.	minus BTEX. erage response factor for n-C10, n-C16, and n-C34. e only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram Total C6 - C50 resu This method compli nC6 and nC10 resp nC10, nC16 and nC	n is calculated of BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to lts are correcte es with the Ref onse factors ar C34 response factors ar	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by th d for BTEX con erence Methoo ere within 30% c actors are withi	esponse facter. The calors are calcud in the Tota the retention the tribution. If for the CW-1 for the	tor. culated value is F1 lated using the av l C16-C50 and are ime of nC50. S PHC and is valid sponse factor. ir average.	minus BTEX. erage response factor for n-C10, n-C16, and n-C34. e only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.
	C6–C10 (F1 minus The C10 - C16, C16 Gravimetric Heavy The chromatogram Total C6 - C50 resu This method compli nC6 and nC10 resp	n is calculated of BTEX) is a calc 5 - C34, and C3 Hydrocarbons a has returned to lts are correcte es with the Ref onse factors ar C34 response fa r is within 70%	veight. using toluene r culated parame 34 - C50 fractio are not include b baseline by th d for BTEX con erence Methoo ere within 30% c actors are withi	esponse facter. The calors are calcud in the Tota the retention the tribution. If for the CW-1 for the	tor. culated value is F1 lated using the av l C16-C50 and are ime of nC50. S PHC and is valid sponse factor. ir average.	minus BTEX. erage response factor for n-C10, n-C16, and n-C34. e only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2019-11-13

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Re	g. 153(511) - VOCs (Soil)
DATE RECEIVED: 2019-11-08					DATE REPORTED: 2019-11-13
	٤		RIPTION: LE TYPE: AMPLED:	DUP-2 Soil 2019-11-07	
Parameter	Unit	G/S	RDL	696908	
Dichlorodifluoromethane	µg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	

Certified By:

NPopukolof

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Rey.	
DATE RECEIVED: 2019-11-08					DATE REPORTED: 2019-11-13
	S	AMPLE DES	CRIPTION:	DUP-2	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2019-11-07	
Parameter	Unit	G/S	RDL	696908	
Bromoform	ug/g	0.27	0.05	<0.05	
Styrene	ug/g	0.7	0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	
o-Xylene	ug/g		0.05	<0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	<0.05	
Xylene Mixture	ug/g	3.1	0.05	<0.05	
1,3-Dichloropropene	µg/g	0.05	0.04	<0.04	
n-Hexane	µg/g	2.8	0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-	140	96	
4-Bromofluorobenzene	% Recovery	50-	140	90	

O. Reg. 153(511) - VOCs (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

696908 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T541684 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

696909

ATTENTION TO: Amir Karim

SAMPLED BY:

Total PCBs (soil)										
DATE RECEIVED: 2019-11-08 DATE REPORTED: 2019-11-13										
	S	AMPLE DES	CRIPTION:	DUP-3						
		SAM	PLE TYPE:	Soil						
DATE SAMPLED: 2019-11-07										
Parameter	Unit	G/S	RDL	696909						
PCBs	hð\ð	0.35	0.1	<0.1						
Moisture Content	%		0.1	7.5						
Surrogate	Unit	Acceptab	le Limits							
Decachlorobiphenyl	%	60-1	130	96						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Results are based on the dry weight of soil extracted.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541684

ATTENTION TO: Amir Karim

SAMPLED BY:

Soil Analysis															
RPT Date: Nov 13, 2019			0	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		eptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)	1													
Antimony	703638		<0.8	<0.8	NA	< 0.8	100%	70%	130%	120%	80%	120%	93%	70%	130%
Arsenic	703638		2	2	NA	< 1	109%	70%	130%	103%	80%	120%	115%	70%	130%
Barium	703638		58	58	0.8%	< 2	103%	70%	130%	99%	80%	120%	101%	70%	130%
Beryllium	703638		<0.5	<0.5	NA	< 0.5	78%	70%	130%	110%	80%	120%	98%	70%	130%
Boron	703638		<5	<5	NA	< 5	71%	70%	130%	115%	80%	120%	89%	70%	130%
Boron (Hot Water Soluble)	703638		0.19	0.19	NA	< 0.10	127%	60%	140%	100%	70%	130%	96%	60%	140%
Cadmium	703638		<0.5	<0.5	NA	< 0.5	107%	70%	130%	99%	80%	120%	101%	70%	130%
Chromium	703638		13	13	2.3%	< 2	94%	70%	130%	106%	80%	120%	112%	70%	130%
Cobalt	703638		5.2	5.3	2.8%	< 0.5	95%	70%	130%	105%	80%	120%	102%	70%	130%
Copper	703638		9	10	2.2%	< 1	95%	70%	130%	112%	80%	120%	99%	70%	130%
Lead	703638		6	6	0.0%	< 1	104%	70%	130%	104%	80%	120%	98%	70%	130%
Molybdenum	703638		<0.5	<0.5	NA	< 0.5	88%	70%	130%	101%	80%	120%	97%	70%	130%
Nickel	703638		10	10	1.3%	< 1	97%	70%	130%	106%	80%	120%	100%	70%	130%
Selenium	703638		<0.4	<0.4	NA	< 0.4	126%	70%	130%	111%	80%	120%	106%	70%	130%
Silver	703638		<0.2	<0.2	NA	< 0.2	88%	70%	130%	100%	80%	120%	90%	70%	130%
Thallium	703638		<0.4	<0.4	NA	< 0.4	97%	70%	130%	102%	80%	120%	98%	70%	130%
Uranium	703638		<0.5	<0.5	NA	< 0.5	103%	70%	130%	97%	80%	120%	99%	70%	130%
Vanadium	703638		19	20	1.6%	< 1	92%	70%	130%	100%	80%	120%	108%	70%	130%
Zinc	703638		31	31	0.8%	< 5	105%	70%	130%	114%	80%	120%	112%	70%	130%
Chromium VI	694385		< 0.2	< 0.2	0.0%	< 0.2	81%	80%	120%	86%	70%	130%	81%	70%	130%
Cyanide	694385		<0.040	<0.040	NA	< 0.040	93%	70%	130%	91%	80%	120%	105%	70%	130%
Mercury	703638		<0.10	<0.10	NA	< 0.10	101%	70%	130%	100%	80%	120%	99%	70%	130%
Electrical Conductivity	703638		0.226	0.230	2.1%	< 0.005	100%	90%	110%						
Sodium Adsorption Ratio	689385		2.29	2.27	0.9%	NA									
pH, 2:1 CaCl2 Extraction	694385		7.67	7.68	0.1%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 9 of 15

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541684 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			mac	e Or	yann	CS AI	larys	15							
RPT Date: Nov 13, 2019			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery	1 1 10	eptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	698158		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	75%	50%	140%	80%	50%	140%
Acenaphthylene	698158		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	89%	50%	140%	95%	50%	140%
Acenaphthene	698158		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	83%	50%	140%	88%	50%	140%
Fluorene	698158		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	94%	50%	140%	102%	50%	140%
Phenanthrene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	96%	50%	140%	108%	50%	140%
Anthracene	698158		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	92%	50%	140%	103%	50%	140%
Fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	106%	50%	140%	94%	50%	140%
Pyrene	698158		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	104%	50%	140%	91%	50%	140%
Benz(a)anthracene	698158		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	106%	50%	140%	98%	50%	140%
Chrysene	698158		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	109%	50%	140%	100%	50%	140%
Benzo(b)fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	103%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	698158		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	92%	50%	140%	77%	50%	140%
Benzo(a)pyrene	698158		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	108%	50%	140%	96%	50%	140%
Indeno(1,2,3-cd)pyrene	698158		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	84%	50%	140%	83%	50%	140%
Dibenz(a,h)anthracene	698158		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	97%	50%	140%	93%	50%	140%
Benzo(g,h,i)perylene	698158		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	98%	50%	140%	87%	50%	140%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	102%	50%	140%	81%	50%	140%
Vinyl Chloride	696560		< 0.02	< 0.02	NA	< 0.02	75%	50%	140%	75%	50%	140%	93%	50%	140%
Bromomethane	696560		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	89%	50%	140%	87%	50%	140%
Trichlorofluoromethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	80%	50%	140%	81%	50%	140%
Acetone	696560		< 0.50	< 0.50	NA	< 0.50	90%	50%	140%	74%	50%	140%	85%	50%	140%
1,1-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	81%	60%	130%	89%	50%	140%
Methylene Chloride	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	105%	60%	130%	107%	50%	140%
Trans- 1,2-Dichloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	87%	60%	130%	88%	50%	140%
Methyl tert-butyl Ether	696560		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	85%	60%	130%	97%	50%	140%
1,1-Dichloroethane	696560		< 0.02	< 0.02	NA	< 0.02	86%	50%	140%	77%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	83%	50%	140%	87%	50%	140%
Cis- 1,2-Dichloroethylene	696560		< 0.02	< 0.02	NA	< 0.02	97%	50%	140%	82%	60%	130%	83%	50%	140%
Chloroform	696560		< 0.04	< 0.04	NA	< 0.04	92%	50%	140%	84%	60%	130%	88%	50%	140%
1,2-Dichloroethane	696560		< 0.03	< 0.03	NA	< 0.03	98%	50%	140%	84%	60%	130%	89%	50%	140%
1,1,1-Trichloroethane	696560		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	76%	60%	130%	73%	50%	140%
Carbon Tetrachloride	696560		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	76%	60%	130%	73%	50%	140%
Benzene	696560		< 0.02	< 0.02	NA	< 0.02	103%		140%	82%		130%	86%		140%
1,2-Dichloropropane	696560		< 0.03	< 0.03	NA	< 0.03	92%		140%	84%		130%	84%		140%
Trichloroethylene	696560		< 0.03	< 0.03	NA	< 0.03	82%		140%	100%		130%	105%	50%	140%
Bromodichloromethane	696560		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	80%		130%	75%		140%
Methyl Isobutyl Ketone	696560		< 0.50	< 0.50	NA	< 0.50	88%	50%	140%	101%	50%	140%	85%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541684 ATTENTION TO: Amir Karim SAMPLED BY:

Trace Organics Analysis (Continued)

							(7					
RPT Date: Nov 13, 2019			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery	Lie	ptable nits	Recovery	Lin	eptable mits
		Ia					Value	Lower	Upper		Lower	Upper		Lower	Upper
1,1,2-Trichloroethane	696560		< 0.04	< 0.04	NA	< 0.04	100%	50%	140%	104%	60%	130%	98%	50%	140%
Toluene	696560		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	106%	50%	140%
Dibromochloromethane	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	114%	60%	130%	83%	50%	140%
Ethylene Dibromide	696560		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	102%	60%	130%	92%	50%	140%
Tetrachloroethylene	696560		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	696560		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	95%	60%	130%	85%	50%	140%
Chlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	104%	60%	130%	101%	50%	140%
Ethylbenzene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	102%	60%	130%	99%	50%	140%
m & p-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	100%	60%	130%	98%	50%	140%
Bromoform	696560		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	88%	60%	130%	75%	50%	140%
Styrene	696560		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	97%	60%	130%	93%	50%	140%
1,1,2,2-Tetrachloroethane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	119%	60%	130%	77%	50%	140%
o-Xylene	696560		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	100%	60%	130%	99%	50%	140%
1,3-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	99%	60%	130%	93%	50%	140%
1,4-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	98%	60%	130%	90%	50%	140%
1,2-Dichlorobenzene	696560		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	102%	60%	130%	92%	50%	140%
1,3-Dichloropropene	696560		< 0.04	< 0.04	NA	< 0.04	78%	50%	140%	78%	60%	130%	82%	50%	140%
n-Hexane	696560		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	110%	60%	130%	85%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (-BTEX) (So	oil)													
F1 (C6 to C10)	696560		< 5	< 5	NA	< 5	78%	60%	130%	91%	85%	115%	94%	70%	130%
F2 (C10 to C16)	696515		< 10	< 10	NA	< 10	118%	60%	130%	87%	80%	120%	82%	70%	130%
F3 (C16 to C34)	696515		< 50	< 50	NA	< 50	115%	60%	130%	82%	80%	120%	88%	70%	130%
F4 (C34 to C50)	696515		< 50	< 50	NA	< 50	103%	60%	130%	89%	80%	120%	111%	70%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Total PCBs (soil)													
PCBs	685028	< 0.1	< 0.1	NA	< 0.1	97%	60% 140%	97%	60%	140%	90%	60%	140%

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 11 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T541684

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis		1	
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Barium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	EPA SW 846 6010C; MSA, Part 3, Ch.21	ICP/OES
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Thallium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Chromium VI	INOR-93-6068	SW 846 Method 3060A; Method 7196A	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE CN-3015 & E 3009 A;SM 4500 CN	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-84 6010C	⁶ ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T541684 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		·	
Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Acenaphthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluorene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Phenanthrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Chrysene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
Moisture Content	ORG-91-5106	EPA SW-846 3541 & 8270E	BALANCE
Chrysene-d12	ORG-91-5106	EPA SW846 3541 & 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	(P&T)GC/MS (P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	()
1,1,1-Trichloroethane	VOL-91-5002 VOL-91-5002	EPA SW-846 5035 & 8260D EPA SW-846 5035 & 8260D	(P&T)GC/MS (P&T)GC/MS
Carbon Tetrachloride			
	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE

AGAT WORK ORDER: 19T541684 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	EPA SW-846 5035 & 8260D	(P&T)GC/MS
PCBs	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5113	EPA SW-846 3541 & 8082	GC/ECD
Moisture Content		MOE E3139	BALANCE

	aborate	5835 Cooper: Avenue Mississauga, Ontario 144 1Y2 Ph: 905.712.5100 Fax: 905.712.5122	Laboratory Use Only Work Order #: 197541684
Obain of Oustadu Descul		webearth.agetlabs.com	Cooler Quantity:
Report Information: Company: Terraprobe Contact: Amir Karim		Regulatory Requirements: IN No Regulatory Requirement (Please check all applicable boxes)	Custody Seal Intact: Yes Notes:
Contact: Atmin Karmin Address: 11 Indell Lane, Brampton ON L6T 3Y3 Phone: (905) 796-2650 Reports to be sent to: Fax:		Regulation 153/04 Sower Use Regulation 556 Table Indicate One Sanitary Lind/Com Storm Prov, Water Quality Agriculture Objectives (PWQO)	Turnaround Time (TAT) Required: Regular TAT Image: Table of the surface
AKarim@Terraprobe.ca 1. Email:		Soil Texture (check One) Coarse Fine Is this submission for a Region Indicate One MISA Indicate One Indicate Che Indicate Che	3 Business 2 Business Next Business Days Days Days OR Date Rectuired (Rush Strinnarges May Ap.)
Project: 1-19-0660-42 Site Location: 65 Ward Street, Port Hope Sampled By:		Record of Site Condition? Certificate of Analysis Yes No Yes No 0. Rep. 153 0. Rep. 153	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holid For 'Same Day' analysis, please contact your AGAT CPN
AGAT Quote #: PO: Please note: if quotation number is not provided, cilent will be billed full provided, cilent will	ce for analysis. Yes 🗹 No 🗆	Sample Matrix Legend B Biota GW	Volatiles: B voc D brex D THM Volatiles: B voc D brex D THM PLCs F1 - C4 ABNS PAHS PCEs: M Tetai D Aroctors anochadine P Laces icup: D MA D voc D ABNS D B(a)P D voe icup: D MA D voc D ABNS D B(a)P D voe icup: D MA D voc D ABNS D B(a)P D voe
Sample Identification Date Time Sampled Sampled	# of Sam Containers Mat	Image: Second State Image: Second State Imag	Volatiles: Volatiles: ABNs ABNs PAHS PCEa: Mr icue: DMr icue: DMr
DhP-1 Nov 7/19 6127 pm DAP-2 Nov 7/19 6133 pm DhP-3 Nov 7/19 6133 pm	$\begin{array}{c c} \underline{1} & \text{son} \\ \hline 2 & \underline{5} \\ \underline{4} & \underline{5} \\ \hline \end{array}$		
Samples Relinquished By (Print Name and Sign): Accin Date Amir Karim Q019. Samples Relinquished By (Print Name and Sign): Date Samples Relinquished By (Print Name and Sign): Date	11-07 Time Time Time	Samples Recorded By (Print Name and Sign):	Time Page Oi Time 100 01

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544664

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 12

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T544664 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PAHs (Water) DATE RECEIVED: 2019-11-15 **DATE REPORTED: 2019-11-21** SAMPLE DESCRIPTION: BH3 SAMPLE TYPE: Water DATE SAMPLED: 2019-11-15 RDL 719958 Parameter Unit G/S Naphthalene µg/L 1400 0.20 < 0.20 Acenaphthylene µg/L 1.8 0.20 <0.20 Acenaphthene µg/L 600 0.20 <0.20 Fluorene µg/L 400 0.20 < 0.20 Phenanthrene µg/L 580 0.10 <0.10 Anthracene µg/L 2.4 0.10 < 0.10 Fluoranthene µg/L 130 0.20 <0.20 Pyrene µg/L 68 0.20 <0.20 Benz(a)anthracene µg/L 4.7 0.20 < 0.20 Chrysene µg/L 1 0.10 < 0.10 Benzo(b)fluoranthene µg/L 0.75 0.10 < 0.10 Benzo(k)fluoranthene µg/L 0.4 0.10 <0.10 Benzo(a)pyrene µg/L 0.81 0.01 < 0.01 Indeno(1,2,3-cd)pyrene µg/L 0.2 0.20 < 0.20 Dibenz(a,h)anthracene µg/L 0.52 0.20 <0.20 Benzo(g,h,i)perylene µg/L 0.2 0.20 <0.20 2-and 1-methyl Naphthalene µg/L 1800 0.20 <0.20 Surrogate Unit Acceptable Limits Chrysene-d12 % 50-140 107

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(i)Fluoranthene isomers because the isomers co-elute on the GC column.

 719958
 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC colur

 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544664 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

719958

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2019-11-15

	S	SAMPLE DESCR	IPTION:	BH3
		SAMPLI	TYPE:	Water
	DATE SAMPLED:			2019-11-15
Parameter	Unit	G/S	RDL	719958
F1 (C6-C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F2 (C10 to C16) minus Naphthalene	µg/L		100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F3 (C16 to C34) minus PAHs	µg/L		100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable I	_imits	
Terphenyl	%	60-140		110

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16. C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2019-11-21

Linearity is within 15%.

AGAT WORK ORDER: 19T544664 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
	:	-	CRIPTION: PLE TYPE: SAMPLED:	BH3 Water 2019-11-15	
Parameter	Unit	G/S	RDL	719958	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	0.42	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	
Ethylbenzene	µg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

NPopukoloj

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544664 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	S	AMPLE DESC	RIPTION:	BH3	
		SAMP	LE TYPE:	Water	
		DATE S	AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719958	
Bromoform	µg/L	380	0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	
Xylene Mixture	μg/L	4200	0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	
Surrogate	Unit	Acceptabl	e Limits		
Toluene-d8	% Recovery	50-1	40	92	
4-Bromofluorobenzene	% Recovery	50-14	40	86	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719958 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2019-11-21

AGAT WORK ORDER: 19T544664 PROJECT: 1-19-0660-42

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2019-11-15

DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
	5	SAMPLE DESC	CRIPTION:	BH3	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719958	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	2.2	
Barium	µg/L	29000	2.0	160	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	67.5	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	µg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	<0.5	
Copper	µg/L	87	1.0	1.3	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	µg/L	9200	0.5	7.8	
Nickel	µg/L	490	1.0	<1.0	
Selenium	µg/L	63	1.0	<1.0	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	µg/L	420	0.5	0.7	
Vanadium	µg/L	250	0.4	1.4	
Zinc	µg/L	1100	5.0	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Jacky 2th

Certified By:

Page 7 of 12

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544664 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			mac		gam	cs Ar	laryo	10							
RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery		ptable nits Upper	Recovery		ptable nits Uppe
								Lower	opper		Lower	opper		Lower	oppe
O. Reg. 153(511) - VOCs (Water)	740050		0.00	0.00		0.00	000/	500/	4 400/	05%	500/	4 4 0 0 /	000/	500/	4 4 0 0 /
Dichlorodifluoromethane	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
Vinyl Chloride	713853		< 0.17	< 0.17	NA	< 0.17	87%		140%	87%	50%	140%	93%	50%	140%
Bromomethane	713853		< 0.20	< 0.20	NA	< 0.20	102%		140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane Acetone	713853 713853		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	97% 98%	50%	140%	95% 95%	50% 50%	140% 140%
Acetone	/13003		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	90%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%	50%	140%	103%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	75%	60%	130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%		130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	80%	60%	130%	73%	50%	140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%		140%	99%		130%	77%	50%	140%
Trichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	79%		130%	93%	50%	140%
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%		130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%		140%	107%	60%	130%	89%		140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	93%	60%	130%	94%	50%	140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	96%		140%	87%	60%	130%	79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	95%	60%	130%	89%		140%
Bromoform	713853		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	101%	60%	130%	82%	50%	140%
Styrene	713853		< 0.10	< 0.10	NA	< 0.10	95%		140%	82%		130%	74%		140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	108%		140%	116%		130%	87%		140%
o-Xylene	713853		< 0.10	< 0.10	NA	< 0.10	119%		140%	95%		130%	87%		140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%		140%	81%		130%	74%		140%
1,4-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	107%		140%	76%		130%	97%		140%
1,3-Dichloropropene	713853		< 0.30	< 0.30	NA	< 0.30	101%		140%	102%		130%	84%		140%
n-Hexane	713853		< 0.20	< 0.20	NA	< 0.20	86%		140%	81%		130%	104%	50%	

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544664 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

		nuou	Cig	unioc	, , ,,,,,		(00)		uou	·/					
RPT Date: Nov 21, 2019			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery	Lir	eptable nits
		Id					value	Lower Upper			Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Water)												
F1 (C6-C10)	707661		< 25	< 25	NA	< 25	102%	60%	140%	102%	60%	140%	95%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	101%	60%	140%	114%	60%	140%	92%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	103%	60%	140%	124%	60%	140%	97%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	99%	60%	140%	112%	60%	140%	85%	60%	140%
O. Reg. 153(511) - PAHs (Wate	r)														
Naphthalene	707661		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	70%	50%	140%	76%	50%	140%
Acenaphthylene	707661		< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	80%	50%	140%	87%	50%	140%
Acenaphthene	707661		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	71%	50%	140%	77%	50%	140%
Fluorene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	86%	50%	140%	94%	50%	140%
Phenanthrene	707661		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	91%	50%	140%	98%	50%	140%
Anthracene	707661		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	100%	50%	140%	113%	50%	140%
Fluoranthene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	112%	50%	140%	118%	50%	140%
Pyrene	707661		< 0.20	< 0.20	NA	< 0.20	113%	50%	140%	113%	50%	140%	115%	50%	140%
Benz(a)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	106%	50%	140%	116%	50%	140%
Chrysene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	109%	50%	140%	112%	50%	140%
Benzo(b)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	86%	50%	140%	115%	50%	140%
Benzo(k)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	104%	50%	140%	116%	50%	140%
Benzo(a)pyrene	707661		< 0.01	< 0.01	NA	< 0.01	115%	50%	140%	95%	50%	140%	97%	50%	140%
Indeno(1,2,3-cd)pyrene	707661		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	75%	50%	140%	86%	50%	140%
Dibenz(a,h)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	82%	50%	140%	99%	50%	140%
Benzo(g,h,i)perylene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	76%	50%	140%	85%	50%	140%

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544664

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	ər Ar	nalys	is										
RPT Date: Nov 21, 2019			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	leasured Limits		Acceptable Limits		Recovery	1.17	ptable nits	Recovery		ptable nits
		iù					value	Lower	Upper	-	Lower	Upper		Lower	Upper		
O. Reg. 153(511) - Metals (Inclu	ding Hydride	s) (Water))														
Antimony	714391		1.1	1.2	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%		
Arsenic	714391		2.5	3.5	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%		
Barium	714391		744	773	3.8%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%		
Beryllium	714391		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%		
Boron	714391		23.8	23.2	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%		
Cadmium	714391		<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%		
Chromium	714391		2.7	3.3	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%		
Cobalt	714391		1.4	1.4	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%		
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%		
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%		
Molybdenum	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%		
Nickel	714391		2.0	1.6	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%		
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%		
Silver	714391		<0.2	<0.2	NA	< 0.2	105%	70%	130%	106%	80%	120%	95%	70%	130%		
Thallium	714391		<0.3	<0.3	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%		
Uranium	714391		2.3	2.4	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%		
Vanadium	714391		17.5	19.0	8.2%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%		
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Jacky 2th

Page 9 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE

AGAT WORK ORDER: 19T544664 ATTENTION TO: Amir Karim

FROJECT. 1-19-0000-42		ATTENTION TO.									
SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis											
Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Acenaphthylene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Acenaphthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Fluorene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Phenanthrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Benz(a)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Chrysene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Benzo(b)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Benzo(k)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Benzo(a)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Indeno(1,2,3-cd)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Dibenz(a,h)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Benzo(g,h,i)perylene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
2-and 1-methyl Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
Chrysene-d12	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS								
F1 (C6-C10)	VOL-91- 5010	MOE PHC-E3421	P&T GC/FID								
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	P&T GC/FID								
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC/FID								
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	MOE PHC E3421	GC/FID								
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC/FID								
F3 (C16 to C34) minus PAHs	VOL-91-5010	MOE PHC E3421	GC/FID								
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC/FID								
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE								
Terphenyl	VOL-91-5010		GC/FID								
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544664 ATTENTION TO: Amir Karim SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	IETER AGAT S.O.P LITERATURE REFERENCE		ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

					_		_	05 71	ississa 2.5100 we	5835 Coop uga, Ontai D Fax: 90! ebearth ag	io L4 5.712. atlabs	Z 1Y2 5 122			Order er Qua	r #:	1	97	-	141	66L	
Contact: Address: Phone: Reports to be sent to: 1. Email:	Amir Karim 11 Indell Lane, Brampton (905) 796-2650 AKarim@Terraprobe.ca		a Drinking Wat	er sample, p)lease u	se Drinking Water Chain of Custody Form (Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table 3 Indicate One Ind/Com Region Agriculture Soil Texture (check One) Coarse	I use itary				quire 558 r Qual	ity		Custo Note: Turn: Regu Rush	arou Iar T TAT (al int Ind AT (Rush S usine:	Tim	IE (1	j 5 to 7 phy) 1 2 Bus	Cequir Busine	ess Days	Next Business
2. Email: Project Inform Project: Site Location: Sampled By:	1-19-0660-42 65 Ward Street, Port Hope	1				□Fine □MISA Is this submission for a Record of Site Condition ? □ Yes ☑ No	-	Cer		Indicate Guidelin te of Ar	ne or	ls	Days Days OR Date Required (Rush Surcharges Please provide prior notification for *TAT is exclusive of weekends and stat For 'Same Day' analysis, please contact y							es May A n for rus statutory	h TAT / holidays	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number is nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton, Irossi@Terraprobe.ca		Bill To Same:			Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Filtered - Metals, Hg, CrVI	and Inorganics	All Metals 153 Metals (excl Hydrides) O Hydride Metals 153 Metals (incl Hydrides)	S	Full Metals Scan	Regulation/Custom Metals Nutrients: DTP DNH. DTKN	VO2 DNO3+NO		No. of the local division of the local divis		PCBs: D Total D Aroclors	Organochlorine Pesticides	TCLP:□M&I □VOCS □ABNS □B(a)P □PCBS Sewer Lise			
Sample	e Identification	Date Sampled	Time Sampled	# of Containers	Samı Matr GW		Y/N Y	Metals			Full Me	Regulat	-	Y PHCs F1 -	ABNS	X PAHS	PCBs: C	Organo	TCLP: DM&I			
Samples Relinguished By (Prin Samples Relinguished By (Prin Samples Relinguished By IPrin	it Name and Shin):	~	Date W/IS/(Date Date		1.00 1.00	PM Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign).	OR	5	PĒ	50	18	Date Date	91	18	Time	9	S			V ge _1	of	

- 15 -

Document ID DIV-78-1511 014

1.4

.

Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT Date Issued February 22, 2017

- 24

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544657

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 12

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T544657 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PAHs (Water) DATE RECEIVED: 2019-11-15 **DATE REPORTED: 2019-11-21** SAMPLE DESCRIPTION: BH4 SAMPLE TYPE: Water DATE SAMPLED: 2019-11-15 RDL 719812 Parameter Unit G/S Naphthalene µg/L 1400 0.20 <0.20 Acenaphthylene µg/L 1.8 0.20 <0.20 Acenaphthene µg/L 600 0.20 <0.20 µg/L Fluorene 400 0.20 < 0.20 Phenanthrene µg/L 580 0.10 <0.10 Anthracene µg/L 2.4 0.10 < 0.10 Fluoranthene µg/L 130 0.20 <0.20 Pyrene µg/L 68 0.20 <0.20 Benz(a)anthracene 4.7 0.20 µg/L < 0.20 Chrysene µg/L 1 0.10 <0.10 Benzo(b)fluoranthene µg/L 0.75 0.10 < 0.10 Benzo(k)fluoranthene µg/L 0.4 0.10 <0.10 Benzo(a)pyrene µg/L 0.01 0.81 < 0.01 µg/L 0.2 0.20 Indeno(1,2,3-cd)pyrene < 0.20 Dibenz(a,h)anthracene µg/L 0.52 0.20 <0.20 Benzo(g,h,i)perylene µg/L 0.2 0.20 <0.20 2-and 1-methyl Naphthalene µg/L 1800 0.20 <0.20 Surrogate Unit Acceptable Limits Chrysene-d12 % 50-140 93

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

719812 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544657 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2019-11-15

	S	SAMPLE DESCRIP	TION: BH4
		SAMPLE 1	YPE: Water
		DATE SAMP	PLED: 2019-11-1
Parameter	Unit	G/S R	DL 719812
F1 (C6-C10)	µg/L	750 2	25 <25
F1 (C6 to C10) minus BTEX	µg/L	750 2	25 <25
F2 (C10 to C16)	µg/L	150 1	00 <100
F2 (C10 to C16) minus Naphthalene	µg/L	1	00 <100
F3 (C16 to C34)	µg/L	500 1	00 <100
F3 (C16 to C34) minus PAHs	µg/L	1	00 <100
F4 (C34 to C50)	µg/L	500 1	00 <100
Gravimetric Heavy Hydrocarbons	µg/L	500 5	00 NA
Surrogate	Unit	Acceptable Lir	nits
Terphenyl	%	60-140	98

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719812 The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

Linearity is within 15%.

AGAT WORK ORDER: 19T544657 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg	. 153(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
		DATE S	PLE TYPE: SAMPLED:	BH4 Water 2019-11-15	
Parameter	Unit	G/S	RDL	719812	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544657 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	•				
	SA	AMPLE DESC	RIPTION:	BH4	
		SAMP	LE TYPE:	Water	
		DATE S	AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719812	
Bromoform	µg/L	380	0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	
Xylene Mixture	µg/L	4200	0.20	<0.20	
n-Hexane	µg/L	51	0.20	<0.20	
Surrogate	Unit	Acceptable	e Limits		
Toluene-d8	% Recovery	50-14	0	119	
4-Bromofluorobenzene	% Recovery	50-14	0	97	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719812 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544657 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2019-11-15

DATE RECEIVED: 2019-11-	ID CI				DATE REPORTED: 2019-11-2
	S	AMPLE DESC	RIPTION:	BH4	
		SAMP	LE TYPE:	Water	
			AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719812	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	4.0	
Barium	µg/L	29000	2.0	61.2	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	55.9	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	µg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	<0.5	
Copper	μg/L	87	1.0	<1.0	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	μg/L	9200	0.5	3.2	
Nickel	µg/L	490	1.0	<1.0	
Selenium	μg/L	63	1.0	<1.0	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	μg/L	420	0.5	<0.5	
Vanadium	μg/L	250	0.4	1.0	
Zinc	µg/L	1100	5.0	<5.0	
Mercury	µg/L		0.02	<0.02	
Chromium VI	µg/L	140	5	<5	
Cyanide	µg/L	66	2	<2	
Sodium	µg/L	2300000	500	21700	
Chloride	µg/L	2300000	100	27500	
Electrical Conductivity	uS/cm		2	371	
рН	pH Units		NA	8.06	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jacky 2th

Page 7 of 12

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544657 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

RPT Date: Nov 21, 2019 PARAMETER O. Reg. 153(511) - VOCs (Water) Dichlorodifluoromethane Vinyl Chloride	Batch 713853 713853 713853	Sample Id	Dup #1	DUPLICATI	E RPD	Method Blank	REFEREN	Acce	ptable	METHOD		SPIKE	MAT	RIX SPI	
O. Reg. 153(511) - VOCs (Water) Dichlorodifluoromethane Vinyl Chloride	713853 713853		Dup #1	Dup #2	חחם						Acce	ptable		Acce	ntable
Dichlorodifluoromethane Vinyl Chloride	713853				RFD	Didlik	Measured Value		nits	Recovery	Lin	nits	Recovery		nits
Dichlorodifluoromethane Vinyl Chloride	713853							Lower	Upper		Lower	Upper		Lower	Upper
Vinyl Chloride	713853														
•			< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
	713853		< 0.17	< 0.17	NA	< 0.17	87%		140%	87%	50%	140%	93%	50%	140%
Bromomethane			< 0.20	< 0.20	NA	< 0.20	102%		140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane	713853		< 0.40	< 0.40	NA	< 0.40	87%		140%	97%	50%	140%	95%	50%	140%
Acetone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	98%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%	50%	140%	103%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	75%	60%	130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%	60%	130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%		140%	80%	60%	130%	73%	50%	140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%		140%	99%	60%	130%	77%	50%	140%
Trichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	79%	60%	130%	93%	50%	140%
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%	60%	130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%		140%	107%	60%	130%	89%	50%	140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%		140%	93%		130%	94%		140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.20	< 0.20 < 0.10	NA	< 0.20	96%		140%	87%	60%	130%	93 <i>%</i> 79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%		140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%		140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%		140%	95%	60%	130%	89%	50%	140%
Bromoform	710050		- 0.10	.0.10	NIA	.0.10	109%	E00/	1 4 0 0 /	1010/	600/	1200/	82%	E00/	140%
Styrene	713853 713853		< 0.10 < 0.10	< 0.10 < 0.10	NA	< 0.10	95%		140% 140%	101% 82%	60%	130% 130%	o∠% 74%	50%	140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10			140%	02 <i>%</i> 116%	60%		87%		140%
o-Xylene	713853		< 0.10	< 0.10	NA NA	< 0.10 < 0.10	108% 119%		140%	95%		130%	87%		140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%		140%	93 <i>%</i> 81%		130%	74%		140%
1,4-Dichlorobenzene	712052		- 0.40	- 0.40	NIA	-0.40	000/	E09/	1409/	010/	600/	1200/	740/	E00/	1/00/
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89% 107%		140%	81% 76%		130%	74% 07%		140% 140%
	713853		< 0.10	< 0.10	NA	< 0.10	107% 101%		140%	76% 102%	60%		97% 84%		140%
1,3-Dichloropropene n-Hexane	713853 713853		< 0.30 < 0.20	< 0.30 < 0.20	NA NA	< 0.30 < 0.20	101% 86%		140% 140%	102% 81%		130% 130%	84% 104%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO http://www.agatlabs.com

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544657 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

			0.9	annou	, , ,,,,		(00)		400	• /					
RPT Date: Nov 21, 2019			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recovery	1 1 1 1	eptable nits	Recoverv	Lie	eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - I	-4 (with PAHs	and VOC)	(Water)												
F1 (C6-C10)	707661		< 25	< 25	NA	< 25	102%	60%	140%	102%	60%	140%	95%	60%	140%
F2 (C10 to C16)		τw	< 100	< 100	NA	< 100	113%	60%	140%	110%	60%	140%	94%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	98%	60%	140%	113%	60%	140%	107%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	94%	60%	140%	107%	60%		107%	60%	140%
O. Reg. 153(511) - PAHs (Wate	er)														
Naphthalene	707661		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	70%	50%	140%	76%	50%	140%
Acenaphthylene	707661		< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	80%	50%	140%	87%	50%	140%
Acenaphthene	707661		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	71%	50%	140%	77%	50%	140%
Fluorene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	86%	50%	140%	94%	50%	140%
Phenanthrene	707661		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	91%	50%	140%	98%	50%	140%
Anthracene	707661		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	100%	50%	140%	113%	50%	140%
Fluoranthene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	112%	50%	140%	118%	50%	140%
Pyrene	707661		< 0.20	< 0.20	NA	< 0.20	113%	50%	140%	113%	50%	140%	115%	50%	140%
Benz(a)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	106%	50%	140%	116%	50%	140%
Chrysene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	109%	50%	140%	112%	50%	140%
Benzo(b)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	86%	50%	140%	115%	50%	140%
Benzo(k)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	104%	50%	140%	116%	50%	140%
Benzo(a)pyrene	707661		< 0.01	< 0.01	NA	< 0.01	115%	50%	140%	95%	50%	140%	97%	50%	140%
Indeno(1,2,3-cd)pyrene	707661		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	75%	50%	140%	86%	50%	140%
Dibenz(a,h)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	82%	50%	140%	99%	50%	140%
Benzo(g,h,i)perylene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	76%	50%	140%	85%	50%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 12

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544657

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Nov 21, 2019			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		eptable nits	Recovery		eptable nits
		Id					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorga	anics (Wate	er)													
Antimony	714391		1.1	1.2	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	714391		2.5	3.5	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%
Barium	714391		744	773	3.8%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%
Beryllium	714391		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%
Boron	714391		23.8	23.2	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%
Cadmium	714391		<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%
Chromium	714391		2.7	3.3	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%
Cobalt	714391		1.4	1.4	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Molybdenum	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%
Nickel	714391		2.0	1.6	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%
Silver	714391		<0.2	<0.2	NA	< 0.2	105%	70%	130%	106%	80%	120%	95%	70%	130%
Thallium	714391		<0.3	<0.3	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%
Uranium	714391		2.3	2.4	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Vanadium	714391		17.5	19.0	8.2%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%
Mercury	719966		<0.02	<0.02	NA	< 0.02	100%	70%	130%	100%	80%	120%	96%	70%	130%
Chromium VI	715193		<5	<5	NA	< 5	101%	70%	130%	103%	80%	120%	101%	70%	130%
Cyanide	719966		<2	<2	NA	< 2	96%	70%	130%	92%	80%	120%	93%	70%	130%
Sodium	713951		4940	4990	1.0%	< 500	101%	70%	130%	101%	80%	120%	98%	70%	130%
Chloride	713692		22000	21900	0.5%	< 100	93%	70%	130%	103%	70%	130%	102%	70%	130%
Electrical Conductivity	718840		570	578	1.4%	< 2	101%	90%	110%						
рН	718840		7.28	7.25	0.4%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Jacky 2th

Page 9 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544657 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Acenaphthylene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Acenaphthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Fluorene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Phenanthrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Benz(a)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Chrysene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Benzo(a)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
Chrysene-d12	ORG-91-5105	EPA SW-846 3510 & 8270D	GC/MS
F1 (C6-C10)	VOL-91- 5010	MOE PHC-E3421	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	P&T GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	MOE PHC E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	MOE PHC E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544657 ATTENTION TO: Amir Karim SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE

A and	GC	74	2						5835 Coo Iuga, Onta				Lab Work			Use			140	05	Ŧ	
(\mathcal{P})	(AG)				_			712,510 w	0 Fax: 90 ebearth.a	5.712 Jatlabs	5122		Coole	r Qua	ntity:		2		Nge	2	1.6	
nain of C	ustody Record	If this is	a Drinking Wat	er sample, pl	lease us	se Drinking Water Chain of Custody Form (otable wa	ater consum	ied by huma	ns)		-	Arriva	i iem	peratu	lies.	4	.6	11	81	6.9	ē.
eport Inform	Тептаргове					Regulatory Requirements: (Please check all applicable boxes)	□ N	o Regul	atory Re	quire	emen	t	Custo Note:		al Inta	act:	E.	Yes FC	E	No	40	/A
ontact: ddress:	Amir Karim 11 Indell Lane, Brampton C	ON L6T 3Y3				Regulation 153/04 ☐ Sewe Table 3 ☐Ind/Com ☐Ind/Com ☐Ind/Com			Regulatio CCME	1 558			Turn Regu			Time			equire Busines			
hone: eports to be sent to:	(905) 796-2650	Fax:			_		ור		Prov. Wate Objective				Rush	TAT	Rush Su		_	}			t Duraia	
1. Email: 2. Email:	AKarim@Terraprobe.ca					Soil Texture (check One) Region Indica	te One	- -	Other	еОпе				Day				2 Busi Days ush Su			ext Busir ay oply):	ess
Project Inform Project:	nation: 1-19-0660-42					Is this submission for a Record of Site Condition ?			t Guideli ate of A											for rush tatutory l		
Site Location: Sampled By:	65 Ward Street, Port Hope					🗆 Yes 🗹 No		☑ Ye	s [0		For				lysis,	please		t your AG		
AGAT Quote #:	Please note: If quotation number is	not provided, client				Sample Matrix Legend B Biota	Hg, CrVI		iyariaes)				¥					UB(a)P UPCBs				
nvoice Inforn Company: Contact:	Terraprobe Lorena Rossi		Bill To Same:	Yes 🗹 No		GW Ground Water O Oil P Paint	- Metals,	S Is (excl Hydr	CI: CN		Metals	ин, ПТКN 3+N02		1		□ Aroctors						
Address: Email:	11 Indell Lane, Brampton, lrossi@Terraprobe.ca	ON L6T 3Y3	\$			s Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg,	Metals and Inorganics	□ Hydride Metals □ 153 Metals (Incl. H ORPs: □ B-HWS □ CI: □ CN □ Cr ⁴⁺ □ EC □ FOC □ Hg	s Scan	Regulation/Custom Metals	0, TP				Total DAre	Ine Pes	D VOCs				
Sample	e Identification	Date Sampled	Time Sampled	# of Containers	Samp		۱Ē Y/N	Metals an		Full Metals Scan	Regulatio	Nutrients:	Volatiles: N	ABNS	PAHs	PCBst D1	Organoch	TCLP: LIM&I Sewer Use				
BM4		1115/19	9 200m	13	GW		Y	×					X	×	×							
													-									
				1																		L
																						F
nples Relinquished By (Prin	int Name and Sign)		Date VI/IS	1a 12	l f:αυρ	Ph Samples Received By (Print, Name and Sign)	RE	BPF	= 2	S	Qate	b.	15/	Time	5	ÐS	pr	1				<u> </u>
mples Relinquished By (Pri	int Name and Sign)		Date	Tir	me	Sathules Received Dv (Print Name and Stro) Eamplas Received By (Print Name and Sign):					Date		7	Time		1			ge _l	of		
moles Relinquished By (Pri	int Name and Sign)		Date	Tir	me	oumpros recorred by (Print rearrie and Sign).											N°:			its Issued P		

a bandha baran an an Arian an Arian an an Arian wasan sa sakar ka sakar sa sakar sa sakar sa sakar sa sakar sa

Pink Copy - Client T Yellow Copy - AGAL T White Copy-

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544658

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

IOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 11

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T544658 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

719813

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2019-11-15

	5	SAMPLE DESCR	RIPTION:	BH 5
		SAMPL	E TYPE:	Water
		DATE SA	MPLED:	2019-11-15
Parameter	Unit	G / S	RDL	719813
F1 (C6 - C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable	Limits	
Terphenyl	%	60-140)	99

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 $\,$ nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T544658 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg. 1	53(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
	S	AMPLE DES		BH 5	
		DATE S	PLE TYPE: SAMPLED:	Water 2019-11-15	
Parameter	Unit	G/S	RDL	719813	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6	0.30	<0.30	
Methylene Chloride	μg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	640	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	μg/L	1.6	0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

Certified By:

NPopukoloj

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544658 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	S	AMPLE DESC	RIPTION:	BH 5	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719813	
Bromoform	µg/L	380	0.10	<0.10	
Styrene	µg/L	1300	0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10	
o-Xylene	µg/L		0.10	<0.10	
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10	
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30	
Xylene Mixture	µg/L	4200	0.20	<0.20	
n-Hexane	μg/L	51	0.20	<0.20	
Surrogate	Unit	Acceptabl	e Limits		
Toluene-d8	% Recovery	50-1	40	122	
4-Bromofluorobenzene	% Recovery	50-1	40	96	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719813 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544658 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2019-11-15

1					DATE REPORTED. 2019-11-2
	Ş	SAMPLE DESCR	IPTION:	BH 5	
		SAMPLE	E TYPE:	Water	
		DATE SAI	MPLED: 20	19-11-15	
Parameter	Unit	G/S	RDL 7	719813	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	1.1	
Barium	µg/L	29000	2.0	416	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	30.0	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	μg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	1.0	
Copper	µg/L	87	1.0	1.4	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	µg/L	9200	0.5	2.2	
Nickel	µg/L	490	1.0	1.2	
Selenium	µg/L	63	1.0	1.4	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	µg/L	420	0.5	1.3	
Vanadium	µg/L	250	0.4	<0.4	
	µg/L	1100	5.0	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Jacky 2th

DATE REPORTED: 2019-11-21

Certified By:

Page 6 of 11

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544658 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			mac		gann	55 AI	iary 3	13							
RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		eptable nits	Recovery		ptable nits
							, and a	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
Vinyl Chloride	713853		< 0.17	< 0.17	NA	< 0.17	87%	50%	140%	87%	50%	140%	93%	50%	140%
Bromomethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane	713853		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	97%	50%	140%	95%	50%	140%
Acetone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	98%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%	50%	140%	103%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	75%	60%	130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%	60%	130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	80%	60%	130%	73%	50%	140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	99%	60%	130%	77%	50%	140%
Trichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	79%	60%	130%	93%	50%	140%
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%	60%	130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	107%	60%	130%	89%	50%	140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	93%	60%	130%	94%	50%	140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	87%	60%	130%	79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	95%	60%	130%	89%	50%	140%
Bromoform	713853		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	101%	60%	130%	82%	50%	140%
Styrene	713853		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	82%	60%	130%	74%	50%	140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	108%	50%	140%	116%	60%	130%	87%	50%	140%
o-Xylene	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	95%	60%	130%	87%	50%	140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,4-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	76%	60%	130%	97%	50%	140%
1,3-Dichloropropene	713853		< 0.30	< 0.30	NA	< 0.30	101%	50%	140%	102%	60%	130%	84%	50%	140%
n-Hexane	713853		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	81%	60%	130%	104%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544658

ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv		ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

707661	< 25	< 25	NA	< 25	102%	60% 140%	ы́ 102%	60% 140%	95%	60% 140%
TW	< 100	< 100	NA	< 100	113%	60% 140%	<i>ы</i> 110%	60% 140%	94%	60% 140%
TW	< 100	< 100	NA	< 100	98%	60% 140%	6 113%	60% 140%	107%	60% 140%
TW	< 100	< 100	NA	< 100	94%	60% 140%	۶ 10 7 %	60% 140%	107%	60% 140%
	TW TW	TW < 100 TW < 100	TW <100 <100 TW <100 <100	TW <100 <100 NA TW <100 <100 NA	TW< 100< 100NA< 100TW< 100	TW< 100< 100NA< 100113%TW< 100	TW< 100< 100NA< 100113%60%140%TW< 100	TW< 100< 100NA< 100113%60%140%110%TW< 100	TW< 100< 100NA< 100113%60%140%110%60%140%TW< 100	TW< 100< 100NA< 100113%60%140%110%60%140%94%TW< 100

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoh

Page 7 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544658

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	ər Ar	nalys	is								
RPT Date: Nov 21, 2019			0	UPLICATI	E		REFERE	NCE MAT	FERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Accep Lim		Recovery	1 1 1 1	ptable nits	Recovery	1 1 1 1	eptable nits
		Id					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inclu	ding Hydride	s) (Water))												
Antimony	714391		1.1	1.2	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	714391		2.5	3.5	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%
Barium	714391		744	773	3.8%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%
Beryllium	714391		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%
Boron	714391		23.8	23.2	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%
Cadmium	714391		<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%
Chromium	714391		2.7	3.3	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%
Cobalt	714391		1.4	1.4	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Molybdenum	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%
Nickel	714391		2.0	1.6	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%
Silver	714391		<0.2	<0.2	NA	< 0.2	105%	70%	130%	106%	80%	120%	95%	70%	130%
Thallium	714391		<0.3	<0.3	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%
Uranium	714391		2.3	2.4	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Vanadium	714391		17.5	19.0	8.2%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Janky 2th

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544658 ATTENTION TO: Amir Karim

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Trace Organics Analysis F1 C6 - C10 VOL-91-5010 MOE PHC E3421 (P&T)GC/FID F1 (C6 - C10) VOL-91-5010 MOE PHC E3421 (C / FID F2 (C10 to C16) VOL-91-5010 MOE PHC E3421 GC / FID F3 (C16 to C3) VOL-91-5010 MOE PHC E3421 GC / FID F4 (C34 to C50) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 GC / FID Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Inchinoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chiorde VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Inchinoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS In-Dichioroethylene VOL-91-5001 EPA	SAMPLING SITE:		SAMPLED BY:	
P1 (C6: C10) VOL-91-5010 MOE PHC E3421 (PRT)GC/FID P1 (C6 to C10) minus BTEX VOL-91-5010 MOE PHC E3421 GC / FID P3 (C16 to C34) VOL-91-5010 MOE PHC E3421 GC / FID P4 (C34 to C34) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5011 EPA SW-346 5030C & 8260D (PRT)GC/MS Unity C10horide VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Stromomethane VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Acetone VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Acetone VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Heinhytene Chloride VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Hars- 1.2-Dichloreethytene VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS Heinhy Einhytene VOL-91-5001 EPA SW-346 5030C & 8260D (PRT)GC/MS 1.1-Dichloreethytene VOL-91-5001 EPA SW-346 5030C & 8	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F1 (C6 to C10) minus BTEX VOL-91-5010 MOE PHC E3421 (PRT)GC/FID F2 (C1 to C16) VOL-91-5010 MOE PHC E3421 GC / FID F3 (C16 to C34) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 GC/FID Dichlorodfluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (PRT)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846	Trace Organics Analysis	•		
P2 (C10 to C16) VOL-91-5010 MOE PHC E3421 GC / FID F3 (C16 to C34) VOL-91-5010 MOE PHC E3421 GC / FID F4 (C34 to C50) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 BALANCE Dichlorodfluoromethane VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS I.1-Dichloroethylene VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Itans-1,2-Dichloroethylene VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Itans-1,2-Dichloroethylene VOL-91-5001 EPA SW-346 5030C & 8260D (P&T)GC/MS Itans-1,2-Dichloroethylene VOL-91-5001 EPA SW-3	F1 (C6 - C10)	VOL-91- 5010	MOE PHC E3421	(P&T)GC/FID
F3 (C48 to C34) VOL-91-5010 MOE PHC E3421 GC / FID F4 (C34 to C50) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetitr Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 GC / FID Dichlorodifluoromethane VOL-91-5010 EPA SW-846 5030C & 8260D (P&T)GC/MS Winyl Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Varians-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Wathylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Varians-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Varians-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Varians-1,2-Dichloroethane VOL-91-5001	F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F4 (C34 to C50) VOL-91-5010 MOE PHC E3421 GC / FID Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 BALANCE Terphenyl VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Hars- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Hars- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Harby Lethy Retone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS L,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS L,2-Dichloroethane VOL-91-5001 <	F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 BALANCE GC/FID Terphenyl VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tichlorofluxomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL	F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
Terphenyl VOL-91-5010 EPA SW-846 5030C & 8260D (P&T)GC/MS Dichlorodfiluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene	F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Dichlorodilluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itams-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl eth-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS JDichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl ketne VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ciboroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1-Trichloroethylene<	Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Vinyl Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Etributyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS cis-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS cis-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS cis-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbo	Terphenyl	VOL-91-5010		GC/FID
Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroftuoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl terh-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Gist 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Tichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Tichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Garbon Tetrachloride	Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS JDichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroptopane V	Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itrans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Sist 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-1richloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane	Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methylene Liburylether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl terbutyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-1richloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1/2-Trichlor	Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropthane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane	Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
trans-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Cisi-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Enzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1.2-Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trich	1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Gis: 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Garbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene	Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Gis: 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Garbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene	-	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS cis-1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibrom	Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Litylene Dibrom	1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-500	Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS I,1,2-Tetrachloroethane <	cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itarachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itarachloroethylene	Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itariachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itariachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Itariachloroethane	1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS M & p-Xylene VOL-9	1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene <td< td=""><td>Carbon Tetrachloride</td><td>VOL-91-5001</td><td>EPA SW-846 5030C & 8260D</td><td>(P&T)GC/MS</td></td<>	Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-	Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL	1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Dibromochloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Tetrachloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
TetrachloroethyleneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MS1,1,1,2-TetrachloroethaneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MSChlorobenzeneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MSEthylbenzeneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MSm & p-XyleneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MSBromoformVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MSStyreneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MS	Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
	Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
	1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylene Mixture VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8 VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS	4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544658

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

Chain of C	(A) (C) (Ustody Record					Pries e Drinking Water Chain of Custody Form (5 71:	ssissau 2. 5100 we	835 Coop uga. Ontai Fax: 909 bearth.ag	10 L4; 5.7 12 jatlabs	2 1Y2 5 122		Labo Work (Cooler Arrival	Order Quar	#: _	1	9	-		40	05 p	8	.6
Report Inform Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email: Project Inform	Amir Karim 11 Indell Lane, Brampton (905) 796-2650 AKarim@Terraprobe.ca					Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Table Sewee Indicate One Ind/Com Agriculture Soil Texture (check One)	r Use itary	No R	egula		quire 558 r Qual (PWQ	ty D)	F	Custoo Notes Furna Regul Rush	rou ar TA TAT (F 3 Bus Days	nd ' AT sines	urchar,	2) 1e (1 17 17 19 19 19 19 19 19 19 19 19 19 19 19 19	7] 51 miy) 2 Da) Re to 7 B Busin	quire usines ess	ss Days	Next I Day	U.7. IN/A Business
Project: Site Location: Sampled By:	1-19-0660-42 65 Ward Street, Port Hope	5			=	Record of Site Condition?		Cer		te of Ar		5			*TAT I	is exc	clusiv	e of	week	ends	and st	for rus tatutor t your i	y holia	lays
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number is nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton, lrossi@Terraprobe.ca		Bill To Same:		> □ 	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	s and Inorganics	All Metals 153 Metals (excl. Hydrides) O Phydride Metals 153 Metals (incl. Hydrides)	Hg	Full Metals Scan	Regulation/Custom Metals Nutrients: DTP DNH, DTKN			The second second		PCBs: Total Aroclors	Organochlorine Pesticides	TCLP:	Use	5 1 1 M 21 1X	1 1 1 1 1 1 1		
Sample LLUS	dentification	Date Sampled	Time Sampled	# of Containers	Sample Matrix GW		Y/N Y	Metals		ORPS: CC ^r	Full M	Regula		Y PHCs F1 -	ABNS	PAHS	PCBs:	Organo	TCLP: C	Sewer Use				
Samples Relinguished By (Prin	t Name and Sign).		Dato [if///15			Somples Received By (Print Name and Sign):		01	2	2.2		Date												
Samples Relinquished By (Prin	t Name and Sign		Date Date	Tin Tin	ne f	Samifies Received By (Print Name and Sign)	ES,	<u>r 10</u>		40		Date			ime		2	N ^e	_	Page	1	of _1		-

. N. K.

그는 그는 것은 것은 것은 것 같아. 그는 것은 한편 가지 않는 것 같아. 가지 않는 것을 했다.

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544661

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 12

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 12

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific division presenting the scope of accreditation Inc. (CALA) for specific diving water tests. Accreditation are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 19T544661 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

719654

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2019-11-15

	5	SAMPLE DESC	RIPTION:	BH 8
		SAMP	LE TYPE:	Water
		DATE S	AMPLED:	2019-11-15
Parameter	Unit	G / S	RDL	719654
F1 (C6 - C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	<100
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable	e Limits	
Terphenyl	%	60-14	40	95

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T544661 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg. 2	53(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
	S		CRIPTION: PLE TYPE: SAMPLED:	BH 8 Water 2019-11-15	
Parameter	Unit	G/S	RDL	719654	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	μg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	
Benzene	μg/L	44	0.20	<0.20	
1,2-Dichloropropane	μg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

Certified By:

NPopukoloj

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544661 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	•			
	SA	AMPLE DESC	CRIPTION:	BH 8
		SAMF	PLE TYPE:	Water
		DATE S	SAMPLED:	2019-11-15
Parameter	Unit	G/S	RDL	719654
Bromoform	µg/L	380	0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10
o-Xylene	µg/L		0.10	<0.10
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	μg/L	8	0.10	<0.10
1,2-Dichlorobenzene	μg/L	4600	0.10	<0.10
1,3-Dichloropropene	μg/L	5.2	0.30	<0.30
Xylene Mixture	μg/L	4200	0.20	<0.20
n-Hexane	μg/L	51	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	115
4-Bromofluorobenzene	% Recovery	50-1	40	95

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719654 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544661 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

					Total PCBs (water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
		SAMPLE DES	CRIPTION:	BH 8	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2019-11-15	
Parameter	Unit	G / S	RDL	719654	
PCBs	µg/L	7.8	0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits		
Decachlorobiphenyl	%	60-1	130	113	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Laboratories AGAT WO PROJECT

AGAT WORK ORDER: 19T544661 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2019-11-15

DATE RECEIVED. 2019-11-	15				DATE REPORTED. 2019-11-2
	S	AMPLE DESC	CRIPTION:	BH 8	
		SAMF	LE TYPE:	Water	
			AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719654	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	1.5	
Barium	µg/L	29000	2.0	179	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	41.8	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	μg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	0.8	
Copper	μg/L	87	1.0	<1.0	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	μg/L	9200	0.5	2.0	
Nickel	µg/L	490	1.0	1.1	
Selenium	μg/L	63	1.0	<1.0	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	µg/L	420	0.5	0.9	
Vanadium	µg/L	250	0.4	0.7	
Zinc	µg/L	1100	5.0	<5.0	
Mercury	µg/L		0.02	<0.02	
Chromium VI	µg/L	140	5	<5	
Cyanide	µg/L	66	2	<2	
Sodium	µg/L	2300000	1000	85200	
Chloride	µg/L	2300000	1000	416000	
Electrical Conductivity	uS/cm		2	1740	
pН	pH Units		NA	7.78	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jacky 2th

DATE REPORTED: 2019-11-21

719654

Page 7 of 12

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544661 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			Hac	e Org	yanno	5 AI	larys	15							
RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		nits	Recovery	, Lin	ptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
Vinyl Chloride	713853		< 0.17	< 0.17	NA	< 0.17	87%	50%	140%	87%	50%	140%	93%	50%	140%
Bromomethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane	713853		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	97%	50%	140%	95%	50%	140%
Acetone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	98%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%	50%	140%	103%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	75%	60%	130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%	60%	130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	80%	60%	130%	73%	50%	140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	99%	60%	130%	77%	50%	140%
Trichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	79%	60%	130%	93%	50%	140%
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%	60%	130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	107%	60%	130%	89%	50%	140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	93%	60%	130%	94%	50%	140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	87%	60%	130%	79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	95%	60%	130%	89%	50%	140%
Bromoform	713853		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	101%	60%	130%	82%	50%	140%
Styrene	713853		< 0.10	< 0.10	NA	< 0.10	95%	50%		82%	60%	130%	74%	50%	140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	108%		140%	116%		130%	87%	50%	140%
o-Xylene	713853		< 0.10	< 0.10	NA	< 0.10	119%		140%	95%		130%	87%	50%	140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%		130%	74%	50%	140%
1,4-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	107%	50%		76%		130%	97%		140%
1,3-Dichloropropene	713853		< 0.30	< 0.30	NA	< 0.30	101%	50%		102%		130%	84%		140%
n-Hexane	713853		< 0.20	< 0.20	NA	< 0.20	86%		140%	81%		130%	104%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544661

ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

		C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank				Recovery	Lie		Recovery	Lin	ptable nits
	Id					value	Lower	Upper			Upper		Lower	Upper
BTEX) (Wa	ter)													
707661		< 25	< 25	NA	< 25	102%	60%	140%	102%	60%	140%	95%	60%	140%
	TW	< 100	< 100	NA	< 100	113%	60%	140%	110%	60%	140%	94%	60%	140%
	TW	< 100	< 100	NA	< 100	98%	60%	140%	113%	60%	140%	107%	60%	140%
	TW	< 100	< 100	NA	< 100	94%	60%	140%	107%	60%	140%	107%	60%	140%
		< 0.1	< 0.1	NA	< 0.1	104%	60%	140%	85%	60%	140%	92%	60%	140%
	BTEX) (Wa	BTEX) (Water) 707661 TW TW	Batch Sample Id Dup #1 BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 BTEX) (Water) 707661 < 25	Batch Id ⁻ Dup #1 Dup #2 RPD BTEX) (Water) 707661 <25 <25 NA TW <100 <100 NA TW <100 <100 NA TW <100 <100 NA	Batch Sample Id Dup #1 Dup #2 RPD Method Blank BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Lir Lower BTEX) (Water) <25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Measured Value Acceptable Limits BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Recovery BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Measured Value Acceptable Limits Recovery Acce Lir BTEX) (Water) 707661 < 25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Acceptable Limits Acceptable Limits Acceptable Limits BTEX) (Water) 707661 < 25	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acceptable Limits Acceptable Acceptable A

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukok

Page 8 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544661

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	er Ar	alys	is								
RPT Date: Nov 21, 2019			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	eptable nits	Recoverv		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	anics (Wate	er)													
Antimony	714391		1.1	1.2	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	714391		2.5	3.5	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%
Barium	714391		744	773	3.8%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%
Beryllium	714391		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%
Boron	714391		23.8	23.2	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%
Cadmium	714391		<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%
Chromium	714391		2.7	3.3	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%
Cobalt	714391		1.4	1.4	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Molybdenum	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%
Nickel	714391		2.0	1.6	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%
Silver	714391		<0.2	<0.2	NA	< 0.2	105%	70%	130%	106%	80%	120%	95%	70%	130%
Thallium	714391		<0.3	<0.3	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%
Uranium	714391		2.3	2.4	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Vanadium	714391		17.5	19.0	8.2%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%
Mercury	719966		<0.02	<0.02	NA	< 0.02	100%	70%	130%	100%	80%	120%	96%	70%	130%
Chromium VI	715193		<5	<5	NA	< 5	101%	70%	130%	103%	80%	120%	101%	70%	130%
Cyanide	719966		<2	<2	NA	< 2	96%	70%	130%	92%	80%	120%	93%	70%	130%
Sodium	713951		4940	4990	1.0%	< 500	101%	70%	130%	101%	80%	120%	98%	70%	130%
Chloride	713692		22000	21900	0.5%	< 100	93%	70%	130%	103%	70%	130%	102%	70%	130%
Electrical Conductivity	718840		570	578	1.4%	< 2	101%	90%	110%						
рН	718840		7.28	7.25	0.4%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Janky 2th

Page 9 of 12

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE

AGAT WORK ORDER: 19T544661 ATTENTION TO: Amir Karim

SAMPLING SITE:	1	SAMPLED BY:	1
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
F1 (C6 - C10)	VOL-91- 5010	MOE PHC E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE
Terphenyl	VOL-91-5010		GC/FID
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544661

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE

Report Information: Conserved: Instruction:	Chain of C	Carlos (_	Dries se Drinking Water Chain of Custody Form (95.71	lississa 2.5100 we	5835 Cooj uga, Onta) Fax: 90 bearth ag	io L4; 5.712. jatlabs	Z 1Y2 5122		Wor Coo	k Ord	ler #: uanti		<u>j</u> 9	Only Te		46 1a	61 190	2	Ġ
Important	Report Inform Company: Contact:	Terraprobe Amir Karim					Regulatory Requirements: (Rease check all applicable boxes)			Regula	atory Re	quire	emen		Note	es:	_		0,	N	-	EC	F	12	<u>-9</u> □n/a
Project information: Is this submission for a Report dividing on Control to a submission	Phone: Reports to be sent to: 1. Email:	(905) 796-2650					□Ind/Com Stor ☑Res/Park Stor ☐Agriculture Soil Texture (check one) Region □Coarse	m	_		Prov. Wate Objectives Other	(PWQ			Reg	ular TA TA	TAT T(Rum Busin ays	ness	harges	Apply)	5 to 7 f 2 Busir Days	Busine	ss Days	Next Day	
Number of the strate	Project Inform Project: Site Location:	1-19-0660-42 65 Ward Street, Port Hope					Is this submission for a Record of Site Condition ?		Cel	tifica	Guidelin te of Ar	ne or alys	ls		Fo	*TA	Plea AT Is	ase p exclu	rovid sive o	e pric	ə r notil əkends	ication and s	for rus	sh TAT ry hollo	Jays
	Invoice Inform Company: Contact: Address:	Terraprobe Lorena Rossi 11 Indell Lane, Brampton,	not provided, client	Bill To Same:			B Biota GW Ground Water O Oil P Paint S Soil SD Sediment	Field Filtered - Metals, Hg, CrVI	ind Inorganics	les)		als Scan	on/Custom Metals	INO2 DINO3+NO2	S VOC BTEX	- 14			Norine Pesticides						
Samples Relinquished By (Print Name and Sign): Date Time Date Time Page 1 of 1		e Identification	Sampled	Sampled	Containers	Matr		Y/N	X Metals	Hydride	ORPs: [OCr ⁶⁺ [Fuil Met	Regulat	DN0, [ARNe	SNIGA	_	_		Sewer U				
Samples Relinquished By (Print Name and Sign): Date Time Date Time Page 1 of 1																									
Samples Relinquished By (Print Name and Sign): Date Time Date Time Page 1 of 1																									
	Solson N Samples Relinquished By (Prin	(Name and Sign):		Daté	Timi	0	Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign):	l g	P,	E	n	8	Date Date	6		Time //(Time		8	. 6	S/	Page	<u> </u>	of	1	-

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544654

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 11

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 11

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 19T544654 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

719874

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2019-11-15

	S	SAMPLE DESC	RIPTION:	BH10
		SAMP	LE TYPE:	Water
		DATE S	AMPLED:	2019-11-15
Parameter	Unit	G/S	RDL	719874
F1 (C6 - C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	μg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	270
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable	e Limits	
Terphenyl	%	60-14	40	104

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T544654 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg	. 153(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
		SAMPLE DESC	CRIPTION:	BH10	
		SAMF	PLE TYPE:	Water	
	DATE SAMPLED:		2019-11-15		
Parameter	Unit	G/S	RDL	719874	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	2.3	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544654 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	•			
	SA	AMPLE DESC	CRIPTION:	BH10
1		SAMF	PLE TYPE:	Water
		DATE S	SAMPLED:	2019-11-15
Parameter	Unit	G/S	RDL	719874
Bromoform	µg/L	380	0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10
o-Xylene	µg/L		0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30
Xylene Mixture	µg/L	4200	0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	116
4-Bromofluorobenzene	% Recovery	50-1	40	96

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719874 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2019-11-21

AGAT WORK ORDER: 19T544654 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - Metals (Including Hydrides) (Water)

DATE RECEIVED: 2019-11-15

DATE RECEIVED. 2019-11-13					DATE REPORTED. 2019-11-21
	S	SAMPLE DESC	RIPTION:	BH10	
		SAMPL	E TYPE:	Water	
		DATE SA	AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719874	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	<1.0	
Barium	µg/L	29000	2.0	80.1	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	40.9	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	µg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	<0.5	
Copper	µg/L	87	1.0	1.7	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	µg/L	9200	0.5	1.2	
Nickel	µg/L	490	1.0	<1.0	
Selenium	µg/L	63	1.0	1.3	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	µg/L	420	0.5	1.1	
Vanadium	µg/L	250	0.4	1.2	
Zinc	µg/L	1100	5.0	<5.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Jacky 2th

DATE REPORTED: 2019-11-21

Certified By:

Page 6 of 11

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544654 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			irac	ce Or	gani	cs Ar	aiys	IS							
RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lin	ptable nits	Recovery	, Lir	eptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
Vinyl Chloride	713853		< 0.17	< 0.17	NA	< 0.17	87%	50%	140%	87%	50%	140%	93%	50%	140%
Bromomethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane	713853		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	97%	50%	140%	95%	50%	140%
Acetone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	98%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%	50%	140%	103%	60%	130%	85%	50%	140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	75%	60%	130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%	60%	130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%	50%	140%	80%	60%	130%	73%	50%	140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	99%	60%	130%	77%	50%	140%
Trichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	79%	60%	130%	93%	50%	140%
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%	60%	130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	107%	60%	130%	89%	50%	140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	93%	60%	130%	94%	50%	140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	87%	60%	130%	79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	95%	60%	130%	89%	50%	140%
Bromoform	713853		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	101%	60%	130%	82%	50%	140%
Styrene	713853		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	82%	60%	130%	74%	50%	140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	108%	50%	140%	116%	60%	130%	87%	50%	140%
o-Xylene	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	95%	60%	130%	87%	50%	140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%		130%	74%	50%	140%
1,4-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	107%		140%	76%		130%	97%		140%
1,3-Dichloropropene	713853		< 0.30	< 0.30	NA	< 0.30	101%		140%	102%		130%	84%		140%
n-Hexane	713853		< 0.20	< 0.20	NA	< 0.20	86%		140%	81%		130%	104%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544654

ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis (Continued)

RPT Date: Nov 21, 2019		C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

· · · · · · · · · · · · · · · · · · ·	()())										
F1 (C6 - C10)	707661	< 25	< 25	NA	< 25	102%	60% 140%	102%	60% 140%	95%	60% 140%
F2 (C10 to C16)	TW	< 100	< 100	NA	< 100	101%	60% 140%	114%	60% 140%	92%	60% 140%
F3 (C16 to C34)	TW	< 100	< 100	NA	< 100	103%	60% 140%	124%	60% 140%	97%	60% 140%
F4 (C34 to C50)	TW	< 100	< 100	NA	< 100	99%	60% 140%	112%	60% 140%	85%	60% 140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

Page 7 of 11

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544654

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	ər Ar	alys	is								
RPT Date: Nov 21, 2019			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	eptable nits	Recovery	1.17	eptable nits
		Id					value	Lower	Upper	-	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inclu	ding Hydride	s) (Water))												
Antimony	714391		<5.0	<5.0	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	714391		<5.0	<5.0	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%
Barium	714391		724	746	3.0%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%
Beryllium	714391		<2.5	<2.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%
Boron	714391		<50.0	<50.0	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%
Cadmium	714391		<1.0	<1.0	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%
Chromium	714391		<10.0	<10.0	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%
Cobalt	714391		<2.5	<2.5	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Molybdenum	714391		<2.5	<2.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%
Nickel	714391		5.6	<5.0	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%
Silver	714391		<1.0	<1.0	NA	< 0.2	105%	70%	130%	113%	80%	120%	95%	70%	130%
Thallium	714391		<1.5	<1.5	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%
Uranium	714391		<2.5	<2.5	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Vanadium	714391		18.2	20.9	13.8%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Janky 2th

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544654 ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Trace Organics Analysis												
F1 (C6 - C10)	VOL-91- 5010	MOE PHC E3421	(P&T)GC/FID									
F1 (C6 to C10) minus BTEX	VOL-91-5010	MOE PHC E3421	(P&T)GC/FID									
F2 (C10 to C16)	VOL-91-5010	MOE PHC E3421	GC / FID									
F3 (C16 to C34)	VOL-91-5010	MOE PHC E3421	GC / FID									
F4 (C34 to C50)	VOL-91-5010	MOE PHC E3421	GC / FID									
Gravimetric Heavy Hydrocarbons	VOL-91-5010	MOE PHC E3421	BALANCE									
Terphenyl	VOL-91-5010		GC/FID									
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1.1.2.2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1.3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1.2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS									

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544654

ATTENTION TO: Amir Karim

SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis			L.								
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS								

								571	ississau 2.5100 we	835 Coor uga, Ontai Fax: 90! bearth.ag	rio L42 5.712 (atlabs	z 1Y2 5 122		Wo	rk Ord Dier Q	der #: Juanti	ty:	97			40 Lar	s54 ge	1	
Chain of C Report Inform Company: Contact: Address: Phone:	Amir Karim 11 Indell Lane, Brampton (905) 796-2650		a Drinking Wat	olease u	use Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes) Please check all applicable boxes Regulation 153/04 Sewer Use Table Indicate One Ind/Com Sanitary Resc/Park Storm Agriculture Storm							t	Arrival Temperatures: Custody Seal Intact: Notes: Turnaround Time (TAT) Required: Regular TAT Regular TAT S to 7 Business Days Rush TAT (Rush Surcharges Apply)									N/A		
Reports to be sent to: 1. Email: 2. Email: Project Inform Project: Site Location: Sampled By:	AKarim@Terraprobe.ca					Soil Texture (check one) Coarse Fine Is this submission for a Record of Site Condition? Yes No	te One	Cer	port (Indicate Guidelin te of Ar	One ne or	Is		[c 	Plea AT is o	te Re ase pi exclus	quirea rovide sive o	d (Rus d (Rus <i>prlor</i> f wee	sh Sur r notifi kends	charge cation and st	S May A	pply):	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number is		Bill To Same:		,	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	s and Inorganics	All Metals 1153 Metals (excl. Hydrides) O Hydride Metals 1153 Metals (incl. Hydrides)	۳.	Full Metals Scan	Regulation/Custom Metals		Volatiles: 🖪 VOC 🗆 BTEX 🗆 THM	F1 - F4		PCRs: D Total D Arociors	Organochlorine Pesticides	M&I UVOCS DABNS DB(a)P DPCBs	1.19				
Sample DHCO	e Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr GW		Y/N Y	Metals		ORPs OCPs	Full M	Regul	ON D	X Volati	X PHCs F1 - F	ABNS	PCRs	Organ	TCLP: [Sewer Use				
Samples Relinquished By (Prir Samples Relinquished By (Prir Semples Relinquished By (Prir	Name and Sign):		Date \////S Date Date	119 Im Tim	1000	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	la	5/	PE	3	P	Date Date	2	IS	Time	e	5'		or:		1	_ of <u>1</u>		

1.1

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544656

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Nov 21, 2019

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

IOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGGAT Laboratories (V1)
 Page 1 of 13

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific divinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PAHs (Water) DATE RECEIVED: 2019-11-15 **DATE REPORTED: 2019-11-21** SAMPLE DESCRIPTION: DUP 1 SAMPLE TYPE: Water DATE SAMPLED: 2019-11-15 RDL 719966 Parameter Unit G/S Naphthalene µg/L 1400 0.20 < 0.20 Acenaphthylene µg/L 1.8 0.20 <0.20 Acenaphthene µg/L 600 0.20 <0.20 Fluorene µg/L 400 0.20 < 0.20 Phenanthrene µg/L 580 0.10 <0.10 Anthracene µg/L 2.4 0.10 < 0.10 Fluoranthene µg/L 130 0.20 <0.20 Pyrene µg/L 68 0.20 <0.20 Benz(a)anthracene µg/L 4.7 0.20 < 0.20 Chrysene µg/L 1 0.10 < 0.10 Benzo(b)fluoranthene µg/L 0.75 0.10 < 0.10 Benzo(k)fluoranthene µg/L 0.4 0.10 <0.10 Benzo(a)pyrene µg/L 0.81 0.01 < 0.01 Indeno(1,2,3-cd)pyrene µg/L 0.2 0.20 < 0.20 Dibenz(a,h)anthracene µg/L 0.52 0.20 <0.20 Benzo(g,h,i)perylene µg/L 0.2 0.20 <0.20 2-and 1-methyl Naphthalene µg/L 1800 0.20 <0.20 Surrogate Unit Acceptable Limits Chrysene-d12 % 50-140 91

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

719966 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC colur 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

719968

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2019-11-15

	S	SAMPLE DESC	RIPTION:	DUP 3
		SAMPL	E TYPE:	Water
		DATE SA	MPLED:	2019-11-15
Parameter	Unit	G/S	RDL	719968
F1 (C6 - C10)	µg/L	750	25	<25
F1 (C6 to C10) minus BTEX	µg/L	750	25	<25
F2 (C10 to C16)	µg/L	150	100	<100
F3 (C16 to C34)	µg/L	500	100	230
F4 (C34 to C50)	µg/L	500	100	<100
Gravimetric Heavy Hydrocarbons	µg/L	500	500	NA
Surrogate	Unit	Acceptable	Limits	
Terphenyl	%	60-14	0	107

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The C6-C10 fraction is calculated using Toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

DATE REPORTED: 2019-11-21

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg.	153(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
	;		CRIPTION: PLE TYPE: SAMPLED:	DUP 3 Water 2019-11-15	
Parameter	Unit	G / S	RDL	719968	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	2.2	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	3.3	0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

Certified By:

NPopukoloj

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water) DATE RECEIVED: 2019-11-15 **DATE REPORTED: 2019-11-21** SAMPLE DESCRIPTION: DUP 3 SAMPLE TYPE: Water DATE SAMPLED: 2019-11-15 719968 Parameter Unit G/S RDL Bromoform µg/L 380 0.10 < 0.10 Styrene µg/L 1300 0.10 <0.10 µg/L 0.10 1,1,2,2-Tetrachloroethane 3.2 <0.10 o-Xylene µg/L 0.10 < 0.10 1,3-Dichlorobenzene µg/L 9600 0.10 <0.10 1.4-Dichlorobenzene µg/L 8 0.10 < 0.10 1,2-Dichlorobenzene µg/L 4600 0.10 < 0.10 1,3-Dichloropropene µg/L 5.2 0.30 < 0.30 Xylene Mixture µg/L 4200 0.20 <0.20 n-Hexane µg/L 51 0.20 <0.20 Unit Surrogate Acceptable Limits Toluene-d8 % Recovery 50-140 115 4-Bromofluorobenzene 97 % Recovery 50-140

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719968 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

					Total PCBs (water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-21
		SAMPLE DES	CRIPTION:	DUP 2	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719967	
PCBs	µg/L	7.8	0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits		
Decachlorobiphenyl	%	60-1	30	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

AGAT WORK ORDER: 19T544656 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2019-11-15

DATE RECEIVED: 2019-11-	10				DATE REPORTED: 2019-11-21
	S	AMPLE DESC	RIPTION:	DUP 1	
		SAMP	LE TYPE:	Water	
			AMPLED:	2019-11-15	
Parameter	Unit	G/S	RDL	719966	
Antimony	µg/L	20000	1.0	<1.0	
Arsenic	µg/L	1900	1.0	3.8	
Barium	µg/L	29000	2.0	63.1	
Beryllium	µg/L	67	0.5	<0.5	
Boron	µg/L	45000	10.0	56.0	
Cadmium	µg/L	2.7	0.2	<0.2	
Chromium	µg/L	810	2.0	<2.0	
Cobalt	µg/L	66	0.5	<0.5	
Copper	µg/L	87	1.0	<1.0	
Lead	µg/L	25	0.5	<0.5	
Molybdenum	µg/L	9200	0.5	3.2	
Nickel	µg/L	490	1.0	<1.0	
Selenium	µg/L	63	1.0	<1.0	
Silver	µg/L	1.5	0.2	<0.2	
Thallium	µg/L	510	0.3	<0.3	
Uranium	µg/L	420	0.5	<0.5	
Vanadium	µg/L	250	0.4	1.0	
Zinc	µg/L	1100	5.0	<5.0	
Mercury	µg/L		0.02	<0.02	
Chromium VI	µg/L	140	5	<5	
Cyanide	µg/L	66	2	<2	
Sodium	µg/L	2300000	500	22400	
Chloride	µg/L	2300000	100	28400	
Electrical Conductivity	uS/cm		2	370	
PH	pH Units		NA	8.03	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jacky 2th

DATE REPORTED: 2019-11-21

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544656 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

		Trace Organics Analysis													
RPT Date: Nov 21, 2019			D	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lin	ptable nits	Recovery	Lin	ptable nits	Recovery	Lim	
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Water)															
Naphthalene	707661		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	70%	50%	140%	76%	50%	140%
Acenaphthylene	707661		< 0.20	< 0.20	NA	< 0.20	109%	50%	140%	80%	50%	140%	87%	50%	140%
Acenaphthene	707661		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	71%	50%	140%	77%		140%
Fluorene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	86%		140%	94%		140%
Phenanthrene	707661		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	91%	50%	140%	98%	50%	140%
Anthracene	707661		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	100%	50%	140%	113%	50%	140%
Fluoranthene	707661		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	112%	50%	140%	118%	50%	140%
Pyrene	707661		< 0.20	< 0.20	NA	< 0.20	113%	50%	140%	113%	50%	140%	115%	50%	140%
Benz(a)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	106%	50%	140%	116%	50%	140%
Chrysene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	109%	50%	140%	112%	50%	140%
Benzo(b)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	111%	50%	140%	86%	50%	140%	115%	50%	140%
Benzo(k)fluoranthene	707661		< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	104%	50%	140%	116%	50%	140%
Benzo(a)pyrene	707661		< 0.01	< 0.01	NA	< 0.01	115%	50%	140%	95%	50%	140%	97%	50%	140%
Indeno(1,2,3-cd)pyrene	707661		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	75%	50%	140%	86%	50%	140%
Dibenz(a,h)anthracene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	82%	50%	140%	99%	50%	140%
Benzo(g,h,i)perylene	707661		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	76%	50%	140%	85%	50%	140%
Total PCBs (water)															
PCBs		TW	< 0.1	< 0.1	NA	< 0.1	100%	60%	140%	95%	60%	140%	93%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	713853		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	95%	50%	140%	82%	50%	140%
Vinyl Chloride	713853		< 0.17	< 0.17	NA	< 0.17	87%	50%	140%	87%	50%	140%	93%	50%	140%
Bromomethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	91%	50%	140%	98%	50%	140%
Trichlorofluoromethane	713853		< 0.40	< 0.40	NA	< 0.40	87%	50%	140%	97%	50%	140%	95%	50%	140%
Acetone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	98%	50%	140%	95%	50%	140%
1,1-Dichloroethylene	713853		< 0.30	< 0.30	NA	< 0.30	118%	50%	140%	95%	60%	130%	86%	50%	140%
Methylene Chloride	713853		< 0.30	< 0.30	NA	< 0.30	117%		140%	103%		130%	85%		140%
trans- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	86%		130%	95%		140%
Methyl tert-butyl ether	713853		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	85%	60%	130%	85%	50%	140%
1,1-Dichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	88%	60%	130%	92%	50%	140%
Methyl Ethyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	97%	50%	140%	108%	50%	140%	97%	50%	140%
cis- 1,2-Dichloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	102%		140%	75%		130%	93%	50%	140%
Chloroform	713853		< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	90%	60%	130%	71%	50%	140%
1,2-Dichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	90%	60%	130%	75%	50%	140%
1,1,1-Trichloroethane	713853		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	70%	60%	130%	97%	50%	140%
Carbon Tetrachloride	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	84%	60%	130%	75%	50%	140%
Benzene	713853		< 0.20	< 0.20	NA	< 0.20	93%		140%	80%		130%	73%		140%
1,2-Dichloropropane	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	99%		130%	77%		140%
	113033		< 0.20	< 0.20		< 0.20	9170	50 /0	14076	9970	00 /0	10070	1170	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544656 ATTENTION TO: Amir Karim SAMPLED BY:

Trace Organics Analysis (Continued)

			0.9		,		(00)		0.00	.,					
RPT Date: Nov 21, 2019			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery	Lin	ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Upper
Bromodichloromethane	713853		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	105%	60%	130%	76%	50%	140%
Methyl Isobutyl Ketone	713853		< 1.0	< 1.0	NA	< 1.0	94%	50%	140%	114%	50%	140%	86%	50%	140%
1,1,2-Trichloroethane	713853		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	98%	60%	130%	84%	50%	140%
Toluene	713853		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	88%	60%	130%	86%	50%	140%
Dibromochloromethane	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	107%	60%	130%	89%	50%	140%
Ethylene Dibromide	713853		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	93%	60%	130%	94%	50%	140%
Tetrachloroethylene	713853		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	91%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	96%	50%	140%	87%	60%	130%	79%	50%	140%
Chlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	103%	50%	140%	83%	60%	130%	78%	50%	140%
Ethylbenzene	713853		< 0.10	< 0.10	NA	< 0.10	112%	50%	140%	86%	60%	130%	77%	50%	140%
m & p-Xylene	713853		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	95%	60%	130%	89%	50%	140%
Bromoform	713853		< 0.10	< 0.10	NA	< 0.10	109%	50%	140%	101%	60%	130%	82%	50%	140%
Styrene	713853		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	82%	60%	130%	74%	50%	140%
1,1,2,2-Tetrachloroethane	713853		< 0.10	< 0.10	NA	< 0.10	108%	50%	140%	116%	60%	130%	87%	50%	140%
o-Xylene	713853		< 0.10	< 0.10	NA	< 0.10	119%	50%	140%	95%	60%	130%	87%	50%	140%
1,3-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,4-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	81%	60%	130%	74%	50%	140%
1,2-Dichlorobenzene	713853		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	76%	60%	130%	97%	50%	140%
1,3-Dichloropropene	713853		< 0.30	< 0.30	NA	< 0.30	101%	50%	140%	102%	60%	130%	84%	50%	140%
n-Hexane	713853		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	81%	60%	130%	104%	50%	140%
O. Reg. 153(511) - PHCs F1 - F		ater)													
F1 (C6 - C10)	707661		< 25	< 25	NA	< 25	102%	60%	140%	102%	60%	140%	95%	60%	140%
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	101%	60%	140%	114%	60%	140%	92%	60%	140%
F3 (C16 to C34)		TW	< 100	< 100	NA	< 100	103%	60%	140%	124%	60%	140%	97%	60%	140%
F4 (C34 to C50)		TW	< 100	< 100	NA	< 100	99%	60%	140%	112%	60%	140%	85%	60%	140%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume.

When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukot

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544656

ATTENTION TO: Amir Karim

SAMPLED BY:

				Wate	er Ar	alys	is								
RPT Date: Nov 21, 2019			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery		eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	anics (Wa	ter)													
Antimony	714391		1.1	1.2	NA	< 1.0	101%	70%	130%	92%	80%	120%	89%	70%	130%
Arsenic	714391		2.5	3.5	NA	< 1.0	103%	70%	130%	101%	80%	120%	102%	70%	130%
Barium	714391		744	773	3.8%	< 2.0	99%	70%	130%	98%	80%	120%	105%	70%	130%
Beryllium	714391		<0.5	<0.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	80%	70%	130%
Boron	714391		23.8	23.2	NA	< 10.0	106%	70%	130%	104%	80%	120%	73%	70%	130%
Cadmium	714391		<0.2	<0.2	NA	< 0.2	100%	70%	130%	102%	80%	120%	110%	70%	130%
Chromium	714391		2.7	3.3	NA	< 2.0	99%	70%	130%	99%	80%	120%	90%	70%	130%
Cobalt	714391		1.4	1.4	NA	< 0.5	102%	70%	130%	106%	80%	120%	92%	70%	130%
Copper	714391		2.9	5.3	NA	< 1.0	103%	70%	130%	105%	80%	120%	82%	70%	130%
Lead	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	101%	80%	120%	87%	70%	130%
Molybdenum	714391		<0.5	<0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	108%	70%	130%
Nickel	714391		2.0	1.6	NA	< 1.0	102%	70%	130%	103%	80%	120%	81%	70%	130%
Selenium	714391		<1.0	4.4	NA	< 1.0	102%	70%	130%	101%	80%	120%	102%	70%	130%
Silver	714391		<0.2	<0.2	NA	< 0.2	105%	70%	130%	106%	80%	120%	95%	70%	130%
Thallium	714391		<0.3	<0.3	NA	< 0.3	102%	70%	130%	102%	80%	120%	90%	70%	130%
Uranium	714391		2.3	2.4	NA	< 0.5	100%	70%	130%	99%	80%	120%	99%	70%	130%
Vanadium	714391		17.5	19.0	8.2%	< 0.4	97%	70%	130%	98%	80%	120%	97%	70%	130%
Zinc	714391		<5.0	<5.0	NA	< 5.0	101%	70%	130%	104%	80%	120%	76%	70%	130%
Mercury	719966	719966	<0.02	<0.02	NA	< 0.02	100%	70%	130%	100%	80%	120%	96%	70%	130%
Chromium VI	726263		<5	<5	NA	< 5	104%	70%	130%	104%	80%	120%	103%	70%	130%
Cyanide	719966	719966	<2	<2	NA	< 2	96%	70%	130%	92%	80%	120%	93%	70%	130%
Sodium	713951		4940	4990	1.0%	< 500	101%	70%	130%	101%	80%	120%	98%	70%	130%
Chloride	713692		22000	21900	0.5%	< 100	93%	70%	130%	103%	70%	130%	102%	70%	130%
Electrical Conductivity	718840		570	578	1.4%	< 2	101%	90%	110%						
рН	718840		7.28	7.25	0.4%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Jacky 2th

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 10 of 13

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544656 ATTENTION TO: Amir Karim

SAMPLING SITE: SAMPLED BY: PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIC Trace Organics Analysis
Trace Organics Analysis Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Acenaphthylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Acenaphthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluorene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Phenanthrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Acenaphthylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Acenaphthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluorene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Phenanthrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene
AcenaphthyleneORG-91-5105EPA SW-846 3510 & 8270DGC/MSAcenaphtheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSFluoreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSPhenanthreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSAnthraceneORG-91-5105EPA SW-846 3510 & 8270DGC/MSFluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSPyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenz(a)anthraceneORG-91-5105EPA SW-846 3510 & 8270DGC/MSChryseneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(b)fluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(b)fluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(b)fluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(a)pyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(a)pyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSIndeno(1,2,3-cd)pyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSDibenz(a,h)anthraceneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(g,h,i)peryleneORG-91-5105EPA SW-846 3510 & 8270DGC/MS2-and 1-methyl NaphthaleneORG-91-5105EPA SW-846 3510 & 8270DGC/MSChrysene-d12ORG-91-5105EPA SW-846 3510 & 8270DGC/MS
Acenaphtene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluorene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Phenanthrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Fluorene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Phenanthrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS <td< td=""></td<>
Phenanthrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 351
Fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benz(a)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Benz(a)anthraceneORG-91-5105EPA SW-846 3510 & 8270DGC/MSChryseneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(b)fluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(k)fluorantheneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(a)pyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSIndeno(1,2,3-cd)pyreneORG-91-5105EPA SW-846 3510 & 8270DGC/MSDibenz(a,h)anthraceneORG-91-5105EPA SW-846 3510 & 8270DGC/MSBenzo(g,h,i)peryleneORG-91-5105EPA SW-846 3510 & 8270DGC/MS2-and 1-methyl NaphthaleneORG-91-5105EPA SW-846 3510 & 8270DGC/MSChrysene-d12ORG-91-5105EPA SW-846 3510 & 8270DGC/MS
Chrysene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Benzo(b)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Benzo(k)fluoranthene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Benzo(a)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Indeno(1,2,3-cd)pyrene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Dibenz(a,h)anthracene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Benzo(g,h,i)perylene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS 2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
2-and 1-methyl Naphthalene ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
Chrysene-d12 ORG-91-5105 EPA SW-846 3510 & 8270D GC/MS
F1 (C6 - C10) VOL-91- 5010 MOE PHC E3421 (P&T)GC/FID
F1 (C6 to C10) minus BTEX VOL-91-5010 MOE PHC E3421 (P&T)GC/FID
F2 (C10 to C16) VOL-91-5010 MOE PHC E3421 GC / FID
F3 (C16 to C34) VOL-91-5010 MOE PHC E3421 GC / FID
F4 (C34 to C50) VOL-91-5010 MOE PHC E3421 GC / FID
Gravimetric Heavy Hydrocarbons VOL-91-5010 MOE PHC E3421 BALANCE
Terphenyl VOL-91-5010 GC/FID
Dichlorodifluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Vinyl Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Bromomethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Trichlorofluoromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Acetone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,1-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Methylene Chloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
trans- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Methyl tert-butyl ether VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,1-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Methyl Ethyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
cis- 1,2-Dichloroethylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Chloroform VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,2-Dichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,1,1-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Carbon Tetrachloride VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Benzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,2-Dichloropropane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
TrichloroethyleneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MS
Bromodichloromethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Methyl Isobutyl Ketone VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
1,1,2-Trichloroethane VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
Toluene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS
DibromochloromethaneVOL-91-5001EPA SW-846 5030C & 8260D(P&T)GC/MS

Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544656 ATTENTION TO: Amir Karim SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS
PCBs	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Decachlorobiphenyl	ORG-91-5112	EPA SW-846 3510 & 8082	GC/ECD
Water Analysis			
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
Chromium VI	INOR-93-6034	SM 3500-Cr B	SPECTROPHOTOMETER
Cyanide	INOR-93-6052	MOE METHOD CN- 3015 & SM 4500 CN- I	TECHNICON AUTO ANALYZER
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
pH	INOR-93-6000	SM 4500-H+ B	PC TITRATE

Chain of C	Carlos Ca					Dries se Drinking Water Chain of Custody Form		05 71	ississa 2.510 w	5835 Coo auga, Onta 0 Fax: 90 ebearth.a	rio L4 5.712 gatlab	Z 1Y2 .5122	2 2	w Ca	abo ork O poler	rder # Quan	#:	1	9	-		4 (e Ng 16.		2	
Report Inform Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email:						Regulatory Requirements: (Please check all applicable boxes) Image: Check all applicable boxes Image: Check all applicable boxes	er Use hitary rm		Reguli		e quir n 558 er Qua s (PWC	lity	nt	N Tu Re	gula sh T	roui Ir TA AT (Re 3 Bus Days	nd 1 T Int Su	rcharg S	2) ie (1 ges Ap] 5 t P ^I V) 2 E Da) Red to 7 Bi Busine ays	quire	s Days	Next Bu Day	UN/A
Project Inform Project: Site Location: Sampled By:	1-19-0660-42 65 Ward Street, Port Hope	e				Is this submission for a Record of Site Condition ?		Cel		Guideli ate of A		ls				TAT Is	s excl	lusiv	e of	week	ends		atutory	h TAT / holida	
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	Please note: If quotation number is nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton Irossi@Terraprobe.ca		rill be billed full price		,	Sample Matrix LegendBBiotaGWGround WaterOOilPPaintSSoilSDSedimentSWSurface Water	Field Filtered - Metals, Hg, CrVI	and Inorganics	als □153 Metals (exc) Hydrides) e Metals □153 Metals (Incl Hydrides)	8 123 0 0 RPs: 0 0 RPHWS 0 0 R	Full Metals Scan	Regulation/Custom Metals	Nutrients: D TP DNH, DTKN DN0, DN0, DN0,+N0,	S: SVOC DBTEX DTHM	1 - F4			Total 🗖 Arociors	Organochlorine Pesticides	□M&I □VOCs □ABNS □B(a)P □PCBS	lse				
	eldentification	Date Sampled	Time Sampled	# of Containers	Samp Matr		Y/N	Metals		ORPs:	Full Me	Regulat	Nutrien DN0,	Volatiles:	PHCs F1 - F4	ABNS	_	PCBs: Total	Organo	TCLP:	Sewer Use				
DUP 1 DUP 2 DUP 3		11/15/19		617	GW	/	Y							X	×		×	×							
Samples Relinquiahed By (Prin So-300 A Samples Relinquiahed By (Prin Samples Relinquished By (Prin	No Name and Sign):		Date N///S DatA	/ 19 ¹¹ 2 1 19 11	ne.	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	205	PI	E	75	2	Date Date	ວູ	15,	j I I Tir Tir	ne	S:	0	5		Page	1	_ of _1		

Pink Copy - Client I Yellow Copy - AGAT I White Copy- AGAT Date Issued February 22, 2017

.

CLIENT NAME: TERRAPROBE INC. 11 INDELL LANE BRAMPTON, ON L6T3Y3 (905) 796-2650

ATTENTION TO: Amir Karim

PROJECT: 1-19-0660-42

AGAT WORK ORDER: 19T544663

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 20, 2019

PAGES (INCLUDING COVER): 7

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOT	TES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 7

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific citests listed on the scope of accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation Inc. (CALA) and/or specific drivinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 19T544663 PROJECT: 1-19-0660-42

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

				O. Reg	. 153(511) - VOCs (Water)
DATE RECEIVED: 2019-11-15					DATE REPORTED: 2019-11-20
			CRIPTION: PLE TYPE: SAMPLED:	TRIP BLANK Water 2019-11-15	
Parameter	Unit	G / S	RDL	719978	
Dichlorodifluoromethane	µg/L	4400	0.20	<0.20	
Vinyl Chloride	µg/L	0.5	0.17	<0.17	
Bromomethane	µg/L	5.6	0.20	<0.20	
Trichlorofluoromethane	µg/L	2500	0.40	<0.40	
Acetone	µg/L	130000	1.0	<1.0	
1,1-Dichloroethylene	µg/L	1.6	0.30	<0.30	
Methylene Chloride	µg/L	610	0.30	<0.30	
trans- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	µg/L	190	0.20	<0.20	
1,1-Dichloroethane	µg/L	320	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	470000	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	1.6	0.20	<0.20	
Chloroform	µg/L	2.4	0.20	<0.20	
1,2-Dichloroethane	µg/L	1.6	0.20	<0.20	
1,1,1-Trichloroethane	µg/L	640	0.30	<0.30	
Carbon Tetrachloride	µg/L	0.79	0.20	<0.20	
Benzene	µg/L	44	0.20	<0.20	
1,2-Dichloropropane	µg/L	16	0.20	<0.20	
Trichloroethylene	µg/L	1.6	0.20	<0.20	
Bromodichloromethane	µg/L	85000	0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	140000	1.0	<1.0	
1,1,2-Trichloroethane	µg/L	4.7	0.20	<0.20	
Toluene	µg/L	18000	0.20	<0.20	
Dibromochloromethane	µg/L	82000	0.10	<0.10	
Ethylene Dibromide	µg/L	0.25	0.10	<0.10	
Tetrachloroethylene	μg/L	1.6	0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	3.3	0.10	<0.10	
Chlorobenzene	µg/L	630	0.10	<0.10	
Ethylbenzene	µg/L	2300	0.10	<0.10	
m & p-Xylene	µg/L		0.20	<0.20	

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 19T544663 PROJECT: 1-19-0660-42 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: TERRAPROBE INC.

SAMPLING SITE:

ATTENTION TO: Amir Karim

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2019-11-15

	-			
	SA	AMPLE DES	CRIPTION:	TRIP BLANK
		SAME	PLE TYPE:	Water
		DATE S	SAMPLED:	2019-11-15
Parameter	Unit	G/S	RDL	719978
Bromoform	µg/L	380	0.10	<0.10
Styrene	µg/L	1300	0.10	<0.10
1,1,2,2-Tetrachloroethane	µg/L	3.2	0.10	<0.10
o-Xylene	µg/L		0.10	<0.10
1,3-Dichlorobenzene	µg/L	9600	0.10	<0.10
1,4-Dichlorobenzene	µg/L	8	0.10	<0.10
1,2-Dichlorobenzene	µg/L	4600	0.10	<0.10
1,3-Dichloropropene	µg/L	5.2	0.30	<0.30
Xylene Mixture	µg/L	4200	0.20	<0.20
n-Hexane	µg/L	51	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits	
Toluene-d8	% Recovery	50-1	40	121
4-Bromofluorobenzene	% Recovery	50-1	40	95

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

719978 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

DATE REPORTED: 2019-11-20

Page 4 of 7

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544663 ATTENTION TO: Amir Karim

SAMPLED BY:

Trace Organics Analysis

			Irac	ce Or	ganio	cs Ar	aiysi	IS							
RPT Date: Nov 20, 2019			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits Upper	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Opper		Lower	Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	715175		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	113%	50%	140%	80%	50%	140%
Vinyl Chloride	715175		< 0.17	< 0.17	NA	< 0.17	96%	50%	140%	113%	50%	140%	101%	50%	140%
Bromomethane	715175		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	108%	50%	140%	95%	50%	140%
Trichlorofluoromethane	715175		< 0.40	< 0.40	NA	< 0.40	107%	50%	140%	103%	50%	140%	84%	50%	140%
Acetone	715175		< 1.0	< 1.0	NA	< 1.0	87%	50%	140%	97%	50%	140%	86%	50%	140%
1,1-Dichloroethylene	715175		< 0.30	< 0.30	NA	< 0.30	101%	50%	140%	92%	60%	130%	91%	50%	140%
Methylene Chloride	715175		< 0.30	< 0.30	NA	< 0.30	101%	50%	140%	104%	60%	130%	82%	50%	140%
trans- 1,2-Dichloroethylene	715175		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	103%	60%	130%	95%	50%	140%
Methyl tert-butyl ether	715175		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	96%	60%	130%	112%	50%	140%
1,1-Dichloroethane	715175		< 0.30	< 0.30	NA	< 0.30	98%	50%	140%	107%	60%	130%	93%	50%	140%
Methyl Ethyl Ketone	715175		< 1.0	< 1.0	NA	< 1.0	84%	50%	140%	116%	50%	140%	107%	50%	140%
cis- 1,2-Dichloroethylene	715175		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	108%	60%	130%	103%	50%	140%
Chloroform	715175		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	113%	60%	130%	103%	50%	140%
1,2-Dichloroethane	715175		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	110%	60%	130%	109%		140%
1,1,1-Trichloroethane	715175		< 0.30	< 0.30	NA	< 0.30	78%	50%	140%	90%		130%	81%		140%
Oradi e e Tata e bla cide							000/	500/		000/		1000/	050/	= 00/	4 400/
Carbon Tetrachloride	715175		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	89%	60%	130%	85%	50%	140%
Benzene	715175		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	100%	60%	130%	96%	50%	140%
1,2-Dichloropropane	715175		< 0.20	< 0.20	NA	< 0.20	95% 70%	50%	140%	109% 91%	60%	130%	97%	50%	140%
Trichloroethylene Bromodichloromethane	715175 715175		< 0.20 < 0.20	< 0.20 < 0.20	NA NA	< 0.20 < 0.20	78% 83%	50% 50%	140% 140%	91% 97%	60% 60%	130% 130%	90% 94%		140% 140%
Methyl Isobutyl Ketone	715175		< 1.0	< 1.0	NA	< 1.0	112%	50%	140%	113%	50%	140%	115%	50%	140%
1,1,2-Trichloroethane	715175		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	103%	60%	130%	110%	50%	140%
Toluene	715175		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	100%	60%	130%	111%		140%
Dibromochloromethane	715175		< 0.10	< 0.10	NA	< 0.10	98%	50%	140%	103%	60%	130%	109%	50%	140%
Ethylene Dibromide	715175		< 0.10	< 0.10	NA	< 0.10	118%	50%	140%	99%	60%	130%	107%	50%	140%
Tetrachloroethylene	715175		< 0.20	< 0.20	NA	< 0.20	90%	50%	140%	109%	60%	130%	95%	50%	140%
1,1,1,2-Tetrachloroethane	715175		< 0.10	< 0.10	NA	< 0.10	83%	50%	140%	106%	60%	130%	99%	50%	140%
Chlorobenzene	715175		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	114%	60%	130%	105%	50%	140%
Ethylbenzene	715175		< 0.10	< 0.10	NA	< 0.10	88%	50%	140%	112%	60%	130%	101%	50%	140%
m & p-Xylene	715175		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	114%	60%	130%	102%	50%	140%
Bromoform	715175		< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	105%	60%	130%	107%	50%	140%
Styrene	715175		< 0.10	< 0.10	NA	< 0.10	86%			109%		130%	101%		140%
1,1,2,2-Tetrachloroethane	715175		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	100%	60%	130%	105%		140%
o-Xylene	715175		< 0.10	< 0.10	NA	< 0.10	92%		140%	114%		130%	103%		140%
1,3-Dichlorobenzene	715175		< 0.10	< 0.10	NA	< 0.10	93%		140%	104%		130%	110%		140%
1 4 Diablarahanzazz	745475		.0.10	0.10	N14	. 0.10	0404	F00/	4.400/	000/	000/	4000/	4050/	E00/	4 4 0 0 1
1,4-Dichlorobenzene	715175		< 0.10	< 0.10	NA	< 0.10	91%		140%	92%		130%	105%		140%
1,2-Dichlorobenzene	715175		< 0.10	< 0.10	NA	< 0.10	99%		140%	97%		130%	113%		140%
1,3-Dichloropropene	715175		< 0.30	< 0.30	NA	< 0.30	85%		140%	96%		130%	91%		140%
n-Hexane	715175		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	98%	60%	130%	94%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42

SAMPLING SITE:

AGAT WORK ORDER: 19T544663

ATTENTION TO: Amir Karim

SAMPLED BY:

	٦	Frace	Org	anics	s Ana	alysis	(Cor	ntinu	ued)					
RPT Date: Nov 20, 2019			C	UPLICAT	E		REFEREN		FERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE
PARAMETER	METER Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		otable iits	Recovery	Acceptable Limits		Recovery	Lim	ptable nits
							Value	Lower	Upper	1 ,	Lower	Upper		Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPopukoli

AGAT QUALITY ASSURANCE REPORT (V1)

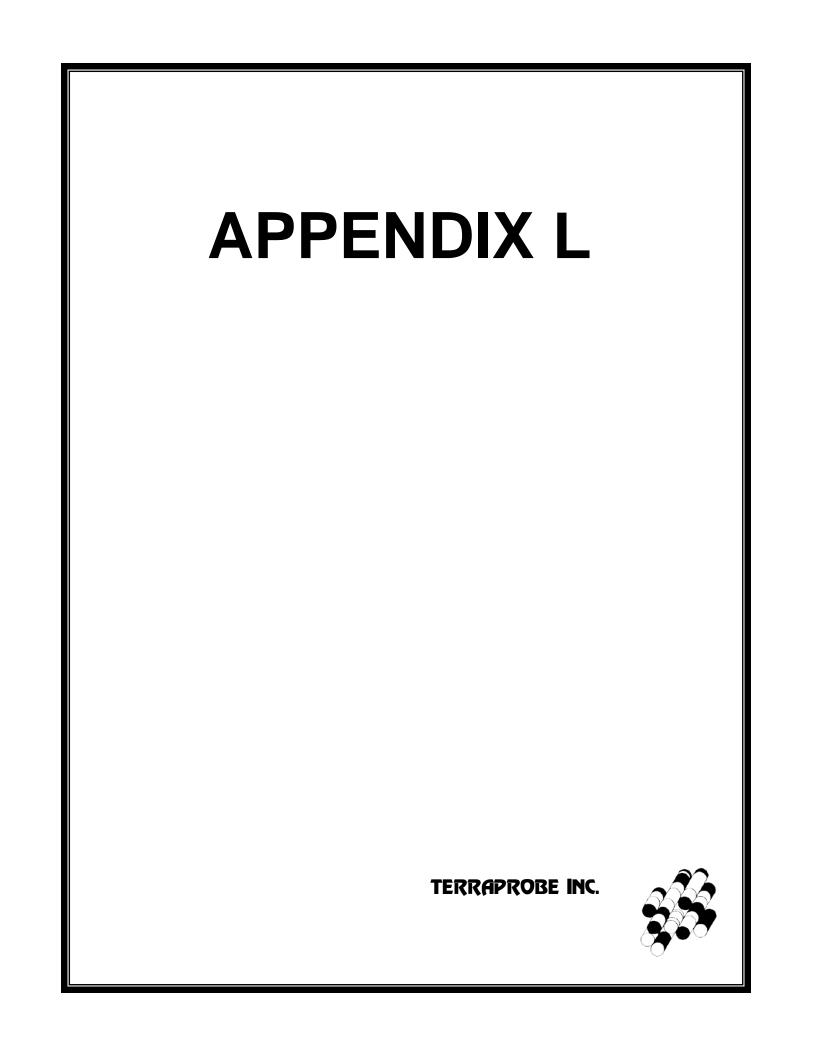
Page 5 of 7

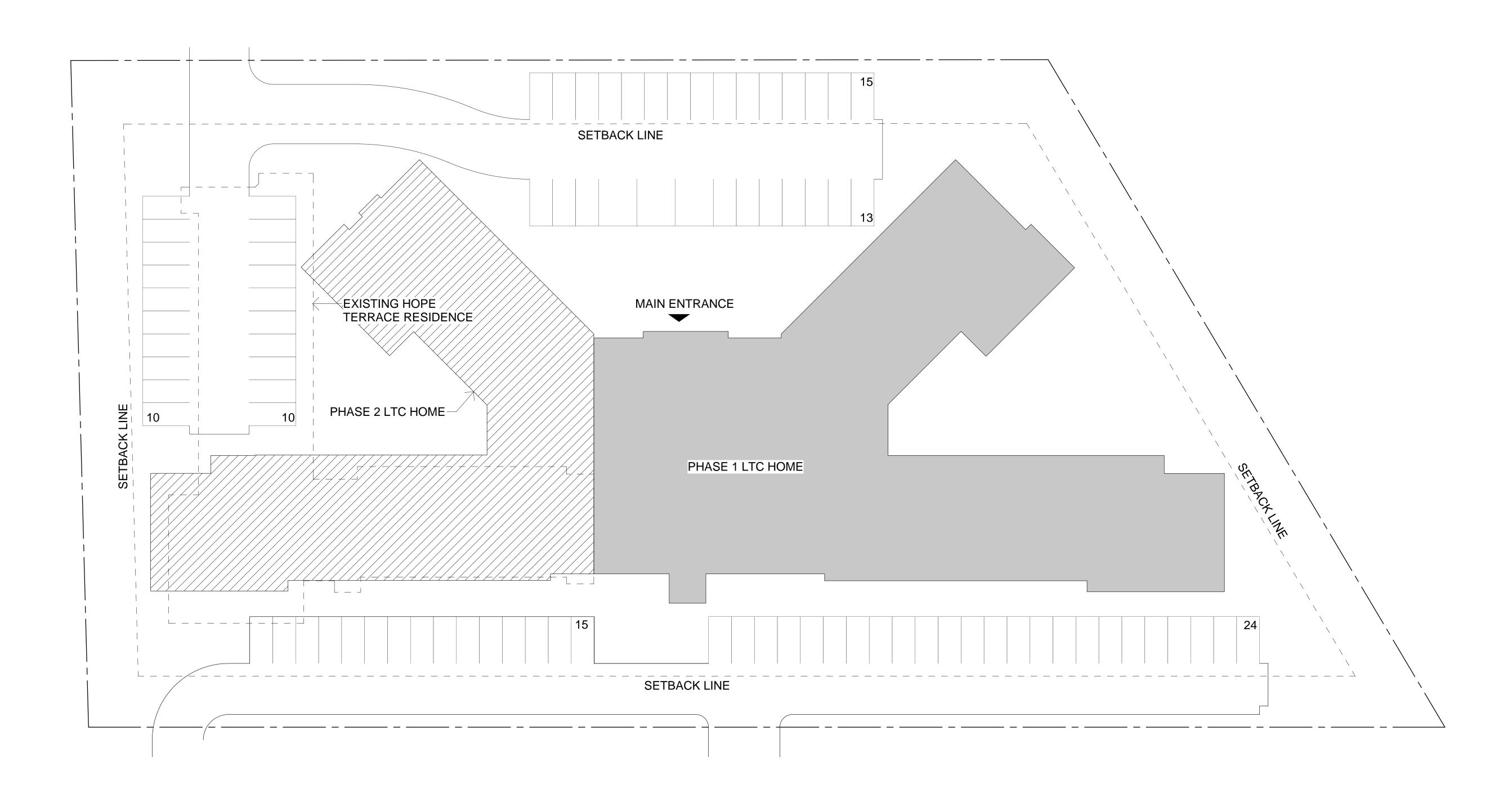
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

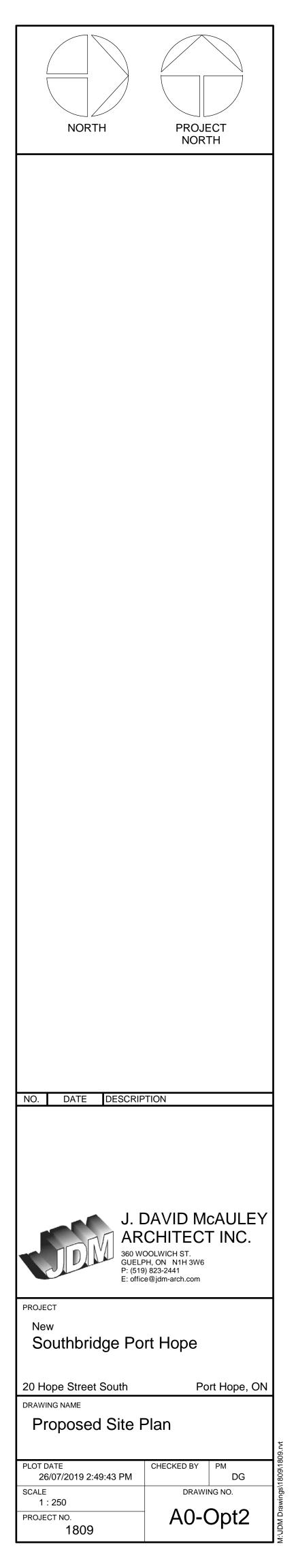
Method Summary

CLIENT NAME: TERRAPROBE INC.

PROJECT: 1-19-0660-42


AGAT WORK ORDER: 19T544663 ATTENTION TO: Amir Karim


SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Trace Organics Analysis			-								
Dichlorodifluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Vinyl Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Bromomethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Trichlorofluoromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Acetone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methylene Chloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
trans- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl tert-butyl ether	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl Ethyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
cis- 1,2-Dichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Chloroform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,2-Dichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,1-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Carbon Tetrachloride	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Benzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,2-Dichloropropane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Trichloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Bromodichloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Methyl Isobutyl Ketone	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,2-Trichloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Toluene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Dibromochloromethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Ethylene Dibromide	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Tetrachloroethylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,1,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Chlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Ethylbenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
m & p-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Bromoform	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Styrene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,1,2,2-Tetrachloroethane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
o-Xylene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,3-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,4-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,2-Dichlorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
1,3-Dichloropropene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Xylene Mixture	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
n-Hexane	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
Toluene-d8	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								
4-Bromofluorobenzene	VOL-91-5001	EPA SW-846 5030C & 8260D	(P&T)GC/MS								


Chain of C									5.71	ssissau 2.5100 we	i835 Cooj uga, Onta P Fax: 90 bearth.ag	rio L4; 5.712. (atlabs	2 1Y2 5 122		Work	er Qua	#:	i ^c		-	46 Iar	63 92		-
Report Information: Company: Terraprobe Contact: Amir Karim Address: 11 Indell Lane, Brampton ON L6T 3Y3 Phone: (905) 796-2650 Reports to be sent to: 1. Email: 2. Email: AKarim@Terraprobe.ca				piease us	see Drinking Water Chain of Custody Form (potable water consumed by humans) Regulatory Requirements: No Regulatory Requirements: (Please check all applicable boxes) No Regulatory Requirements: Image: Regulation 153/04 Sewer Use Table Sanitary Imdicate one Sanitary Image: Regulation (check one) Region Coarse Indicate one Fine MISA Is this submission for a Record of Site Condition? Report Guideline on Certificate of Analysis				Arrival Temperatures:															
Project: Site Location: Sampled By:	1-19-0660-42 65 Ward Street, Port Hope	e] No			*TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM										
AGAT Quote #: Invoice Inform Company: Contact: Address: Email: Samol	Please note: If quotation number is nation: Terraprobe Lorena Rossi 11 Indell Lane, Brampton Irossi@Terraprobe.ca e Identification	, ON L6T 3Y3	Bill To Same:	Yes 🗹 No	Samp			Field Filtered - Metals, Hg, CrVI	Metals and Inorganics	☐ All Metals ☐ 153 Metals (excl. Hydrides) ☐ Hydride Metals ☐ 153 Metals (Incl. Hydrides)	ORPS: □B-HWS □CI: □CN □Cr ⁴⁺ □EC □FOC □Hg □ch+ □SAB	Full Metals Scan	Regulation/Custom Metals	NO2 0103+NO2	PHCs F1 - F4	ABNS	PAHS	PCBs: Total Darociors	nochlorine Pesticides	r Use		and a land		
	UANK	Sampled	Sampled	Containers	Matri GW	X Special Instructi	ions	Y	M				Re				PA	Po	Organ	Ser				
Samples Relinquished By (Pri Samples Relinquished By (Pri Samples Relinquished By (Pri	nt Name and Sign);		Date C (S Date	/19 ^{Tin}	1 2f:ca na	Samplas Received By (Print Na Samplas Received By (Print Na Samplas Received By (Print Na	ime and Sign): Ime and Sign):	pR	8	PE	2.7	S	Date Date Date	2	5	Time Time	7	S	a	Page	M a 1	of <u>1</u>		
ocument ID DIV-78-1511 014									_	_	Pink (Nº:		_			

34 A A

- -

